
Open problems on a geometric condition for

controllability of conservation laws

Vincent Perrollaz

Institut Denis Poisson, Université de Tours
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Initial Data Identification in

Conservation Laws and Hamilton–Jacobi Equations

Rinaldo M. Colombo1 Vincent Perrollaz2

March 3, 2019

Abstract

In the scalar 1D case, conservation laws and Hamilton–Jacobi equations are deeply related.
For both, we characterize those profiles that can be attained as solutions at a given positive
time corresponding to at least one initial datum. Then, for each of the two equations,
we precisely identify all those initial data yielding a solution that coincide with a given
profile at that positive time. Various topological and geometrical properties of the set of
these initial data are then proved.

2000 Mathematics Subject Classification: 35L65, 35F21, 93B30, 35R30.

Keywords: Inverse design; Conservation Laws; Hamilton–Jacobi Equations; Entropy So-
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1 Introduction

Under suitable conditions on the flow f : R → R and on the initial datum, solutions to a
scalar conservation law in 1 space dimension, namely to

∂tu+ ∂xf(u) = 0 , (1.1)

are known to be obtained through u = ∂xU from solutions to the Hamilton–Jacobi equation

∂tU + f(∂xU) = 0 . (1.2)

A peculiar feature of these equations is their irreversibility. In particular, in the case of (1.1),
inexorable shock formations cause an unavoidable loss of information, so that different initial
data may well evolve into the same profile. Usual identification techniques, often based on
linearizations or fixed point arguments, have no chances to be effective when dealing with (1.1)
or (1.2).

Below, we provide a full characterization of the set of the initial data for (1.1), respec-
tively (1.2), that evolve into a given profile. Geometric and topological properties of this set
are also obtained. To this aim, a refinement of the results in [22], see also [12, 23], on the
relation between (1.1) and (1.2) had to be obtained.

1INdAM Unit, University of Brescia, Italy. rinaldo.colombo@unibs.it
2Institut Denis Poisson, Université de Tours, CNRS UMR 7013, Université d’Orléans,

vincent.perrollaz@lmpt.univ-tours.fr
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For any suitable initial datum uo, we denote by (t, x) → SCL
t uo(x) the weak entropy

solution to (1.1). Symmetrically, we denote by (t, x) → SHJ
t Uo(x) the viscosity solution

to (1.2). Below, we consider the case of a uniformly convex C2 flux f and we obtain complete
characterizations of both sets

ICL
T (w) :=

{
uo ∈ L∞(R;R) : SCL

T uo = w
}

and

IHJ
T (W ) :=

{
Uo ∈W1,∞(R;R) : SHJ

T Uo = W
} (1.3)

and we use the notation IT whenever we refer to both sets in (1.3).
First, we identify those profiles such that the corresponding set IT is non empty. This

proof is constructive, in the sense that an initial datum in IT is explicitly constructed, see
Theorem 3.1. Here, we consider in detail the case of the conservation law (1.1). A key role is
played by the decay of rarefaction waves, a phenomenon typically described through Oleinik
decay estimates that goes back to [28], was recently improved in [18], extended to systems of
conservation laws in [9] and of balance laws in [11], see also the reference texts [8, Chapter 6,
Ex.5] and [15, Theorem 11.2.1]. For related problems dealing with the reachable set of (1.1),
also in the case of the initial – boundary value problem, we refer to [6, 21] and [1].

Once IT is ensured to be non empty, in its characterization as well as in establishing its
properties a key role is played by two sets, say Xi and Xii, whose precise definitions are
in (2.4). For x varying in the former one, Xi, the value attained at x by any initial datum
in IT is essentially uniquely determined. On the contrary, for x varying in the latter one,
Xii, the value attained at x by any initial datum in IT is subject to rather loose constraints.
Moreover, coherently with the finite propagation speed typical of (1.1) and (1.2), the values
attained at x by any initial datum in IT on each of the different connected components of Xi

and Xii are entirely independent from each other.
Instrumental in these proofs is the ability to go back and forth between solutions to (1.1)

and solutions to (1.2). To this aim, we needed to complete the results in [22] that deal with
the connection from (1.2) to (1.1). Indeed, Proposition 2.5 details how to pass from solutions
to (1.1) to solutions to (1.2).

On the basis of the obtained characterizations, several properties of ICL
T (w) are then

proved. First, we re-obtain its convexity, which was already stated in [19]. Then, the unique
extreme point of ICL

T (w) is fully characterized and we prove that, remarkably, this set is a
cone admitting no finite dimensional extremal faces.

The characterization below directly shows that as soon as ICL
T is non empty, then also

ICL
T ∩ BV(R;R) is non empty, meaning that any profile reached by an initial datum with

unbounded total variation can also be reached by a (different) initial datum in BV. Moreover,
we prove that ICL

t always contains one sided Lipschitz continuous functions but more regular
initial data may also be available. The initial datum constructed “prolonging backwards all
shocks” yields a solution whose interaction potential [8, Formula (10.10)] is constant on ]0, T [.

Further motivations for the present study are provided by parameter identification or
inverse problems based on (1.1) or (1.2). In particular, we defer to the related paper [19]
that motivates the present problem through applications to the study of sonic booms in (1.1),
also providing several illustrative examples and visualizations. In the case of (1.2), U is
typically the value function associated to a time reversed control problem, f being related to
the dynamics and to the running cost, with Uo playing the role of the terminal cost. Here,
the present result amounts to characterizing the terminal cost corresponding to given initial
cost, see [16, Section 10.3] for further connections to optimal control problems. The present
analytic results can also help in numerical investigations such as those in [2, 10, 26, 27].
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Sections 2 to 5 collect the analytic results, while all proofs are deferred to sections 6 to 9

2 Notation and Preliminary Results

Throughout, T is fixed and strictly positive. Below, we mostly refer to [5, § 3.2] for results
about BV functions. In Section 6 we briefly recall the definition and the min properties
of SBV(R;R), refer to [4] or [15, § 1.7] for more details. As usual, we also use functions
u in BVloc(R;R), respectively in SBVloc(R;R), meaning that the restriction u|I of u to
any bounded real interval I is in BV(I;R), respectively in SBV(I;R). If u ∈ BVloc(R;R),
then we set u(x±) = limξ→x± u(ξ) and we convene that we choose as u the left continuous
representative of its class, so that u(x) = u(x−).

We assume the following condition on the function defining (1.1) or (1.2), where c is a
suitable positive constant:

(F): f ∈ C2(R;R) is such that f ′′ ≥ c > 0 and f(0) = min
R
f = 0. (2.1)

Clearly, the latter part of the above condition is not restrictive, since it can be achieved
through ad hoc translations of the u or ∂xU variable and of the flux f .

As general references on the theory of scalar conservation laws we use [8, Chapter 6],
[15, Chapter XI] or [30, Vol. 1, Chapter 2]. As specified in Definition 2.1 below, by solution
to (1.1), we always mean a weak entropy solution in the sense of [8, § 4.4], see also [15,
Definition 6.2.1] or [30, Definition 2.3.3].

Definition 2.1. A map u ∈ L∞([0, T ] × R;R) ∩ C0([0, T ]; L1
loc(R;R)) is a weak entropy

solution to (1.1) if∫∫
R2

(
|u− k| ∂tϕ+ sgn(u− k)

(
f(u)− f(k)

)
∂xϕ

)
dt dx ≥ 0

∀ϕ∈C1
c(R+ × R;R+) ,

∀k∈R .

Consider the Cauchy problem for (1.1) with an L∞ initial datum assigned at time t = 0.
Then, by [31, Theorem 16.1], condition (2.1) ensures that as soon as a weak entropy solution
exists, then it has locally bounded total variation in space at any positive time.

Concerning (1.2), we use the standard definition of viscosity solution based on super-
solutions and sub-solutions, see [16, Chapter 10], [13, Definition I.1] or [22, Section 1].

Definition 2.2. A map U ∈ W1,∞([0, T ] × R;R) ∩ C0([0, T ]; W1,∞
loc (R;R)) is a viscosity

solution to (1.2) if for all ϕ ∈ C∞(]0, T [× R;R) and all (to, xo) ∈ ]0, T [× R

� if U − ϕ has a local maximum at (to, xo), then ∂tϕ(to, xo) + f
(
∂xϕ(to, xo)

)
≤ 0;

� if U − ϕ has a local minimum at (to, xo), then ∂tϕ(to, xo) + f
(
∂xϕ(to, xo)

)
≥ 0.

For the existence of a semigroup generated by (1.2) yielding solutions in the sense of Defini-
tion 2.2, we refer for instance to the classical result [13, Theorem VI.2].

The space derivation, i.e., the map U → u = ∂xU , shows the equivalence between solutions
to (1.2) in the sense of Definition 2.2 and solutions to (1.1) in the sense of Definition 2.1,
see [22, Theorem 1.1] and the references therein.

Throughout this paper, the following function plays a key role.
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Notation 2.3. For a fixed w ∈ L∞(R;R), we denote

p : R → R
x 7→ x− T f ′

(
w(x)

)
.

(2.2)

In the case of (1.1), as soon as ICL
T (w) 6= ∅, p assigns to each x ∈ R the intersection of the

minimal backward characteristic for (1.1) through (T, x), see [15, Chapter X], with the axis
t = 0. In the case of (1.2), we clearly set p(x) := x− T f ′

(
∂xW (x)

)
.

