Oscillations and decay of superfluid currents in a one-dimensional Bose gas on a ring

Atomtronics 2019
Juan Polo1,2, Romain Dubessy3, Paolo Pedri3, Hélène Perrin3, Anna Minguzzi2

arXiv:1903.09229

May 13, 2019

1Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
2Univ. Grenoble Alpes, CNRS, LPM, 38000 Grenoble, France
3Laboratoire de physique des lasers, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue J.-B. Clément, F-93430 Villetaneuse, France
Motivation

Decay of persistent in a 1D ring

Results

Conclusions

Physics in a 1D ring trap

• Why ring geometries?

\[\psi \propto e^{i\ell\theta} \text{ with } v_{\theta} = \frac{\hbar \ell}{mR} \]

Quantization of circulation

We are interested in the decay of persistent currents

• Atomtronics

Decay of persistent currents

In 3D/2D the decay is associated with vortex induced phase slips.

Which is the microscopic mechanism in 1D?

Experimental motivation

Phase imprinting method

- How is the barrier going to introduce phase slips?
- What is the role of finite temperature?

The barrier will couple different angular momentum states

The temperature should allow for thermally activated phase slips
Methods

Weakly and Strongly interacting bosons

- **Theoretical methods**
 - GPE
 - 1D GPE simulations at \(T=0 \)
 - Two-State model
 - Projected Gross-Pitaevskii equation (PGPE)
 - Tonks-Girardeau
 - Zero temperature
 - Finite temperatures
Physical system and Protocol

\[T = 0 \]

i) Ground state ring + barrier
ii) Phase imprinting a current
iii) Start coherent evolution

\[T > 0 \]

i) PGPE sampled \(\psi \) or Fermi-Dirac for TG
ii) Phase imprinting a current
iii) Start coherent evolution
GPE and PGPE

Gross-Pitaevskii equation

\[i\hbar \frac{\partial \psi}{\partial t} = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) + g|\psi|^2 \right) \psi \]

Stochastic Projected Gross-Pitaevskii equation (SPGPE)

\[i\hbar \frac{\partial \psi_C}{\partial t} = P_C \left[(1 - i\alpha) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + P_C \left[V(x) + g|\psi_C|^2 \right] \right) \psi_C + \eta \right] \]

Where \(\eta \) is a centered white noise

\[\langle \eta^*(x, t) \eta(x', t') \rangle = 2\hbar k_B T \alpha \delta(t - t') \delta(x - x') \]

- \(\alpha \) ensures relaxation towards an equilibrium state
- \(\psi \) are the macroscopically occupied modes
- only thermal fluctuations
- we simulate the coherent part, the incoherent is treated as bath (related to \(\eta \))

\[\psi(x, t = 0) = 0 \rightarrow \text{thermal state with SPGPE} \rightarrow \text{Evolve with PGPE \(((\eta, \alpha) = 0) \)} \]
Tonks-Girardeau

Exact solution

- For $g \to \infty$ the many-body wavefunction vanishes at $\Psi(..., x_i = x_j, ...) = 0$
- Bose-Fermi mapping $\psi_{TG}(x_1, ..., x_N, t) = \prod_{i \leq j \leq l \leq N} \text{sgn}(x_i - x_j) \det[\psi_k(x_i, t)]$ with ψ_j being the single particle eigenstates
Current

Current per particle In the GPE regime

\[J(t) = -i \frac{\hbar}{2m} \frac{1}{N} \int_{0}^{L} \frac{dx}{L} \langle \psi^* \partial_x \psi - \partial_x \psi^* \psi \rangle \]

In the TG regime

\[J(t) = \frac{\hbar}{m} \int_{0}^{L} \text{Im} \left[\sum_{n} f(\epsilon_n) \psi_n^*(x, t) \partial_x \psi_n(x, t) \right] \]

Parameters GPE:

- \(N = 2000 \)
- \(\gamma = \frac{mg}{\hbar^2 n} = 0.01 \)
- \(\mu_{GP} = \frac{gN}{L} \)

Parameters TG:

- \(N = 23 \)
- \(\gamma = \infty \)
- \(\mu_{TG} = E_F = \frac{\hbar^2 n^2 \pi^2}{2m} \)

µ, k_B T ≤ \hbar \omega_z, \hbar \omega_⊥

Motivation

Decay of persistent in a 1D ring

Results

Conclusions
GPE: \(T = 0 \)

- \(\lambda_{GP} \leq 1 \rightarrow \) self-trapping
- \(\lambda_{GP} > 1 \rightarrow \) oscillations (irregular)
- \(\lambda_{GP} \gg 1 \rightarrow \) oscillations (triangular)

Self-trapping of current states

- We construct a Josephson model for the current states
 - \(\psi_{TM} = \phi_1(t)\varphi_1(x) + \phi_2(t)\varphi_2(x) \)
 where \(\varphi_{1/2} \) are linear combinations of the first and second excited eigenstates
- Valid for \(\gamma \ll 1 \)
GPE: \(T > 0 \)

- \(\lambda_{GP} \leq 1 \rightarrow \) exponential decay
- \(\lambda_{GP} > 1 \rightarrow \) damped oscillations
- \(\lambda_{GP} \gg 1 \rightarrow \) oscillations + damping

