

Andrea Richaud

Formation of supermixed states in ultracold boson mixtures loaded in ring lattices

Benasque, May 15th, 2019

Bose-Bose mixture N_a

Ring optical lattice

Target

Finding the **ground state** according to the strength of the **inter-species attraction**.

$$H = -T_a \sum_{j=1}^{L} \left(a_{j+1}^{\dagger} a_j + a_j^{\dagger} a_{j+1} \right) + \underbrace{U_a}_{2} \sum_{j=1}^{L} n_j (n_j - 1) \xrightarrow{} \mathbf{Repulsive}$$
$$-T_b \sum_{j=1}^{L} \left(b_{j+1}^{\dagger} b_j + b_j^{\dagger} b_{j+1} \right) + \underbrace{U_b}_{2} \sum_{j=1}^{L} m_j (m_j - 1) \xrightarrow{} \mathbf{Repulsive}$$
$$\underbrace{W}_{j=1}^{L} n_j m_j, \xrightarrow{} \mathbf{Attractive}$$

Conserved quantities: $N_a = \sum_i^L n_i$ $N_b = \sum_i^L m_i$

The Continuous Variable Picture

Ground state of Hamiltonian $H \rightarrow$ **Minimum** of effective potential \mathcal{V}

$$\mathcal{V} = -2N_a T_a \sum_{j=1}^{L} \sqrt{x_j x_{j+1}} - 2N_b T_b \sum_{j=1}^{L} \sqrt{y_j y_{j+1}}$$

$$+\frac{U_a N_a^2}{2} \sum_{j=1}^L x_j (x_j - \epsilon_a) + \frac{U_b N_b^2}{2} \sum_{j=1}^L y_j (y_j - \epsilon_b)$$

 $+WN_aN_b\sum_{j=1}^L x_j y_j$

Where $x_i, y_i \in [0, 1]$ are normalized boson populations.

$$x_i = \frac{n_i}{N_a}; \quad y_i = \frac{m_i}{N_b}$$

A technique already successfully used in e.g.:

- F. Lingua and V. Penna, PRE 95, 062142 (2017);
- R. W. Spekkens and J. E. Sipe, PRA 59, 3868 (1999);

The Continuous Variable Picture

Ground state of Hamiltonian $H \rightarrow$ **Minimum** of effective potential \mathcal{V}

$$\mathcal{V} = -2N_a T_a \sum_{j=1}^L \sqrt{x_j x_{j+1}}$$

$$\frac{U_a N_a^2}{2} \sum_{j=1}^L x_j (x_j - \epsilon_a)$$
Attractive

Technique used in N. Oelkers and J. Links, PRB 75, 115119 (2007) to find the ground state properties of the attractive one-dimensional Bose-Hubbard model (single species).

Soliton

Delocalized

|U|

Semiclassical limit

$$\mathcal{V} = -2N_a T_a \sum_{j=1}^{L} \sqrt{x_j x_{j+1}} - 2N_b T_b \sum_{j=1}^{L} \sqrt{y_j y_{j+1}}$$

$$+\frac{U_a N_a^2}{2} \sum_{j=1}^{L} x_j (x_j - \epsilon_a) + \frac{U_b N_b^2}{2} \sum_{j=1}^{L} y_j (y_j - \epsilon_b)$$

$$+WN_aN_b\sum_{j=1}^L x_j y_j$$

Where $x_i, y_i \in [0, 1]$ are normalized boson populations.

$$x_i = \frac{n_i}{N_a}; \quad y_i = \frac{m_i}{N_b}$$

If the boson populations are **large enough**, for **fixed** *L*, one can focus on leading terms.

This is a possible way of performing the **thermodynamic limt**, according to the schemes described in:

- N. Oelkers and J. Links, PRB 75, 115119 (2007);
- P. Buonsante, V. Penna, and A. Vezzani, PRA 84, 061601 (2011).

Semiclassical limit

$$\mathcal{V} = -2N_a T_a \sum_{j=1}^{L} \sqrt{x_j x_{j+1}} - 2N_b T_b \sum_{j=1}^{L} \sqrt{y_j y_{j+1}}$$

$$+\frac{U_a N_a^2}{2} \sum_{j=1}^{L} x_j (x_j - \epsilon_a) + \frac{U_b N_b^2}{2} \sum_{j=1}^{L} y_j (y_j - \epsilon_b)$$

$$V \approx \frac{\mathcal{V}}{U_a N_a^2} = \frac{1}{2} \sum_{j=1}^{L} x_j^2 + \frac{\beta^2}{2} \sum_{j=1}^{L} y_j^2 + \alpha \beta \sum_{j=1}^{L} x_j y_j$$

$$+WN_aN_b\sum_{j=1}^L x_j y_j$$

$$\alpha = \frac{W}{\sqrt{U_a U_b}}, \qquad \beta = \frac{N_b}{N_a} \sqrt{\frac{U_b}{U_a}}$$