The choice of the left continuous representative of w is here crucial to obtain minimal
backward characteristics.

Oleinik condition on the decay of positive waves [9, 18, 28], see also [8, Chapter 6, Ex.5]
and [15, Theorem 11.2.1], is equivalent to require that p, defined in (2.2), be weakly increasing:

(O): for all x ∈ R and y ∈ R+ \ {0} p(x) ≤ p(x+ y) , equivalently
f ′
(
w(x+ y)

)
− f ′

(
w(x)

)
≤ y/T . (2.3)

On the basis of Oleinik Condition (2.3), we partition R into two sets Xi and Xii that play a
key role in the sequel.

Proposition 2.4. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that (2.3) holds
and p ∈ SBVloc(R;R). Introduce the sets

Xi := p
({
x ∈ R : p is differentiable at x and p′(x) 6= 0

})
,

Xii :=
⋃
x∈R

]
p(x−), p(x+)

[
.

(2.4)

Then, R \ (Xi ∪Xii) has Lebesgue measure 0.

We now investigate the equivalence between the Conservation Law (1.1) and the Hamilton–
Jacobi equation (1.2). A key result is [22, Theorem 1.1], to which we provide here a comple-
tion, in the sense explained through the following diagrams:

[22, Theorem 1.1] Proposition 2.5
Uo −→ SHJ

t Uo

∂x

y y ∂x

uo −→ SCL
t uo

Uo −→ SHJ
t Uo∫ x x x Formula (2.5)

uo −→ SCL
t uo

Proposition 2.5. Let f satisfy (2.1). Fix uo ∈ L∞(R;R) and call u the solution in the sense
of Definition 2.1 to the Cauchy problem for the Conservation Law (1.1) with datum uo at
time t = 0. For a path γ ∈W1,∞([0, T ];R) and a constant c ∈ R, define

U(t, x) =

∫ x

γ(t)
u(t, ξ) dξ +

∫ t

0

(
γ̇(τ)u

(
τ, γ(τ)

)
− f

(
u
(
τ, γ(τ)

)))
dτ + c . (2.5)

Then, U solves Hamilton–Jacobi equation (1.2) with datum Uo(x) =
∫ x
γ(0) uo(ξ) dξ + c in the

sense of Definition 2.2.
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3 Construction of a Remarkable Element of ICL

t (w)

We now prove that Oleinik Condition (2.3) characterizes those profiles w such that ICL
T (w) 6=

∅. Indeed, if a profile w satisfies Oleinik condition (2.3), then the conservation law (1.1) can
be integrated backwards in time, taking w as final datum at time T and yielding a BV initial
profile at time 0. Technically, we reverse the space variable, rather than reversing time, and
we explicitly construct an element of ICL

T (w) that will play a key role in the sequel.

Theorem 3.1. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that (2.3) holds.
Then, there exists a unique function u∗o ∈ L∞(R;R) characterized by each one of the following
two equivalent conditions:

(i∗) u∗o(x) = ũ(T,−x), where ũ is a solution to

{
∂tũ+ ∂xf(ũ) = 0 ,
ũ(0, x) = w(−x) .

(ii∗) u∗o is such that

(ii∗.i) for all x ∈ R where p is differentiable and p′(x) 6= 0,

lim
y→x

1

p(y)− p(x)

∫ p(y)

p(x)
u∗o(ξ) dξ = w(x) ;

(ii∗.ii) for all x ∈ R where w(x−) 6= w(x+), for all v ∈ [w(x+), w(x−)],

1

T

∫ x−Tf ′(w(x+))

x−Tf ′(v)
u∗o(ξ) dξ=

(
v f ′(v)− f(v)

)
−
(
w(x+) f ′

(
w(x+)

)
− f

(
w(x+)

))
,

1

T

∫ x−Tf ′(v)

x−Tf ′(w(x−))
u∗o(ξ) dξ=

(
w(x−) f ′

(
w(x−)

)
− f

(
w(x−)

))
−
(
v f ′(v)− f(v)

)
.

Moreover, u∗o enjoys the following properties:

(1∗) u∗o ∈ ICL
T (w);

(2∗) u∗o is one sided Lipschitz and u∗o ∈ BV(R;R);

(3∗) for all x ∈ R and for all y ∈ R+, f ′
(
u∗o(x− y)

)
− f ′

(
u∗o(x)

)
≤ y

T
.

We underline that condition (ii∗) naturally determines two subsets of R, related to Xi

and Xii. Indeed, in (ii∗) we explicitly specify the exact sets of those points x where the two
conditions (ii∗.i) and (ii∗.ii) have to be satisfied by w at time t = T . Essentially, the results
above show that if uo ∈ ICL

T (w), then the restriction uo|Xi
yields the continuous part of w,

while uo|Xii
yields the shocks.

As a first consequence of Theorem 3.1 we obtain the following characterization of those
profiles w such that ICL

T (w) is non empty.

Corollary 3.2. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R). With the notations (1.3)
and (2.2), the following statements are equivalent:

(a) ICL
T (w) 6= ∅;

(b) a suitable representative of w satisfies Oleinik Condition (2.3).
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Note that condition (b), and hence the requirement ICL
T (w) 6= ∅, also ensures that w ∈

BVloc(R;R). Hence, w admits a left continuous representative satisfying (b) for all x ∈ R.

The translation of the results above to the case of Hamilton–Jacobi equation (1.2) essen-
tially relies on Proposition 2.5 and is here omitted. We only recall that the conditions (ii∗.i)
and (ii∗.ii) above are restated in terms of a primitive U∗o of u∗o in (I [) and (II [) in Lemma 7.3.

4 Characterizations of ICL

T (w) and IHJ

T (W )

In view of [7, Theorem 1.1], for any initial datum uo and for all but countably many times
T , the map w = STuo leads to a function p in SBVloc(R;R), see also [4, Theorem 1.2]
and [15, Theorem 11.3.5]. Therefore, we restrict our analysis below to functions w such that
p ∈ SBVloc(R;R).

We proceed with our main result, in the version referring to the Conservation Law (1.1)

Theorem 4.1. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that ICL
T (w) 6= ∅

and p ∈ SBVloc(R;R). Then, a map uo ∈ L∞(R;R) is in ICL
T (w) if and only if the following

two conditions hold:

(i) for all x ∈ R such that p is differentiable at x and p′(x) 6= 0,

lim
y→x

1

p(y)− p(x)

∫ p(y)

p(x)
uo(ξ) dξ = w(x) ; (4.1)

(ii) for all x ∈ R such that w(x−) 6= w(x+), for all v ∈ [w(x+), w(x−)],

1

T

∫ x−Tf ′(w(x+))

x−Tf ′(v)
uo(ξ) dξ ≤

(
v f ′(v)− f(v)

)
−
(
w(x+) f ′

(
w(x+)

)
− f

(
w(x+)

))
,

1

T

∫ x−Tf ′(v)

x−Tf ′(w(x−))
uo(ξ) dξ ≥

(
w(x−) f ′

(
w(x−)

)
− f

(
w(x−)

))
−
(
v f ′(v)− f(v)

)
.

Note that (i) holds, in particular, whenever p(x) is a Lebesgue point of uo. Moreover,
at (i), we mean both that the limit in the left hand side of (4.1) exists and that its value
is w(x). With reference to Proposition 2.4, Xi in (2.4) is the set where the values of uo are
constrained by (i) and, similarly, Xii is the set where the values of uo are constrained by (ii).

As a side remark note that, as is to be expected, if the flow f is varied by any additive
constant, both conditions (i) and (ii) remain unchanged.

Towards a restatement of Theorem 4.1 in the case of Hamilton–Jacobi equation we pro-
vide the following Theorem, whose proof is instrumental in the characterization of ICL

T (w).
Therein, we use the Legendre transform f∗ of f , see Proposition 7.1 for the precise definition.

Theorem 4.2. Let (2.1) hold, T be positive an p be as in (2.2). Fix w ∈ L∞(R;R) such
that ICL

T (w) 6= ∅ and w ∈ SBVloc(R;R). Then, a map U ∈W1,∞(R;R) is such that ∂xUo ∈
ICL
T (w) if and only if the following two conditions hold:

(I) for all x ∈ R such that p is differentiable at x and p′(x) 6= 0,

lim
y→x

Uo
(
p(y)

)
− Uo

(
p(x)

)
p(y)− p(x)

= ∂xW (x) ; (4.2)
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(II) for all x ∈ R such that ∂xW (x−) 6= ∂xW (x+), for all y ∈
]
p(x−), p(x+)

[
,

Uo
(
p(x+)

)
− Uo(y)

T
≤ f∗

(
x− y
T

)
− f∗

(
x− p(x+)

T

)
,

Uo(y)− Uo
(
p(x−)

)
T

≥ f∗
(
x− p(x−)

T

)
− f∗

(
x− y
T

)
.

Here we remark that the conditions in Theorem 4.1 and those in Theorem 4.2 are equivalent.

