Coherent quantum phase slips in spatially inhomogeneous Josephson junction chains

D. M. Basko

Laboratoire de Physique et Modélisation des Milieux Condensés CNRS and Université Grenoble Alpes Grenoble, France

F. W. J. Hekking † A. E. Svetogorov

Outline

- Superconducting nanowires and Josephson junction chains
- Goldstone modes in a superconductor (= plasma oscillations)
- Coherent quantum phase slips in a Josephson junction
- Coherent QPS in a JJ chain/ring
- Phase normal modes of JJ chains
- Disorder in JJ chains and localization of normal modes
- Effect of spatial modulation on QPS

Superconducting nanowires

O. V. Astafiev et al., Nature 484, 355 (2012)

Josephson junction chains

V. Manucharyan et al., PRB 85, 024521 (2012)

T. Weiβl *et al.*, *PRB* **92**, 104508 (2015)

Goldstone modes in a superconductor

Superconductor \rightarrow complex order parameter $\Delta = \Delta_0 e^{i\varphi}$

- changing $|\Delta|$ costs energy
- changing ϕ uniformly costs **nothing** [spontaneously broken U(1)]
- changing φ **almost** uniformly should cost **little**:

$$\varphi = \varphi_0 e^{i\mathbf{k}\mathbf{r} - i\omega t} \implies \omega(\mathbf{k}) = \frac{v_F}{\sqrt{3}} |\mathbf{k}|$$

$$vanishes @ k \rightarrow 0$$
Goldstone mode frequency
in a bulk BCS superconductor
with neutral Cooper pairs
Littlewood & Varma, PRB **26**, 4883 (1982)
Excitations in a superconductor

2Δ

quasiparticle continuum

phase (Goldstone) mode

with **<u>neutral</u>** Cooper pairs:

Goldstone modes in a superconductor

 $\frac{\partial \varphi}{\partial t} = 2(\mu - \epsilon_F) \quad \text{chemical potential shift (by gauge invariance)}$ $e\nu \frac{1}{2} \frac{\partial \varphi}{\partial t} = \rho \quad \text{charge density} \rightarrow \text{produces long-range electric field}$ $\downarrow \text{Electron density oscillations}$ normal density of states/volume $\begin{array}{l} \text{Electron density oscillations} \\ \text{with long-range Coulomb interaction} \\ \text{are called plasma oscillations} \end{array}$

Goldstone modes in a 3D superconductor are gapped because of the Coulomb interaction

Plasma oscillations in nanostructures

Low dimensions \rightarrow Goldstone (Mooij-Schön) modes \equiv plasmons are gapless Low temperatures \rightarrow plasmons dominate the physics

Superconducting phase difference $\theta = \phi_1 - \phi_2$

$$\hat{H} = \frac{\hat{Q}^2}{2C} + E_J(1 - \cos\hat{\theta})$$
$$[\hat{Q}, \hat{\theta}] = 2ie$$

harmonic oscillator

junction plasma frequency $\omega_{
m p}=\sqrt{E_J E_C}$

Superconducting phase difference $\theta = \phi_1 - \phi_2$

$$\hat{H} = \frac{\hat{Q}^2}{2C} + E_J(1 - \cos\hat{\theta})$$
$$[\hat{Q}, \hat{\theta}] = 2ie \qquad \begin{array}{c} \text{A pendulum}\\ \text{or} \end{array}$$

or a particle in a periodic potential?

Superconducting phase difference $\theta = \phi_1 - \phi_2$

$$\hat{H} = \frac{\hat{Q}^2}{2C} + E_J(1 - \cos\hat{\theta})$$

 $[\hat{Q},\hat{\theta}]=2ie$

A pendulum or a particle in a periodic potential?

Closed system

- compact phase
 - (θ =0 and θ =2 π are the same state)
- discrete charge eigenvalues

Superconducting phase difference $\theta = \phi_1 - \phi_2$

$$\hat{H} = \frac{\hat{Q}^2}{2C} + E_J(1 - \cos\hat{\theta})$$

 $[\hat{Q},\hat{\theta}]=2ie$

A pendulum or a particle in a periodic potential?