Where $x_i, y_i \in [0, 1]$ are normalized boson populations.

$$x_i = \frac{n_i}{N_a}; \quad y_i = \frac{m_i}{N_b}$$

Effective model

Phase diagram

$$\mathcal{V} \approx \frac{\mathcal{V}}{U_a N_a^2} = \frac{1}{2} \sum_{j=1}^L x_j^2 + \frac{\beta^2}{2} \sum_{j=1}^L y_j^2 + \alpha \beta \sum_{j=1}^L x_j y_j$$

Search for the constrained minimum of V in the parameters' space (α, β)

₩

Same phase diagram, no matter the specific value of L (sites)

Phase diagram

Search for the constrained minimum of V in the parameters' space (α, β) :

 $V_* := V(\vec{x}_*, \vec{y}_*) := \min_{(\vec{x}, \vec{y}) \in \mathcal{R}} V(\vec{x}, \vec{y})$

From a mathematical standpoint, it is not an easy task, as V_* may fall on the **boundary** of its domain \mathcal{R} .

Exhaustive exploration of the polytope-like domain \mathcal{R} , [\rightarrow V. Penna and A. Richaud, Sci Rep 8, 10242 (2018)]

Example: L=3

Two different kinds of transitions

Two different kinds of nonanaliticities of V_*

How to characterize the 3 phases?

Where $x_i, y_i \in [0, 1]$ are normalized boson populations. $x_i = \frac{n_i}{N_a}; \quad y_i = \frac{m_i}{N_b}$

Entropies to quantify the degrees of mixing and localization

Used to in Physical Chemistry to quantify the miscibility of classical fluids.

Image taken by M. Camesasca et al, *Quantifying Fluid Mixing with the Shannon Entropy*, Macromolecular theory and simulation 15, 8 (2006).

Where $x_i, y_i \in [0, 1]$ are chemical species concentrations.

$$x_i = \frac{n_i}{N_a}; \quad y_i = \frac{m_i}{N_b}$$

Entropies to quantify the degrees of mixing and localization

$$+\frac{U_a N_a^2}{2} \sum_{j=1}^L x_j (x_j - \epsilon_a) + \frac{U_b N_b^2}{2} \sum_{j=1}^L y_j (y_j - \epsilon_b)$$

 $+WN_aN_b\sum_{j=1}^L x_j y_j$

$$V \approx \frac{\mathcal{V}}{U_a N_a^2} = \frac{1}{2} \sum_{j=1}^{L} x_j^2 + \frac{\beta^2}{2} \sum_{j=1}^{L} y_j^2 + \alpha \beta \sum_{j=1}^{L} x_j y_j$$

Keeping L fixed, we reduce the boson populations N_a and N_b in such a way to take into account the tunnelling processes.

Plots obtained for L=3

Walking away from the thermodynamic limit, the ideal phase diagram gets **smoothed** and **deformed**. But still, three qualitatively different regions can be recognized.

Agreement between CVP and BH

BH:

 $H = -T_a \sum_{j=1}^{L} \left(a_{j+1}^{\dagger} a_j + a_j^{\dagger} a_{j+1} \right) + \frac{U_a}{2} \sum_{j=1}^{L} n_j (n_j - 1)$

 $-T_b \sum_{j=1}^{L} \left(b_{j+1}^{\dagger} b_j + b_j^{\dagger} b_{j+1} \right) + \frac{U_b}{2} \sum_{j=1}^{L} m_j (m_j - 1)$

 $+W\sum_{j=1}^{L}n_{j}\,m_{j},$

CVP:

$$+\frac{U_a N_a^2}{2} \sum_{j=1}^{L} x_j (x_j - \epsilon_a) + \frac{U_b N_b^2}{2} \sum_{j=1}^{L} y_j (y_j - \epsilon_b)$$

$$+WN_aN_b\sum_{j=1}^L x_j y_j$$

Quantum analysis: entropies

We import the concept of S_{mix} and S_{loc} into the quantum framework:

Coefficients coming from exact diagonalization of the BH Hamiltonian:

 $c(\vec{n},\vec{m}) = \langle \vec{n},\vec{m}|\psi_0\rangle$

Quantum analysis: entropies

We import the concept of S_{mix} and S_{loc} into the quantum framework:

$$\tilde{S}_{mix} := \sum_{\vec{n},\vec{m}}^{Q} |c(\vec{n},\vec{m})|^2 S_{mix}(\vec{n},\vec{m}),$$

$$\tilde{S}_{loc} := \sum_{\vec{n},\vec{m}}^{Q} |c(\vec{n},\vec{m})|^2 S_{loc}(\vec{n},\vec{m})$$

Quantum analysis: entropies

We import the concept of S_{mix} and S_{loc} into the quantum framework:

Quantum analysis: E_0

Based on the exact numerical diagonalization of the Bose-Hubbard Hamiltonian.