Lemma 4.3. Under the assumptions and notations of Theorem 4.1 and Theorem 4.2, if
Uo ∈W1,∞(R;R) and uo = ∂xUo, then

uo satisfies (i) in Theorem 4.1 ⇐⇒ Uo satisfies (I) in Theorem 4.2;
uo satisfies (ii) in Theorem 4.1 ⇐⇒ Uo satisfies (II) in Theorem 4.2.

However, the former CL–formulation leads to an easier proof of the necessity condition,
while the latter integral formulation leads to a simpler verification of the sufficiency part.
Therefore, in the proofs of theorems 4.1 and 4.2 we follow this scheme:

uo ∈ ICL
T (w) ⇐⇒ ∂xUo ∈ ICL

T (w)

Theorem 4.1
ww� ~ww Theorem 4.2

uo satisfies (i) ⇐⇒ Uo satisfies (I)
uo satisfies (ii) ⇐⇒ Uo satisfies (II)

Lemma 4.3

On the basis of Theorem 4.2, we now deal with the Hamilton–Jacobi equation (1.2) and
state the characterization of IHJ

T (W ).

Theorem 4.4. Let (2.1) hold and T be positive. Fix W ∈W1,∞(R;R) such that IHJ
T (W ) 6= ∅

and ∂xW ∈ SBVloc(R;R). Let p be as in (2.2), with w = ∂xW . Then, Uo ∈ IHJ
T (W ) if and

only if the following two conditions hold:

(IHJ) for all x ∈ R such that p is differentiable at x and p′(x) 6= 0,

lim
y→x

Uo
(
p(y)

)
− Uo

(
p(x)

)
p(y)− p(x)

= ∂xW (x) ;

(IIHJ) for all x ∈ R such that ∂xW (x−) 6= ∂xW (x+),

∀ y ∈
]
p(x−), p(x+)

[
Uo(y) + T f∗

(
x−y
T

)
≥ W (x) ,

∀ y ∈
{
p(x−), p(x+)

}
Uo(y) + T f∗

(
x−y
T

)
= W (x) .

5 Geometric Properties of ICL

T (w)

On the basis of the characterization provided by Theorem 4.1 and Theorem 4.2, we obtain
the following information on topological and geometrical properties of the set ICL

T (w).

Proposition 5.1. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that ICL
T (w) 6= ∅

and w ∈ SBVloc(R;R). Then, with respect to the L1
loc topology, the set ICL

T (w) is:

7



(T1) closed;

(T2) with empty interior.

Proposition 5.2. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that ICL
T (w) 6= ∅

and w ∈ SBVloc(R;R). Then,

(G1) the set ICL
T (w) reduces to a singleton if and only if w ∈ C0(R;R);

(G2) the set ICL
T (w) is a convex cone having as unique extremal point at its vertex the map

u∗o defined in Theorem 3.1.

(G3) if uo ∈ ICL
T (w) and uo 6= u∗o, then for any n ∈ N\{0} there exist v0, v1, . . . , vN ∈ ICL

T (w)
such that

uo =
1

N + 1

N∑
i=0

vi (5.1)

and v1 − v0, v2 − v0, . . . , vN − v0 are linearly independent.

Above, by singleton we mean up to equality a.e. or, equivalently, that the precise representative
is unique. By precise representative of uo ∈ L∞(R;R) we mean that

uo(x) =

{
limr→0

1
r

∫ x+r
x uo(ξ) dξ whenever this limit exists,

0 otherwise.
(5.2)

6 Proofs Related to § 2

The Lebesgue measure in R is denoted by L. Given u ∈ L∞loc(R;R), we define the set Leb (u)

of its Lebesgue points as the set of those x ∈ R such that limr→0
1
r

∫ x+r
x

∣∣u(ξ)− u(x)
∣∣ dξ = 0.

By [17, Corollary 2, Chapter 1, § 7]), L
(
R \ Leb (u)

)
= 0.

Below, we often use the decomposition u = uac + uj + uc of a BV function u into its
absolutely continuous part uac, its jump part uj , which is a possibly infinite sum of Heaviside
functions, and its Cantor part uc. Whenever uc = 0, we say that u ∈ SBV(R;R). Recall
that if u ∈ BV(R;R), then its weak derivative Du is a Radon measure [17, § 1.1] that admits
the decomposition Du = (Du)ac + (Du)j + (Du)c, (Du)ac being absolutely continuous with
respect to L, (Du)j is a, possibly infinite, sum of Dirac deltas and (Du)c is the Cantor part
of Du. As is well known [5, Corollary 3.33], up to sets of Lebesgue measure 0,

(Du)ac = D(uac) , (Du)j = D(uj) and (Du)c = D(uc) .

We also denote by u′ the density of (Du)ac with respect to the Lebesgue measure, so that
(Du)ac = u′ L and u′ = (uac)

′. By [5, Theorem 3.28] for a.e. x ∈ R, u′(x) coincides with the
limit of the incremental ratio of u or uac at x.

For later use, we need the following variation of the Area Formula, see e.g. [5, § 2.10].

Lemma 6.1. Let ϕ ∈ SBV(R;R) be weakly increasing. Then, for any measurable set E,∫
E
ϕ′ac(ξ) dξ =

∫
R

card
(
E ∩ ϕ−1(ξ)

)
dξ

with ϕ′ac being the absolutely continuous part of ϕ′.
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Proof. Throughout this proof, Ac is the complement of the set A in R. Denote by Hξ the
Heaviside function centered at ξ, i.e., Hξ(x) = 1 for x ≥ ξ and Hξ(x) = 0 for x < ξ.

Define ϕs =
∑

n αnHξn , with αn = ϕ(ξn+) − ϕ(ξn−) and {ξn : n ∈ N} being the set of
points of jump in ϕ. Since ϕ ∈ SBV(R;R), by [29, Chapter 2, Section 25], the function
ϕac = ϕ− ϕs is in AC(R;R).

For any measurable set E, define µ(E) =
∫
E ϕ
′
ac(ξ) dξ. By construction, µ is a measure

and for any a, b ∈ R with a ≤ b, we have that µ([a, b]) = ϕac(b)− ϕac(a). Hence, choosing a
and b among the continuity points of ϕ, we have that

µ([a, b]) = ϕ(b)− ϕ(a)−
∑

n : ξn∈]a,b[

αn . (6.1)

Define, for any measurable set E, also ν(E) :=
∫
R card

(
E ∩ ϕ−1(ξ)

)
dξ. The set function ν is

a measure, as it follows from the Monotone Convergence Theorem, see e.g. [5, Theorem 1.19],
and from the countable additivity of the counting measure.

Denote A :=
⋃
n∈N

]
ϕ(ξn−), ϕ(ξn+)

[
. For any a, b ∈ R, with a ≤ b being continuity points

of ϕ, by the monotonicity of ϕ note that

card
(

[a, b] ∩ ϕ−1(ξ)
)

=


0 ξ < ϕ(a) or ξ > ϕ(b) or ξ ∈ A ,
1 ϕ−1(ξ) is a singleton in [a, b] ∩Ac ,
+∞ otherwise.

Indeed, if [a, b] ∩ ϕ−1(ξ) contains two points, say ξ1 and ξ2 with ξ1 < ξ2, then [ξ1, ξ2] ⊆(
[a, b] ∩ ϕ−1(ξ)

)
, so that card

(
[a, b] ∩ ϕ−1(ξ)

)
= +∞ and there exist only countably many

such points. As a consequence,

ν([a, b]) =

∫
R

card
(

[a, b] ∩ ϕ−1(ξ)
)

dξ =

∫
R
χ

[ϕ(a),ϕ(b)]∩Ac
(ξ) dξ = L([ϕ(a), ϕ(b)] ∩Ac)

so that

[ϕ(a), ϕ(b)] ∩Ac = [ϕ(a), ϕ(b)] ∩

⋃
n∈N

]
ϕ(ξn−), ϕ(ξn+)

[c

= [ϕ(a), ϕ(b)] \
⋃

n : ξn∈]a,b[

]
ϕ(ξn−), ϕ(ξn+)

[
and the latter union in the right hand side above is contained in [ϕ(a), ϕ(b)], due to our choice
of a and b. Passing to the Lebesgue measure of the sets on the two sides of the latter equality,

ν
(
[a, b]

)
= L

(
[ϕ(a), ϕ(b)] ∩Ac

)
= L

[ϕ(a), ϕ(b)]
∖ ⋃

n : ξn∈]a,b[

]
ϕ(ξn−), ϕ(ξn+)

[
= L

(
[ϕ(a), ϕ(b)]

)
−

∑
n : ξn∈]a,b[

L
(]
ϕ(ξn−), ϕ(ξn+)

[)
= ϕ(b)− ϕ(a)−

∑
n : ξn∈]a,b[

αn (6.2)

By (6.1) and (6.2) we have that µ = ν on all intervals [a, b] with a, b continuity points of ϕ.
The choice of ϕ ensures that these points are dense in R, completing the proof. �
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Proof of Proposition 2.4. Introduce the sets

P1 := {x ∈ R : p or pac is not differentiable at x} and P2 :=
{
x ∈ R \ P1 : p′(x) = 0

}
.

Remark that if x ∈ P2, then p, pac and pj are all differentiable at x and p′ac(x) = p′j(x) = 0,
since p, pac and pj are all weakly increasing by (b) in Theorem 3.2.