System attached to leads

- non-compact phase (the circuit keeps track of the winding)
- continuous charge (some charge remains in the leads)

particle in a periodic potential

Closed system

- compact phase
 - (θ =0 and θ =2 π are the same state)
- discrete charge eigenvalues

Quantum phase slips in a JJ $\mathbf{A} E_J(1-\cos\theta)$ $\mathbf{\mathbf{A}} \boldsymbol{\mathbf{\omega}}_{\mathrm{p}} = \sqrt{E_J E_C}$ θ **Quantum tunneling:** Harmonic oscillator levels — Bloch bands $E_n(q) \approx \left(n + \frac{1}{2}\right) \omega_{\rm p} - 2W_n \cos \frac{2\pi q}{2e}$ quasicharge **QPS** amplitude

Josephson junction chains

SQUID chain [T. Weiβl *et al.*, *PRB* **92**, 104508 (2015)]

- large impedance with little dissipation Maslyuk et al., PRL 109, 137002 (2012)
- control over quantum coherence (phase slips) Pop et al., Nature Phys. 6, 589 (2010)

Josephson junction chain

external current (dc or ac)

external current

$$\hat{H} = \frac{1}{2} \sum_{n,n'} C_{nn'}^{-1} \hat{q}_n \hat{q}_{n'} - \sum_{n=0}^{N-1} E_{J,n+1/2} \cos\left(\hat{\phi}_{n+1} - \hat{\phi}_n\right) \\ \left[\hat{q}_n, \hat{\phi}_{n'}\right] = 2ie\delta_{nn'}$$

Screened Coulomb interaction

Capacitance matrix:
$$C_{nn'} = \begin{pmatrix} C_g + C & -C & 0 & \dots \\ -C & C_g + 2C & -C & \dots \\ 0 & -C & C_g + 2C & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}$$

Inverse capacitance matrix:
$$C_{nn'}^{-1} \approx rac{e^{-\sqrt{C_g/C}\,|n-n'|}}{2\sqrt{CC_g}}$$

Screening length: $\ell_s = \sqrt{C/C_g} \gg 1$ (typically, 5–10)

 $\ell_s = 45$ J. Puertas *et al.*, npj Quantum Information **5**, 19 (2019)

QPS in open JJ chains

- 2 non-compact phases and N-1 compact phases
- global phase shift \rightarrow conjugate to conserved total charge \rightarrow fix Q_{tot} = 0
- non-compact $\varphi_{0} \varphi_{N} \rightarrow$ periodic potential with minima
- N harmonic oscillators in each minimum \rightarrow 1d Bloch bands

Quantum phase slips: tunneling between minima \rightarrow Bloch band width

QPS in JJ rings

Experimental observation in a wire

QPS in a fluxonium loop

fluxonium qubit = 1 small junction embedded in a loop of large junctions

V. Manucharyan et al., Science 326, 113 (2009)

microwave spectroscopy V. Manucharyan *et al.*, PRB **85**, 024521 (2012)

Phase slips occur predominantly on the small junction

Coherent quantum phase slips

JJ ring pierced by magnetic flux:

Matveev, Larkin, Glazman, PRL **89**, 096802 (2002) Rastelli, Pop, Hekking, PRB **87**, 174513 (2013)

Tunneling amplitude from an instanton calculation

Imaginary-time Lagrangian:

$$\mathcal{L} = \sum_{n} \left[\frac{C_g}{8e^2} \, \dot{\varphi}_n^2 + \frac{C}{8e^2} (i_{n+1} - \dot{\varphi}_n)^2 \right] \qquad \begin{array}{c} \text{kinetic} \\ \text{energy} \end{array}$$

$$-\sum_{n} E_{J} \cos \left(\varphi_{n+1} - \varphi_{n} + \frac{2\pi\Phi}{N\Phi_{0}}\right) \quad \text{potential} \quad \text{energy}$$