Second derivative of the ground state energy E_0 as a function of the control parameter α .

 $E_0 = \langle \psi_0 | H | \psi_0 \rangle$

Quantum analysis: Energy levels

 $E_i = \langle \psi_i | H | \psi_i \rangle$ Computed by means of exact numerical diagonalization

Quantum analysis: Energy levels

Functional dependence well captured by the **momentumbased** Bogolyubov approximation scheme: V. Penna, A. Richaud PRA 96 (5), 053631

$$\omega_k = \frac{1}{\hbar} \sqrt{2T(1 - c_k)[2T(1 - c_k) + 2u + 2w]},$$

$$\Omega_k = \frac{1}{\hbar} \sqrt{2T(1-c_k)[2T(1-c_k)+2u-2w]}.$$

Functional dependence well captured by the **sitesbased** Bogolyubov approximation scheme:

$$H_D = n_2(T_a - U_a N_a - N_b W) + n_3(-T_a - U_a N_a - N_b W)$$

 $+m_2(T_b - U_bN_b - N_aW) + m_3(-T_b - U_bN_b - N_aW),$

ANDREA RICHAUD

Conclusions

Same mechanism of supermixed soliton formation in all 1D ring lattices, whatever the number of lattice sites.

Conclusions

Quantum indicators \hat{S}_{mix} and \hat{S}_{loc} can be conveniently used to determine the phase of the system.

$$\tilde{S}_{mix} := \sum_{\vec{n},\vec{m}}^{Q} |c(\vec{n},\vec{m})|^2 S_{mix}(\vec{n},\vec{m}),$$

$$\tilde{S}_{loc} := \sum_{\vec{n}, \vec{m}}^{Q} |c(\vec{n}, \vec{m})|^2 S_{loc}(\vec{n}, \vec{m})$$

$$S_{mix} = -\frac{1}{2} \sum_{j=1}^{L} \left(x_j \log \frac{x_j}{x_j + y_j} + y_j \log \frac{y_j}{x_j + y_j} \right)$$

$$c(\vec{n},\vec{m}) = \langle \vec{n},\vec{m}|\psi_0 \rangle$$

$$S_{loc} = -\sum_{j=1}^{L} \frac{x_j + y_j}{2} \log \frac{x_j + y_j}{2}.$$

Conclusions

$$\alpha = \frac{W}{\sqrt{U_a U_b}}, \qquad \beta = \frac{N_b}{N_a} \sqrt{\frac{U_b}{U_a}}$$

Transition lines can be extimated analytically, as they correspond to the collapse of the Bogoliubov spectra.

Future work

Extend the study of the mechanism of Soliton formation to more complex lattice topologies, like:

Future work

Go beyond the point-like approximation wells which is typical of the Bose-Hubbard model, i.e. study this phenomena in terms of the GPE.

Explore the possible dynamical regimes of the supermixed solitons.

Thanks for your attention!

QUESTIONS ?

Info: andrea.richaud@polito.it
https://arxiv.org/abs/1903.09212

ANDREA RICHAUD

Minimum-energy configuration as a function of L

	-	
Phase	$(ec{x}_*,ec{y}_*)$	V_*
М	$x_{*,j} = 1/L \forall j$	$V_*^{\mathrm{M}} = \frac{1}{2L}(\beta^2 + 2\alpha\beta + 1)$
	$y_{*,j} = 1/L \forall j$	
PL	$x_{*,i} = [1 - (L - 1)\alpha\beta]/L$ $x_{*,j} = [1 + \alpha\beta]/L \forall j \neq i$	$V_*^{\rm PL} = \frac{1}{2L} [1 + 2\alpha\beta]$
	$y_{*,i} = 1, \ y_{*,j} = 0 \ \forall j \neq i$	$+\beta^2(L-(L-1)\alpha^2)]$
	$x_{*,i} = 1$	
SM	$x_{*,j} = 0 \forall j \neq i$	$V_*^{\rm SM} = \frac{1}{2}(\beta^2 + 2\alpha\beta + 1)$
	$y_{*,i} = 1, \ y_{*,j} = 0 \ \forall j \neq i$	

Effect of non zero T/(UN)

Comparison with Bogolyubov (site-modes)

Comparison with Bogolyubov (momentummodes)