By [29, Chapter 1, Section 2], P1 has Lebesgue measure 0 and
∫
P1∪P2

p′ac(x) dx = 0. Note

that Lemma 6.1, which can be applied since p ∈ SBVloc(R;R), ensures that
∫
P1∪P2

p′ac(x) dx =∫
R card

(
(P1 ∪ P2) ∩ p−1(ξ)

)
dξ, so that card

(
(P1 ∪ P2) ∩ p−1(ξ)

)
= 0 for a.e. ξ ∈ R and,

equivalently, p(P1 ∪ P2) is negligible, i.e.,

L
(
p(P1 ∪ P2)

)
= 0 . (6.3)

Observe that
p(R) = Xi ∪ p(P1 ∪ P2) . (6.4)

By (2.3), the function p is non decreasing, hence Xii is an at most countable union of non
empty, disjoint and open intervals. By the properties of backward characteristics, the set
R \

(
Xii ∪ p(R)

)
is at most countable, so that

L
(
R \

(
Xii ∪ p(R)

))
= 0 . (6.5)

Using the relations above,

R \ (Xi ∪Xii) ⊆ R \
(
Xi ∪Xii ∪ p(P1 ∪ P2)

)
∪ p(P1 ∪ P2) [by (6.4)]

⊆ R \
(
Xii ∪ p(R)

)
∪ p(P1 ∪ P2)

L
(
R \ (Xi ∪Xii)

)
≤ L

(
R \

(
Xii ∪ p(R)

))
+ L

(
p(P1 ∪ P2)

)
[by (6.3) and (6.5)]

≤ 0 ,

completing the proof. �

The following classical result is of use in the subsequent proof as well as in what follows,

Proposition 6.2 ([14, Lemma 3.2]). Let f satisfy (2.1) and let u be a weak entropy solution
to (1.1). Let a, b ∈ [0, T ] with a < b and choose two maps α, β ∈ C0,1([a, b];R) with α ≤ β.
Then, for a.e. t1, t2 ∈ [a, b] with t1 ≤ t2,∫ β(t2)

α(t2)
u(t2, x) dx−

∫ β(t1)

α(t1)
u(t1, x) dx =

∫ t2

t1

(
f
(
u(t, α(t)−)

)
− α̇(t)u(t, α(t)−)

)
dt

−
∫ t2

t1

(
f
(
u(t, β(t)+)

)
− β̇(t)u(t, β(t)+)

)
dt .

Remark that if γ is a Lipschitz curve, then∫ t2

t1

(
f
(
u(t, γ(t)−)

)
− γ̇(t)u(t, γ(t)−)

)
dt =

∫ t2

t1

(
f
(
u(t, γ(t)+)

)
− γ̇(t)u(t, γ(t)+)

)
dt ,

as it follows from Proposition 6.2 in the case α = β = γ.that
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Proof of Proposition 2.5. Introduce the map Ũ(t, x) = (SHJ
t Uo)(x). We prove that Ũ

coincides with the map defined in (2.5). By [22, Theorem 1.1], the map ∂xŨ solves the
Conservation Law (1.1), so that

∂xŨ(t, x) = u(t, x) = ∂x

∫ x

γ(t)
u(t, ξ) dξ .

Hence, there exist a map Υ ∈W1,∞([0, T ];R) with Υ(0) = 0 and a c ∈ R such that

Ũ(t, x) =

∫ x

γ(t)
u(t, ξ) dξ + Υ(t) + c

and, using Proposition 6.2 with α(t) = γ(t), β(t) = x, t2 = t and t1 = 0,

Ũ(t, x)− Ũo(x)

=

∫ x

γ(t)
u(t, ξ) dξ −

∫ x

0
u(t, ξ) dξ + Υ(t)

=

∫ t

0

(
f
(
u
(
τ, γ(τ)−

))
− γ̇(τ)u

(
τ, γ(τ)−

))
dτ −

∫ t

0
f
(
u(τ, x+)

)
dτ + Υ(t)

By the differentiability properties of Ũ , see [16, Theorem 1, Section 10.1.2], we have

Ũ(t, x)− Ũo(x) = −
∫ t

0
f
(
∂xŨ(τ, x)

)
dτ = −

∫ t

0
f
(
u(τ, x)

)
dτ . (6.6)

So that

Υ(t) =

∫ t

0

(
γ̇(τ)u

(
τ, γ(τ)−

)
− f

(
u
(
τ, γ(τ)−

)))
dτ

completing the proof. �

7 Proofs Related to § 3

A tool used below is the following classical representation formula for the solutions to (1.1).

Proposition 7.1 ([25, Theorem 2.1]). Let (2.1) hold and uo ∈ L1(R;R). The solution to{
∂tu+ ∂xf(u) = 0
u(0, x) = uo(x)

(7.1)

in the sense of Definition 2.1 is the map

u(t, x) = g

(
x− y(t, x)

t

)
where

y(t, x) minimizes y → s(t, x, y) ,

s(t, x, y) = t f∗
(
x−y
t

)
+
∫ y

0 uo(ξ) dξ ,

f∗(λ) = λ g(λ)− f
(
g(λ)

)
,

g(λ) = (f ′)−1(λ) .

(7.2)

Formula (7.2) is a direct consequence of the classical Lax–Hopf formula, see [25, Theo-
rem 2.1], [20, 24] or [15, § 11.4], adapted to the present assumption (2.1) on f . Here we only
remark that y is uniquely defined for a.e. x ∈ R.

We pass to some properties on the solution to the conservation law obtained reversing
space in (1.1) and assigning w as initial datum.
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Lemma 7.2. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that (2.3) holds. Call
ũ the weak entropy solution to {

∂τ ũ+ ∂ξf(ũ) = 0
ũ(0, ξ) = w(−ξ) (7.3)

and define u∗o(x) := ũ(T,−x). Then:

(R1) The map ũ is Lipschitz continuous on any compact subset of ]0, T [× R.

(R2) The map u∗o is one sided Lipschitz and in BV(R;R);

(R3) The map u∗o satisfies u∗o ∈ ICL
T (w).

Proof. By (2.1) and [15, Theorem 11.2.1], for any τ ∈ ]0, T ], ξ ∈ R and h > 0, we have

f ′
(
ũ(τ, ξ + h)

)
− f ′

(
ũ(τ, ξ)

)
≤ h

τ
. (7.4)

On the other hand, for any τ ∈ [0, T [, ξ ∈ R and h > 0, introduce the values attained at
τ = 0 by the minimal backward characteristics originating from (τ, ξ + h) and (τ, ξ):

ξr = ξ + h− τ f ′
(
ũ(τ, ξ + h)

)
and ξ` = ξ − τ f ′

(
ũ(τ, ξ)

)
, (7.5)

so that

f ′
(
ũ(τ, ξ + h)

)
− f ′

(
ũ(τ, ξ)

)
≥ f ′

(
ũo (ξr−)

)
− f ′

(
ũo (ξ`+)

)
[15, Theorem 11.1.3]

≥ −ξr − ξ`
T

[by Oleinik condition (2.3)]

= −
h− τ

(
f ′
(
ũ(τ, ξ + h)

)
− f ′

(
ũ(τ, ξ)

))
T

[by (7.5)]

hence

f ′
(
ũ(τ, ξ + h)

)
− f ′

(
ũ(τ, ξ)

)
≥ − h

T − τ
. (7.6)

The two inequalities (7.4) and (7.6) ensure that x → f ′
(
ũ(τ, x)

)
is Lipschitz continuous for

τ ∈ ]0, T [, a Lipschitz constant being max
{

1/τ , 1/(T − τ)
}

. Therefore, by (7.3) and (2.1),
∂τ ũ is in L∞, proving (R1) and (R2)

For any C1 entropy – entropy flux pair (η, q) for (7.3), see [15, Chapter 3, § 2], we have

∂τη(ũ) + ∂ξq(ũ) = 0 a.e. in [0, T ]× R .

Passing from the (τ, ξ) to the (t, x) variables and setting

t := T − τ
x := −ξ u(t, x) := ũ(T − t,−x) , (7.7)

we obtain that ∂tη(u) + ∂xq(u) = 0 in distributional sense. By [15, Chapter 6, § 2], u is a
weak entropy solution to (1.1) such that u(T ) = w and hence u∗o ∈ ICL

T (w), proving (R3). �
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Lemma 7.3. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that ICL
T (w) 6= ∅ and

p ∈ SBVloc(R;R). Then, there exists a unique u[o ∈ L∞(R;R) such that any of its primitives
U [o satisfies

(I [) for all x ∈ R such that p is differentiable at x and p′(x) 6= 0,

lim
y→x

U [o
(
p(y)

)
− U [o

(
p(x)

)
p(y)− p(x)

= w(x) ;

(II [) for all x ∈ R such that w(x−) 6= w(x+), for all y ∈
]
p(x−), p(x+)

[
,

U [o
(
p(x+)

)
− U [o(y)

T
= f∗

(
x− y
T

)
− f∗

(
x− p(x+)

T

)
,

U [o(y)− U [o
(
p(x−)

)
T

= f∗
(
x− p(x−)

T

)
− f∗

(
x− y
T

)
.

Proof. We prove separately existence and uniqueness, referring to Xi and Xii defined in (2.4).