Fitting

\[
J(t) = Ae^{-\Gamma_A t} + B \cos(\omega t + \phi)e^{\Gamma_B t}
\]

- For \(\lambda_{GP} > 1 \), \(\Gamma \) grows monotonically
- **What is the microscopic mechanism driving the decay?**
GPE: $T > 0$, Microscopic mechanism

$\lambda = 0.6, \ T = \mu_0$

Discrete jumps of the current

$\lambda = 2, \ T = \mu_0$

Dephased oscillations
GPE: $T > 0$, Microscopic mechanism

Phase slips associated to random soliton reflections
Luttinger: $T > 0$, Intermediate interactions

Luttinger liquid approach

- Valid for a low energy perturbation \Rightarrow weak quench
- Weak barrier limit $\rightarrow \lambda < 1$ and $\gamma \gtrsim 5$

$$\hat{H} = \frac{E_Q J^2}{2} - E_J \cos (2\hat{\theta}_0) + \sum_{\mu \geq 1} \left[\frac{\hat{P}_\mu^2}{2M_R} + \frac{1}{2} M_R \Omega_\mu^2 \hat{Q}_\mu^2 + \frac{4\sqrt{2\pi \hbar^2}}{M_R L} \hat{J}_\mu \hat{P}_\mu + \frac{16\pi^2 \hbar^2}{M_R L^2} \hat{J}^2 \right]$$

From these low energy theory we observe two main regimes:

- Josephson regime for $E_J > E_Q \rightarrow \omega = \sqrt{E_Q E_J / \hbar}$
- Rabi-like regime for $E_Q > E_J \rightarrow \omega = E_J / \hbar$

Damping or oscillations?:

- $\Delta E_b = E_Q / K$ and $\Delta E_p = \sqrt{E_Q E_J}$
- Josephson regime $\Rightarrow \Delta E_b \ll \Delta E_p$, i.e., **Damping**
- Rabi regime $\Rightarrow \Delta E_b \gg \Delta E_p$, i.e., **No damping**

For strong interactions E_Q decreases. Within the weak barrier limit we find that the system is always in the Rabi-like regime.
Motivation

Decay of persistent in a 1D ring

Results

Conclusions

Tonks-Girardeau: $T = 0$

- $\lambda_{TG} < 1 \rightarrow$ Rabi-like oscillations
- $\lambda_{TG} \gtrsim 1 \rightarrow$ oscillations + envelope
- $\lambda_{TG} \gg 1 \rightarrow$ dephased oscillations

- Rabi-like oscillations associated to coherent phase slips
- We see more and more excitations involved in the dynamics for larger barriers

For very large barriers we see irregular oscillations with revivals
Tonks-Girardeau: $T > 0$

- Exponential decay of current
- Large number of excitations
- weighted by the Fermi-Dirac distribution

\[J = \frac{\hbar}{Nm} \text{Im} \left[\sum_{k} \sum_{j} A_{j,k} e^{-i(\epsilon_j - \epsilon_k)t/\hbar} \right] \]

\[A_{j,k} = \frac{\hbar}{mL} \text{Im} \left[\sum_{n} f(\epsilon_n) \langle \chi_n | \psi_k \rangle \langle \psi_j | \chi_n \rangle \int_0^L dx \, \psi_k^*(x) \partial_x \psi_j(x) \right] \]

- $\lambda_{TG} < 1 \rightarrow$ Rabi-like oscillations
- $\lambda_{TG} \gtrsim 1 \rightarrow$ damped-oscillations
- $\lambda_{TG} \gg 1 \rightarrow$ overdamped-oscillations

"Universal" dynamics with respect to N
Motivation

Decay of persistent in a 1D ring

Results

Conclusions

Tonks-Girardeau: Excitations

\[
J = \frac{\hbar}{Nm} \text{Im} \left[\sum_{j} \sum_{k} A_{j,k} e^{-i(\epsilon_j - \epsilon_k) t / \hbar} \right]
\]

\[
A_{j,k} = \frac{\hbar}{mL} \text{Im} \left[\sum_{n} f(\epsilon_n) \langle \chi_n | \psi_k \rangle \langle \psi_j | \chi_n \rangle \int_0^L dx \psi_k^*(x) \partial_x \psi_j(x) \right]
\]

- For \(\lambda_{TG} \ll 1 \rightarrow \omega_i \simeq \omega_j \quad \forall i, j \)
- For \(\lambda_{TG} > 1 \rightarrow \) many frequencies with different associated amplitudes
- Phase imprinting produces a highly excited state
- Multiple particle-hole excitations
- Incoherent phase slips

\[
\omega_{j,k} = \frac{\epsilon_j - \epsilon_k}{\hbar}
\]
Conclusions

- Josephson oscillations of the current in a 1D ring plus barrier after phase imprinting

- Self-trapping at weak interactions and weak barriers however at finite temperature the current decays

- For strong interactions coherent phase slips drive the dynamics for weak barriers. At finite temperatures, multiple particle-hole excitations induce the decay of persistent currents (incoherent phase slips)
Thank you for your attention