QPS in a spatially uniform ring

Phase normal modes

N–1 harmonic oscillators in each potential minimum: plasma oscillations, Mooij-Schön modes

$$\sum_{n'} C_{nn'} \frac{d^2 \phi_{n'}}{dt^2} = \left(\frac{2e}{\hbar}\right)^2 E_J(\phi_{n+1} + \phi_{n-1} - 2\phi_n)$$

Phase normal modes

N–1 harmonic oscillators in each potential minimum: plasma oscillations, Mooij-Schön modes

$$\sum_{n'} C_{nn'} \frac{d^2 \phi_{n'}}{dt^2} = \left(\frac{2e}{\hbar}\right)^2 E_J(\phi_{n+1} + \phi_{n-1} - 2\phi_n)$$

Random spatial modulation of areas

Josephson energy, junction capacitance \propto junction area

$$\begin{split} E_{J,n} &= E_J(1+\zeta_n), \quad C_n = C(1+\zeta_n) & \text{weak relative modulation} & \left< \zeta_n^2 \right> = \sigma_S^2 \ll 1 \\ C_{g,n} &= C_g(1+\eta_n) & \text{weak relative modulation} & \left< \eta_n^2 \right> = \sigma_g^2 \end{split}$$

All normal modes are localized

Long chains: localization length from the DMPK equation

$$\xi = \frac{2}{\sigma_S^2 + \sigma_g^2} \frac{4}{k^2} \quad \text{diverges at } k \to 0 \text{ (standard for Goldstone modes)}$$

Short chains $N \ll \xi$: random perturbative shifts of the discrete frequencies

$$\frac{\langle \delta \omega_k^2 \rangle}{\omega_k^2} = \frac{\sigma_S^2 + \sigma_g^2}{N} \frac{3/8}{(1 + k^2 \ell_s^2)^2}$$

Basko & Hekking, PRB 88, 094507 (2013)

Random offset charges

$$\hat{H} = \frac{1}{2} \sum_{n,n'} C_{nn'}^{-1} \left(\hat{q}_n - 2e\kappa_n \right) \left(\hat{q}_{n'} - 2e\kappa_{n'} \right) - \sum_{n=0}^{N-1} E_{Jn} \cos(\phi_{n+1} - \phi_n)$$

Classically: no effect on normal modes

Quantum-mechanically: energy levels sensitive to the fractional part of K

Effect of a periodic spatial modulation

Josephson energy, junction capacitance ~ junction area

Effect of a periodic spatial modulation

Josephson energy, junction capacitance ~ junction area

$$\begin{split} E_{J,n} &= E_J(1+\zeta_n), \quad C_n = C(1+\zeta_n) & \text{weak relative modulation} & \zeta_n = t_\zeta \cos \frac{2\pi n}{a} \\ C_{g,n} &= C_g(1+\eta_n) & \text{weak relative modulation} & \eta_n = t_\eta \cos \frac{2\pi n}{a} \\ \text{wave equation with modulation} & \eta_n = t_\eta \cos \frac{2\pi n}{a} \\ \text{wave equation with modulation} & \eta_n = t_\eta \cos \frac{2\pi n}{a} \\ \text{wodulation} & \text{modulation} \\ \text{correction to mode wave functions} \\ \text{correction to the QPS amplitude on junction } n: \\ W_n &= \frac{4}{\sqrt{\pi}} \left(E_J^3 E_C \right)^{1/4} \exp \left\{ -8\sqrt{\frac{E_{J,n}}{E_{C,n}}} - \overline{g} \left(\ln \frac{N}{\ell_s} - 2.43 \right) - \delta g_n \ln \frac{0.10 a}{\ell_s} \right\} \\ \text{purely local} & \text{by modes} \\ 1/N < k < 1/\ell_s \\ \text{Svetogorov et al., PRB 97,104514 (2018)} & \text{If } a >> \ell_s \text{ only;} \\ \text{otherwise} \sim a^2/\ell_s^2 \\ 1/a < k < 1/\ell_s \\ \end{split}$$