Existence. Let uo ∈ ICL
T (w) and call Uo any of its primitives. For all y ∈ R \ Xii, define

U [o(y) = Uo(y) so that (I [) holds since p(R) ⊆ R \Xii.
Consider now a y ∈ Xii. Then, there exists a unique x ∈ R such that y ∈

]
p(x−), p(x+)

[
.

Define, for all y ∈ [p(x−), p(x+)],

U [o(y) := Uo
(
p(x−)

)
+ T

(
f∗
(
x− p(x−)

T

)
− f∗

(
x− y
T

))
. (7.8)

Straightforward computations show that U [o(p(x−)) = Uo
(
p(x−)

)
and that (II [) holds.

Uniqueness. Fix ȳ ∈ Xi ∩ Leb (u[o). There exists an x̄ ∈ R such that p(x̄) = ȳ, p is
differentiable at x̄ and p′(x̄) > 0, then

lim
y→x

U [o
(
p(y)

)
− U [o

(
p(x̄)

)
p(y)− p(x̄)

=

{
w(x̄) [by (I [)]

u[o(ȳ) [by the choice of ȳ]

On the other hand, if ȳ ∈ Xii, there exists an x̄ ∈ R such that ȳ ∈
]
p(x̄−), p(x̄+)

[
and

by (II [), for all y ∈
]
p(x̄−), p(x̄+)

[
,

U [o(y) = U [o
(
p(x̄−)

)
+ T

(
f∗
(
x̄− p(x̄−)

T

)
− f∗

(
x̄− y
T

))

so that U [o is of class C1 on the interval
]
p(x̄−), p(x̄+)

[
, which implies that u[o(ȳ) = g

(
x̄−ȳ
T

)
,

with g defined as in Proposition 7.1.
Thus, Proposition 2.4 ensures that u[o is a.e. uniquely defined. �
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Lemma 7.4. Let (2.1) hold and T be positive. Fix w ∈ L∞(R;R) such that p ∈ SBVloc(R;R)
and (2.3) holds. Then, the function u∗o defined in Lemma 7.2 and the function u[o defined in
Lemma 7.3 coincide.

Proof. It is sufficient to prove that the map u∗o defined in Lemma 7.2 satisfies (I [) and (II [)
in Lemma 7.3. We refer below to ũ and u as defined in Lemma 7.2 and related as in (7.7).

The proof consists of the following steps.

Generalized Characteristics: The fact that ũ and u are locally Lipschitz on ]0, T [ × R
implies that the generalized characteristics are actually classical characteristics and only one
of them goes through a point (τ, ξ) or (t, x) when τ, t ∈ ]0, T [.

Of course at times 0 and T it is still possible to have multiple characteristics since the
semi-Lipschitz property only guarantees uniqueness in one direction. Indeed, u or ũ may
display rarefaction waves generated at time 0 or shock waves forming at time T .

Furthermore simple calculations show the equivalence through (7.7) of

dξ

dτ
= f ′(ũ(τ, ξ(τ))) and

dx

dt
= f ′(u(t, x(t))). (7.9)

Properties of u∗0: Now let us consider a point x ∈ R such that w(x−) > w(x+). Therefore,
the minimal and maximal backward characteristics for u through (T, x), say γ− and γ+, are

γ+(t) = x− (T − t) f ′
(
w(x+)

)
and γ−(t) = x− (T − t) f ′

(
w(x−)

)
. (7.10)

By (b) in Theorem 3.2, the function p is non decreasing, hence

∀z ∈ R, p(z) = z − T f ′
(
w(z)

)
, (7.11)

we have
γ−(0) = p(x−) and γ+(0) = p(x+) . (7.12)

Using (7.7), γ− and γ+ provide generalized characteristics for ũ through the formulæ

ϕ−(τ) = −γ−(T − τ) and ϕ+(τ) = −γ+(T − τ) . (7.13)

Now consider y ∈
]
p(x−), p(x+)

[
. We have of course

ϕ−(T ) > −y > ϕ+(T ) . (7.14)

Since ϕ−(0) = ϕ+(0) = −x and the characteristics do not cross for τ ∈ ]0, T [, the minimal
and maximal backward characteristics through (T,−y) for ũ are straight lines and, in fact,
coincide and go through (0,−x). Thus, we have

ũ(T, (−y)+) = ũ(T, (−y)−) and − y − f ′(ũ(T,−y)) = −x . (7.15)

From which we get that u∗0 is given between p(x−) and p(x+) by the formula

∀y ∈
]
p(x−), p(x+)

[
, u∗0(y) = g

(
x− y
T

)
, (7.16)

where g is the reciprocal function of f ′, as in (7.2).
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Condition (I [) holds: Fix x, y ∈ R with x < y. Apply Proposition 6.2 with a = 0, b = T
and as α, respectively β, the minimal, respectively maximal, backward characteristic from
(T, x), respectively (T, y). Note that our choice u ∈ C0([0, T ]; L1(R;R)) in Definition 2.1
allows to select t1 = 0 and t2 = T . Then, with the notation (2.2),

U [o
(
p(y)

)
− U [o

(
p(x)

)
=

∫ p(y)

p(x)
uo(ξ) dξ

=

∫ y

x
w(ξ) dξ −

∫ t

0

(
f
(
u(t, α(t)−)

)
− α̇(t)u

(
t, α(t)

))
dt

+

∫ t

0

(
f
(
u(t, β(t)−)

)
− β̇(t)u

(
t, β(t)

))
dt

=

∫ y

x
w(ξ) dξ [by [15, Theorem 11.1.3]]

−T
(
f
(
w(x)

)
− w(x) f ′

(
w(x)

))
+ T

(
f
(
w(y)

)
− w(y) f ′

(
w(y)

))
,

and entirely similar equalities hold if y < x. Let now x ∈ E, so that p, and hence w, are
differentiable at x. In the previous equality, divide by y − x and pass to the limit as y → x.
Then, the right hand side converges and, hence, also the left hand side. We thus obtain

lim
y→x

U [o
(
p(y)

)
− U [o

(
p(x)

)
y − x

= w(x)− T w(x) w′(x) f ′′
(
w(x)

)
= w(x) p′(x) . (7.17)

Since p is differentiable at x, p′(x) 6= 0 and using (7.17), we prove the existence of the following
limit, at the same time computing its value:

lim
y→x

U [o
(
p(y)

)
− U [o

(
p(x)

)
p(y)− p(x)

= lim
y→x

1

p(y)− p(x)

∫ p(y)

p(x)
uo(ξ) dξ

= lim
y→x

1

y − x

∫ p(y)

p(x)
uo(ξ) dξ

p(y)− p(x)

y − x

=

lim
y→x

1

y − x

∫ p(y)

p(x)
uo(ξ) dξ

lim
y→x

p(y)− p(x)

y − x

=
w(x) p′(x)

p′(x)

= w(x)

which completes the proof of (I [).

Condition (II [) holds: Still using the same point x, we consider the function Υ given by

∀v ∈
]
w(x+), w(x−)

[
, Υ(v) :=

1

T

∫ x−Tf ′(v)

x−Tf ′(w(x−))
u∗0(y) dy . (7.18)
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Thanks to (7.16), u∗0 is continuous on
]
p(x−), p(x+)

[
. Therefore, Υ is actually of class C1 on]

w(x+), w(x−)
[

and we have, using again (7.16),

∀v ∈
]
w(x+), w(x−)

[
, Υ′(v) = −v f ′′(v). (7.19)

Since obviously Υ(w(x−)) = 0 we see that for any v in
]
w(x+), w(x−)

[
,

1

T

∫ x−Tf ′(v)

x−Tf ′(w(x−))
u∗0(y) dy = Υ(v) =

(
f(v)− v f ′(v)

)
−
(
f(w(x−))− w(x−)f ′(w(x−))

)
. (7.20)

In the same way, we can also show that for any v in
]
w(x+), w(x−)

[
,

1

T

∫ x−T f ′(w(x+))

x−T f ′(v)
u∗0(y) dy =

(
f(w(x+))− w(x+)f ′(w(x+))

)
−
(
f(v)− v f ′(v)

)
, (7.21)

completing the proof. �

Proof of Theorem 3.1. Lemma 7.2 ensures that the map u∗o defined in (i∗) is one sided
Lipschitz and satisfies u∗o ∈ ICL

T (w). Lemma 7.3 ensures that there exists a unique u∗o satisfy-
ing (ii∗). Lemma 7.4 shows that these two functions coincide, completing the proof. �

Proof of Corollary 3.2. The implication (a) ⇒ (b) holds by [15, Theorem 11.2.1]. The
converse (b) ⇒ (a) follows from (1∗) in Theorem 3.1, or Lemma 7.2. �

8 Proofs Related to § 4

Proof of Theorem 4.1, (necessity). Let uo be the precise representative (5.2) of the initial
datum to (1.1) such that the corresponding solution u satisfies u(T ) = w. We now prove that
conditions (i) and (ii) hold.

Since p ∈ SBV(R;R), we write below p = pac + ps, with pac ∈ AC(R;R) and ps being a
sum of countably many Heaviside functions centered at the points of jump in w. Note that
p, pac and ps are all weakly increasing.

Using the notation (2.2), introduce the set

E :=
{
x ∈ R : p is differentiable at x and p′(x) 6= 0

}
. (8.1)

Proof of (i). Fix x, y ∈ R with x < y. Apply Proposition 6.2 with a = 0, b = T and as
α, respectively β, the minimal, respectively maximal, backward characteristic from (T, x),
respectively (T, y). Note that our choice u ∈ C0([0, T ]; L1(R;R)) in Definition 2.1 allows to
select t1 = 0 and t2 = T . Then, with the notation (2.2),∫ p(y)

p(x)
uo(ξ) dξ =

∫ y

x
w(ξ) dξ −

∫ t

0

(
f
(
u(t, α(t)−)

)
− α̇(t)u

(
t, α(t)

))
dt

+

∫ t

0

(
f
(
u(t, β(t)−)

)
− β̇(t)u

(
t, β(t)

))
dt

=

∫ y

x
w(ξ) dξ [by [15, Theorem 11.1.3]]

16



−T
(
f
(
w(x)

)
− w(x) f ′

(
w(x)

))
+ T

(
f
(
w(y)

)
− w(y) f ′

(
w(y)

))
,

and similar equalities hold in the case y < x. Let now x ∈ E, so that p, and hence w, are
differentiable at x. In the previous equality, divide by y − x and pass to the limit as y → x.
Then, the right hand side converges and, hence, also the left hand side. We thus obtain

lim
y→x

1

y − x

∫ p(y)

p(x)
uo(ξ) dξ = w(x)− T w(x) w′(x) f ′′

(
w(x)

)
= w(x) p′(x) . (8.2)

Since p is differentiable at x, p′(x) 6= 0 and using (8.2), we prove the existence of the following
limit, at the same time computing its value:

lim
y→x

1

p(y)− p(x)

∫ p(y)

p(x)
uo(ξ) dξ = lim

y→x

1

y − x

∫ p(y)

p(x)
uo(ξ) dξ

p(y)− p(x)

y − x

=

lim
y→x

1

y − x

∫ p(y)

p(x)
uo(ξ) dξ

lim
y→x

p(y)− p(x)

y − x

=
w(x) p′(x)

p′(x)

= w(x)

which completes the proof of (4.1).

Proof of (ii). Let x ∈ R be such that w(x−) > w(x+) and v ∈
]
w(x+), w(x−)

]
. Introduce

the minimal backward characteristic α(t) = x − (T − t) f ′
(
w(x−)

)
and the line β(t) =

x− (T − t) f ′(v). Apply Proposition 6.2 with t1 = 0, t2 = T to obtain

−
∫ β(0)

α(0)
u(0, x) dx =

∫ T

0

(
f
(
u
(
t, α(t)−

))
− α̇(t)u

(
t, α(t)−

))
dt

−
∫ T

0

(
f
(
u(t, β(t)+

)
− β̇(t)u

(
t, β(t)+

))
dt .

To compute the first summand in the right hand side recall that u is constant along minimal
backward characteristics, while the convexity of f ensures that f(w)−f ′(v)w ≥ f(v)−f ′(v) v.
We thus have∫ β(0)

α(0)
u(0, x) dx ≥ T

(
v f ′(v)− f(v)

)
− T

(
w(x−) f ′

(
w(x−)

)
− f

(
w(x−)

))
, (8.3)

proving the latter inequality in (ii). The proof of the former one is entirely analogous. �
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Proof of Lemma 4.3. The equivalence between (i) in Theorem 4.1 and (I) in Theorem 4.2
in Theorem 4.2 is immediate, thanks to the relation u = ∂xU .

To prove the equivalence between (ii) in Theorem 4.1 and (II) in Theorem 4.2, note that

Πx :
[
w(x+), w(x−)

]
→

[
p(x−), p(x+)

]
v → x− T f ′(v)

is a bijective map, since

y = Πx(v) ⇐⇒ v = g

(
x− y
T

)
.

Hence, straightforward computations yield

v f ′(v)− f(v) = g

(
x− y
T

)
f ′

(
g

(
x− y
T

))
− f

(
g

(
x− y
T

))

=
x− y
T

g

(
x− y
T

)
− f

(
g

(
x− y
T

))

= f∗
(
x− y
T

)
.

Using the above equality at points x of jump in p, the equivalence (ii) ⇐⇒ (II) follows. �

Lemma 8.1. Let (2.1) hold and let s be defined as in (7.2). If

{x1 < x2 and y1 ≤ y2} or {x1 ≤ x2 and y1 < y2} (8.4)

then
s(T, x1, y1) + s(T, x2, y2) < s(T, x1, y2) + s(T, x2, y1) . (8.5)

Proof. Define A := x1−y2
T , B := x2−y1

T , C := x1−y1
T and D := x2−y2

T . Using (8.4) we
immediately obtain A+B = C +D, A < D, A < C, C < B and D < B. So we can conclude
that there exists ϑ ∈ ]0, 1[ such that C = ϑA+ (1− ϑ)B and D = (1− ϑ)A+ ϑB.

Denote by ∆ the difference between the right side and left side of (8.5). By (7.2) we get

∆ = T

(
f∗
(
x1 − y2

T

)
+ f∗

(
x2 − y1

T

)
− f∗

(
x1 − y1

T

)
− f∗

(
x2 − y2

T

))
= T

(
f∗(A) + f∗(B)− f∗(C)− f∗(D)

)
The strict convexity of f∗ now ensures that ∆ > 0, completing the proof. �

Proof of Theorem 4.2, (sufficiency). Let Uo be such that conditions (I) and (II) hold.
Then, we prove that the solution u to (1.2) with u(0) = ∂xUo also satisfies u(T ) = w.

We use below Lax-Hopf Formula, i.e., Proposition 7.1. To this aim, define p as in (2.2)
and the Legendre transform f∗ of f as in (7.2). It is sufficient to show that for a.e. x ∈ R
and for all y ∈ R

T f∗
(
x− p(x)

T

)
+ Uo

(
p(x)

)
≤ T f∗

(
x− y
T

)
+ Uo(y) ,

which, by (7.2), is equivalent to

∀y ∈ R , s
(
T, x, p(x)

)
≤ s(T, x, y) . (8.6)
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Step 1: Let x̄ ∈ R be a point where p is differentiable. Then, for all x ∈ R, the map
ξ → s

(
T, x, p(ξ)

)
is differentiable at x̄ and we have

∀x ≤ x̄, d

dx̄
s
(
T, x, p(x̄)

)
≥ 0 , and ∀x ≥ x̄, d

dx̄
s
(
T, x, p(x̄)

)
≤ 0 . (8.7)

Proof of Step 1: Consider first the case p′(x̄) 6= 0, so that p(x̄) > 0 since p is weakly
increasing. Then, using the definition of s in (7.2), hypothesis (I) and the regularity of f∗

s
(
T, x, p(ξ)

)
− s

(
T, x, p(x̄)

)
ξ − x̄

= T
f∗
(
x−p(ξ)
T

)
− f∗

(
x−p(x̄)
T

)
ξ − x̄

+
Uo
(
p(ξ)

)
− Uo

(
p(x̄)

)
ξ − x̄

= T
f∗
(
x−p(ξ)
T

)
− f∗

(
x−p(x̄)
T

)
ξ − x̄

+
p(ξ)− p(x̄)

ξ − x̄
Uo
(
p(ξ)

)
− Uo

(
p(x̄)

)
p(ξ)− p(x̄)

→
ξ→x̄ −p′(x̄) g

(
x− p(x̄)

T

)
+ p′(x̄) w(x̄)

= p′(x̄)

(
g

(
x̄− p(x̄)

T

)
− g

(
x− p(x̄)

T

))
,

because

w(x̄) = g

(
x̄− p(x̄)

T

)
and since g is increasing and p′(x̄) > 0, the present claim is proved in the case p′(x̄) 6= 0.

Consider now the case p′(x̄) = 0 and follow computations similar to the ones above:∣∣∣∣∣∣∣
s
(
T, x, p(ξ)

)
− s

(
T, x, p(x̄)

)
ξ − x̄

− T
f∗
(
x−p(ξ)
T

)
− f∗

(
x−p(x̄)
T

)
ξ − x̄

∣∣∣∣∣∣∣
=

∣∣∣∣∣Uo
(
p(ξ)

)
− Uo

(
p(x̄)

)
ξ − x̄

∣∣∣∣∣
≤ ‖uo‖L∞(R;R)

∣∣∣∣p(ξ)− p(x̄)

ξ − x̄

∣∣∣∣
→
ξ→x̄ 0 .

The proof of the present claim is completed, since limξ→x̄
f∗
(
x−p(ξ)
T

)
− f∗

(
x−p(x)
T

)
ξ − x̄

= 0.