Effect of a random spatial modulation

Josephson energy, junction capacitance ~ junction area

$$\begin{split} E_{J,n} &= E_J(1+\zeta_n), \quad C_n = C(1+\zeta_n) & \text{weak relative modulation} & \left< \zeta_n^2 \right> = \sigma_S^2 \ll 1 \\ C_{g,n} &= C_g(1+\eta_n) & \text{weak relative modulation} & \left< \eta_n^2 \right> = \sigma_g^2 \end{split}$$

QPS amplitude on junction *n*: $W_n \propto e^{-S_n - 2\pi i(\kappa_1 + ... + \kappa_n)}$ random offset charges

Ivanov *et al.*, PRB **65**, 024509 (2001) Matveev et al., PRL **89**, 096802 (2002)

Effect of a random spatial modulation

Josephson energy, junction capacitance ~ junction area

$$\begin{split} E_{J,n} &= E_J(1+\zeta_n), \quad C_n = C(1+\zeta_n) & \text{weak relative modulation} & \left< \zeta_n^2 \right> = \sigma_S^2 \ll 1 \\ C_{g,n} &= C_g(1+\eta_n) & \text{weak relative modulation} & \left< \eta_n^2 \right> = \sigma_g^2 \end{split}$$

QPS amplitude on junction *n*: $W_n \propto e^{-S_n - 2\pi i(\kappa_1 + ... + \kappa_n)}$ random offset charges

Homogeneous chain:
$$S = 8\sqrt{E_J/E_C} + g\left(\ln\frac{N}{\ell_s} - 2.43\right)$$

determined by
the slipping
junction with $1/N < k < 1/\ell_s$
Disordered
chain: $\langle \delta S_n^2 \rangle = \left\langle \delta \left(8\sqrt{E_J/E_C}\right)^2 \right\rangle + \frac{\sim 1}{\ell_s} \left\langle \delta g^2 \right\rangle$

determined by modes with $k \sim 1/\ell_s$

Coherent QPS amplitude is **NOT** sensitive to Anderson localization of the normal modes

Svetogorov & Basko, PRB 98, 054513 (2018)

Corrections to the QPS amplitude are determined by the local values of the slipping junction parameters

$$W = \frac{W_{\text{hom}}}{N} \sum_{n} e^{-\delta S_n - i\theta_n}$$

Corrections to the QPS amplitude are determined by the local values of the slipping junction parameters

$$W = \frac{W_{\text{hom}}}{N} \sum_{n} e^{-\delta S_n - i\theta_n}$$

1. No random charges: $\theta_n = 0$

 $\langle \delta S_n \rangle = 0, \quad \langle \delta S_n \delta S_{n'} \rangle = \frac{64E_J}{E_C} \left\langle \zeta_n^2 \right\rangle \delta_{nn'} \equiv \sigma^2 \delta_{nn'}$ Gaussian, uncorrelated

 $\delta S_n \ll S_{
m hom}$ but may be $\delta S_n \gtrsim 1$ Strong mesoscopic fluctuations of the QPS amplitude

Central limit theorem for $N \gg e^{\sigma^2} - 1$, otherwise long tail in the distribution

Weakest junction dominates when $N \lesssim e^{0.6 \, \sigma^{2/3}}$

Sum of log-normals ~ a log-normal ???

Corrections to the QPS amplitude are determined by the local values of the slipping junction parameters

1. No random charges:

Direct numerical sampling Saddle point approximation Weakest junction approximation Lognormal fit

Sum of log-normals ~ a log-normal

Corrections to the QPS amplitude are determined by the local values of the slipping junction parameters

$$W = \frac{W_{\text{hom}}}{N} \sum_{n} e^{-\delta S_n - i\theta_n}$$

2. Strong random charges: $\theta_n \in [0, 2\pi)$ uniformly and independently

Central limit theorem for $N \gg (e^{4\sigma^2} - 1)/2$

Weakest junction dominates when $\ N \lesssim e^{\sigma^{2/3}}$

Conclusions

Theory of coherent QPSs in spatially inhomogeneous JJ chains:

Mesoscopic fluctuations of the QPS amplitude are dominated by the local values of the parameters