Step 2: Let x̄ be a point of jump of p. Since (II) holds, we have that

∀x ≥ x̄, ∀y ∈ [p(x̄−), p(x̄+)], s
(
T, x, p(x̄+)

)
≤ s(T, x, y) ,

∀x ≤ x̄, ∀y ∈ [p(x̄−), p(x̄+)], s
(
T, x, p(x̄−)

)
≤ s(T, x, y) .
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Proof of Step 2: Consider the relations in (II), which can be rewritten as

∀y ∈ [p(x̄−), p(x̄+)], s
(
T, x̄, p(x̄±)

)
− s(T, x̄, y) ≤ 0

Apply Lemma 8.1 in the two cases

x> x̄ x1 =x x2 = x̄ y1 = p(x̄+) y2 = y
x< x̄ x1 =x x2 =x y1 = p(x̄−) y2 = y

obtaining

s
(
T, x, p(x̄+)

)
< s(T, x, y) + s

(
T, x̄, p(x̄+)

)
− s(T, x̄, y) < s(T, x, y)

s
(
T, x, p(x̄−)

)
< s(T, x, y) + s

(
T, x̄, p(x̄−)

)
− s(T, x̄, y) < s(T, x, y)

completing the proof of Step 2..

Step 3: For any x ∈ R, the map ξ → s
(
T, x, p(ξ)

)
attains its minimum at x. Equivalently

∀y ∈ p(R) s(T, x, y) ≥ s
(
T, x, p(x)

)
. (8.8)

Proof of Step 3: Fix x ∈ R and denote S(ξ) = s
(
T, x, p(ξ)

)
.

Consider first the set [x,+∞[. p is weakly increasing on [x,+∞[, hence it is differentiable
a.e. on [x,+∞[ . Then, by Step 1, S is differentiable a.e. and S′(ξ) ≥ 0 for a.e. ξ ∈ [x,+∞[.
At all jump points ξ ∈ [x,+∞[, by Step 2, we have S(ξ−) ≤ S(ξ+). Since the map
y → s(T, x, y) is Lipschitz and p is in SBV(R,R), by [3, Proposition 1.2], we have that also
S ∈ SBV(R;R). Thus, S is weakly increasing on [x,+∞[.

An entirely symmetric argument shows that S is weakly decreasing on ]−∞, x], completing
the proof of Step 3.

Step 4: For any x ∈ R,

∀y ∈ R \ p(R) s(T, x, y) ≥ s
(
T, x, p(x)

)
. (8.9)

Proof of Step 4: Fix x ∈ R and y ∈ R \ p(R). By (2.2) and since w ∈ L∞(R;R),
limξ→±∞ p(ξ) = ±∞. Hence, we can define x̄ = sup

{
ξ ∈ R : p(ξ) < y

}
so that, thanks to the

fact that p is weakly increasing, y ∈
]
p(x̄−), p(x̄+)

[
. Then, by Step 2,

x̄≥x ⇒ s(T, x, y)≥ s
(
T, x, p(x̄−)

)
,

x̄≤x ⇒ s(T, x, y)≥ s
(
T, x, p(x̄+)

)
,

so that, using Step 3, the proof of Step 4 is completed.

The proof is completed, since (8.6) follows from (8.8) and (8.9). �
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Proof of Theorem 4.4. The proof is divided into the following steps.

If Uo ∈ IHJ
T (W ) then (IHJ) and (IIHJ) hold. If Uo ∈ IHJ

T (W ) then, by [22, Theorem 1.1],
∂xUo ∈ ICL

T (∂xW ). Theorem 4.2 directly ensures that (IHJ) holds. Concerning (IIHJ),
consider a point x̄ of jump for p and choose y = p(x̄−), respectively y = p(x̄+), in the first,
respectively second, inequality in (II), we obtain the equality

Uo
(
p(x̄−)

)
+ T f∗

(
x̄− p(x̄−)

T

)
= Uo

(
p(x̄+)

)
+ T f∗

(
x̄− p(x̄+)

T

)
.

Call Q this value and get Uo(y) + T f∗
(
x̄−y
T

)
≥ Q. We are left to prove that Q = W (x̄).

Call U(t, x) := (SHJ
t Uo)(x) and introduce uo := ∂xUo, w := ∂xW and u(t, x) := (SCL

t uo)(x).
Let γ be the minimal backward characteristic emanating from (T, x̄), so that γ(t) = x̄+ (t−
T ) f ′

(
w(x̄−)

)
and u

(
t, γ(t)−

)
= w(x̄−) by [14, Theorem 3.2 and Theorem 3.3]. Clearly,

by (2.2), p(x̄−) = γ(0).
By Proposition 2.5 and [22, Theorem 1.1], there exists c ∈ R such that for (t, x) ∈ [0, T ]×R

U(t, x) =

∫ x

γ(t)
u(t, ξ) dξ +

∫ t

0

(
γ̇(τ)u

(
τ, γ(τ)−

)
− f

(
u
(
τ, γ(τ)−

)))
dτ + c

=

∫ x

γ(t)
u(t, ξ) dξ + t

(
f ′
(
w(x̄−)

)
w(x̄−)− f

(
w(x̄−)

))
+ c .

Direct evaluations of the latter expression above yield

W (x̄) = U(T, x̄) = T f∗
(
x̄− p(x̄−)

T

)
+ c and Uo

(
p(x̄−)

)
= U

(
0, p(x̄−)

)
= c .

so that W (x̄) = Q, completing the proof of this part.

If (IHJ) and (IIHJ) hold, then Uo ∈ IHJ
T (W ). If (IHJ) holds, then clearly Uo satisfies (I).

Moreover, by (IIHJ), if x̄ is a point of jump of p,

Uo
(
p(x̄±)

)
+ T f∗

(
x̄− p(x̄±)

T

)
≤ Uo(y) + T f∗

(
x̄− y
T

)
Uo
(
p(x̄±)

)
− Uo(y)

T
≤ f∗

(
x̄− y
T

)
− f∗

(
x̄− p(x̄±)

T

)
which implies (II). Then, Theorem 4.2 applies and ensures that ∂xUo ∈ ICL

T (∂xW ). By [22,
Theorem 1.1], it follows that ∂xS

HJ
T Uo = SCL

T ∂xUo = ∂xW and, hence, there is a constant
c ∈ R such that SCL

T U−W = c. Thus, SHJ
T (Uo+c) = SHJ

T Uo+c = W and (Uo+c) ∈ IHJ
T (W ) so

that (Uo+ c) satisfies the equality in (IIHJ), as proved in the previous claim. By assumption,
also Uo satisfies the equality in (IIHJ), hence c = 0, completing the proof. �

9 Proofs Related to § 5

Proof of Proposition 5.1. We prove the different parts separately.
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Proof of (T1): The strong L1 closure of ICL
T (w) directly follows from the strong L1 conti-

nuity of the semigroup generated by (1.1), see [8, Chapter 6, § 4].

Proof of (T2): To prove that ICL
T (w) has empty interior, fix uo in ICL

T (w) and use the
characterization of ICL

T (w) provided by Theorem 4.2. Note that by Proposition 2.4, there
exists an x̄ ∈ R such that either (I) or (II) in Theorem 4.2 holds.

Let (I) hold at a given x̄ ∈ R. Define the sequence of initial data

uno (x) := uo(x) + χ
]p(x̄)−1/n,p(x̄)+1/n[

(x) .

Clearly, uno → uo strongly in L1 as n→ +∞. On the other hand, with reference to (4.2) and
choosing Uno so that ∂xU

n
o = uno , we have that for y sufficiently near to x,

Uno
(
p(y)

)
− Uno

(
p(x̄)

)
p(y)− p(x̄)

=
Uo
(
p(y)

)
− Uo

(
p(x̄)

)
p(y)− p(x̄)

+ 1 →
y→x̄

w(x̄) + 1 ,

showing that uno 6∈ ICL
T (w) by Theorem 4.2.

Let (II) hold at a given x̄ ∈ R. Define the sequence of initial data

uno (x) := uo(x)− C χ
[p(x̄−),p(x̄−)+1/n]

(x) ,

for a sufficiently large constant C that is explicitly chosen in (9.1). We have that for y ∈]
p(x̄−), p(x̄−) + 1

n

[
,

Uno (y)− Uno
(
p(x̄−)

)
T

− f∗
(
x̄− p(x̄−)

T

)
+ f∗

(
x̄− y
T

)
=

Uo(y)− Uo
(
p(x̄−)

)
T

− f∗
(
x̄− p(x̄−)

T

)
+ f∗

(
x̄− y
T

)
− C y − p(x̄−)

T

≤
(
‖uo‖L∞(R;R) − C

) y − p(x̄)

T
+ f∗

(
x̄− y
T

)
− f∗

(
x̄− p(x̄−)

T

)
≤

(
‖uo‖L∞(R;R) − g

(
x̄− p(x̄−)

T

)
− C

)
y − p(x̄)

T
+ o

(
y − p(x̄−)

)
as y → p(x̄−) ,

so that as soon as C is chosen satisfying

C > ‖uo‖L∞(R;R) − g
(
x̄− p(x̄−)

T

)
(9.1)

we have
Uno (y)− Uno

(
p(x̄−)

)
T

− f∗
(
x̄− p(x̄−)

T

)
+ f∗

(
x̄− y
T

)
< 0 (9.2)

for all y sufficiently near to and larger than p(x̄−). But (9.2) contradicts (II) in Theorem 4.2,
so we obtain that uno 6∈ ICL(w), although uno → uo in L1(R;R) and uo ∈ ICL(w). �
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The following remark provides a basic linear algebra observation of use in the subsequent
proof of Proposition 5.2.

Remark 9.1. Let V be a vector spaces, Lα,Λα : V → R be linear maps and mα, µα be real
numbers, with α varying in a suitable set of indices I. Assume there exists a unique v∗ ∈ V
such that for all α ∈ I, Lαv

∗ = mα and Λαv
∗ = µα. Then, the set {v ∈ V : ∀α ∈ I Lαv =

mα and Λαv ≥ µα} is a cone with vertex at v∗, which is its unique extremal point.

Proof of Proposition 5.2. We split the proof in different steps.

Proof of (G1): Consider the two implications separately.

If w ∈ C0(R;R), then ICL
T (w) is a singleton. Let w ∈ C0(R;R). Then, the set Xii

in (2.4) is empty. By Proposition 2.4, L(R \Xi) = 0. For any uo ∈ ICL
T (w) and any x̄ in Xi,

w(x̄) = lim
y→x̄

1

p(y)− p(x̄)

∫ p(y)

p(x̄)
uo(ξ) dξ [by Theorem 4.1]

= lim
r→0

1

r

∫ p(x̄)+r

p(x̄)
uo(ξ) dξ [since p′(x̄) > 0 and p ∈ C0(R;R)]

=uo
(
p(x̄)

)
[for the precise representative (5.2) of uo]

Indeed, we used above the fact that if p′(x̄) > 0 and p ∈ C0(R;R), then for all r > 0
sufficiently small, there exists a yr such that r = p(yr)− p(x̄) and yr → x̄ as r → 0.

If w admits a point of discontinuity x̄, then ICL
T (w) is not a singleton. A first

element of ICL
T (w) is the map u∗o defined in Theorem 3.2. A second map can be constructed

prolonging the shock at x̄ backward to 0. To this aim, we define

u]o(x) :=


u∗o(x) x ≤ p(x̄−)
w(x̄−) x ∈

]
p(x̄−), x]

]
w(x̄+) x ∈

]
x], p(x̄+)

]
u∗o(x) x > p(x̄+)

where
λ] =

f
(
w(x̄+)

)
− f

(
w(x̄−)

)
w(x̄+)− w(x̄−)

x] = x̄− λ] T .

We check that u]o satisfies (ii) in Theorem 4.1 at x̄. To this aim, set v] = g(λ]) and compute

1

T

∫ x−Tf ′(v)

x−Tf ′(w(x−))
uo(ξ) dξ =



(
f ′
(
w(x̄−)

)
− f ′(v)

)
w(x̄−) v <v](

f ′
(
w(x̄−)

)
− f ′(v])

)
w(x̄−)

+
(
f ′(v])− f ′ (v)

)
w(x̄+)

v >v]

so that, with reference to (ii) in Theorem 4.1, denote

∆ :=
1

T

∫ x̄−Tf ′(v)

x̄−Tf ′(w(x̄−))
uo(ξ) dξ −

(
w(x̄−) f ′

(
w(x̄−)

)
− f

(
w(x̄−)

))
+
(
v f ′(v)− f(v)

)
and, for v < v] by the convexity of f we obtain

∆ = f
(
w(x−)

)
− f(v)− f ′(v)

(
w(x̄−)− v

)
≥ 0 .
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If v > v] , we use the identity f ′(v])
(
w(x̄+)− w(x̄−)

)
= f

(
w(x̄+)

)
− f

(
w(x̄−)

)
to obtain

∆ = f
(
w(x̄+)

)
− f

(
w(x̄−)

)
+ f ′

(
w(x̄−)

)
w(x̄−)− f ′(v)w(x̄+)

−f ′
(
w(x̄−)

)
w(x̄−) + f

(
w(x̄)

)
+ f ′(v) v − f(v)

= f
(
w(x̄+)

)
− f(v)− f ′(v)

(
w(x̄+)− v

)
≥ 0

where we used again the convexity of f .
Entirely similar computations apply to the second inequality in (ii). Hence u]o ∈ ICL

T (w)

and, since u]o 6= u∗o, the proof of (G1) is completed.

Proof of (G2): The convexity of ICL
T (w) directly follows from Lax-Hopf formula [25, Theo-

rem 2.1], as well as from [19, Theorem 6.2] or by direct inspection of the conditions provided
by Theorem 4.1 or Theorem 4.2.

ICL
T (w) is a cone with u∗o at its vertex. (We follow the abstract reasoning sketched

in Remark 9.1.) Let u∗o be as defined in Lemma 7.3. For a uo ∈ ICL
T (w) \ {u∗o}, and for all

ϑ ∈ R+, define uϑo := u∗o + ϑ (uo − u∗o) and, passing to primitives, Uϑo = U∗o + ϑ (Uo − U∗o ).
If x̄ is such that p is differentiable at x̄ and p′(x̄) > 0, then by (I) in Theorem 4.2 and (I [)

in Lemma 7.3,

lim
x→x̄

Uϑo
(
p(x)

)
− Uϑo

(
p(x̄)

)
p(x̄)− p(x)

= lim
x→x̄

U∗o
(
p(x)

)
− U∗o

(
p(x̄)

)
p(x̄)− p(x)

+ lim
x→x̄

ϑ

(
Uo
(
p(x)

)
− Uo

(
p(x̄)

)
p(x̄)− p(x)

−
U∗o
(
p(x)

)
− U∗o

(
p(x̄)

)
p(x̄)− p(x)

)
= w(x) ,

proving that also Uϑo satisfies (I) in Theorem 4.2.
Choose now x ∈ R such that p(x−) < p(x+) and compute:

Uϑo
(
p(x+)

)
− Uϑo (y)

T

=
Uϑo
(
p(x+)

)
− Uϑo (y)

T
+ ϑ

(
Uo
(
p(x+)

)
− Uo(y)

T
−
Uϑo
(
p(x+)

)
− Uϑo (y)

T

)

≤ f∗
(
x− y
T

)
− f∗

(
x− p(x+)

T

)
.

An entirely similar computations applies to
Uϑ
o (y)−Uϑ

o (p(x+))
T . We thus proved that also Uϑo

satisfies (I) and (II) in Theorem 4.2, hence it belongs to ICL
t (w).

If uo ∈ ICL
T (w) is different from u∗o, then it is not an extremal point of ICL

T (w).
This statement directly follows from (G3), which we prove independently below.
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Proof of (G3): Preliminary, note that (II) in Theorem 4.2 at x is equivalent to require that
for all x ∈ R such that w(x−) 6= w(x+),

Uo
(
p(x+)

)
+ Tf∗

(
x− p(x+)

T

)
=Uo

(
p(x−)

)
+ Tf∗

(
x− p(x−)

T

)
∀y ∈

]
p(x−), p(x+)

[
Uo(y) + Tf∗

(
x− y
T

)
≥Uo

(
p(x−)

)
+ Tf∗

(
x− p(x−)

T

)
.

(9.3)

Fix N and uo ∈ ICL
T (w) as in the statement of (G3). Let Uo be a primitive of uo. By (G1),

we may assume that there exists an x ∈ R such that (9.3) applies. If uo 6= u∗o, then for a
suitable x ∈ R and ȳ ∈

]
p(x−), p(x+)

[
, the strict inequality has to hold in the latter relation

above computed at ȳ. Hence, there exist positive η and ε such that

∀y ∈ ]ȳ − η, ȳ + η[


y ∈

]
p(x−), p(x+)

[
, and

Uo(y) + Tf∗
(
x− y
T

)
≥ Uo

(
p(x−)

)
+ Tf∗

(
x− p(x−)

T

)
+ ε .

(9.4)

Define now
∀k ∈ {1, . . . , N}, yk := ȳ +

η

N
(2k − 1−N) . (9.5)

The intervals
]
yk − η

N , yk + η
N

]
constitute a partition of ]ȳ − η, ȳ + η].

Define A1, . . . , AN by

Ak(y) :=


0, if y ≤ yk − η

N

ε
(

1 + N
η (y − yk)

)
, if yk − η

N ≤ y ≤ yk
ε
(

1 + N
η (yk − y)

)
, if yk ≤ y ≤ yk + η

N

0, if y ≤ yk + η
N

(9.6)

and then let Vk := Uo−Ak for k = 1, . . . , N . Define vk := ∂xVk for k = 1, . . . , N . It is easy to
see using (9.3), (9.4) and (9.5) that vk ∈ ICL

T (w). Finally, define V0 := Uo +
∑N

k=1 (Uo − Vk)
and v0 := ∂xVo. As above, v0 ∈ ICL

T (w), since Vk ≥ Uo and V0 = Uo outside [ȳ − η, ȳ + η].
Using the definition of V0, condition (5.1) is trivially satisfied.

Let us now consider scalars λ1, . . . , λN such that

N∑
k=1

λk (vk − v0) = 0 . (9.7)

Hence,
∑N

k=1 λk (Vk − V0) = C for a suitable C ∈ R. By the definitions of V0, . . . , VN , ∀k ∈
{1, . . . , N}, Vk−V0 = −Ak−

∑N
j=1Aj . So now (9.7) becomes

∑N
k=1

(
λk +

∑N
j=1 λj

)
Ak = −C.

The Ak have compact supports, so that C = 0. Their supports are also disjoint, hence
∀k ∈ {1, . . . , N}, λk +

∑N
j=1 λj = 0, from which it is clear that ∀k ∈ {1, . . . , N}, λk = 0. �
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