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Outline

● Superconducting nanowires and Josephson junction chains 

● Goldstone modes in a superconductor (= plasma oscillations)

● Coherent quantum phase slips in a Josephson junction

● Coherent QPS in a JJ chain/ring

● Phase normal modes of JJ chains

● Disorder in JJ chains and localization of normal modes

● Effect of spatial modulation on QPS



Superconducting nanowires

O. V. Astafiev et al., Nature 484, 355 (2012)



Josephson junction chains

T. Weiβl et al., PRB 92, 104508 (2015)

V. Manucharyan et al., PRB 85, 024521 (2012)



Goldstone modes in a superconductor
Superconductor → complex order parameter  Δ = Δ

0
eiφ

- changing |Δ|
 
costs energy

- changing φ uniformly costs nothing [spontaneously broken U(1)]

- changing φ almost uniformly should cost little:

Goldstone mode frequency
in a bulk BCS superconductor
with neutral Cooper pairs
Littlewood & Varma, PRB 26, 4883 (1982) 

quasiparticle continuum

k

ω

2Δ
0

phase (Goldstone) mode

Excitations in a superconductor
with neutral Cooper pairs:

vanishes @ k→0



Goldstone modes in a superconductor

quasiparticle continuum

k
2Δ

0

Excitations in a 3D superconductor
with charged Cooper pairs:

ω
p

ω
plasma oscillation

< 1 meV

a few eV

chemical potential shift (by gauge invariance)

charge density → produces long-range electric field

normal density of states/volume
Electron density oscillations

with long-range Coulomb interaction
are called plasma oscillations

Goldstone modes in a 3D superconductor are gapped because of the Coulomb interaction



Plasma oscillations in nanostructures

3D material:
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2D sheet:
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1D wire:
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Superconducting wire above a ground plane
which screens the long-range Coulomb:
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Low dimensions → Goldstone (Mooij-Schön) modes ≡ plasmons are gapless
Low temperatures → plasmons dominate the physics
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Josephson junction

superconductor 1

superconductor 2

thin tunnel barrier
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Superconducting phase difference θ = ϕ
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harmonic 
oscillator 

junction plasma frequency



Josephson junction

superconductor 1

superconductor 2

thin tunnel barrier
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A pendulum
or
a particle
in a periodic potential?



Josephson junction

superconductor 1

superconductor 2

thin tunnel barrier
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Closed system

- compact phase
  (θ=0 and θ=2π are the same state)
- discrete charge eigenvalues

pendulum

A pendulum
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a particle
in a periodic potential?



Josephson junction

superconductor 1

superconductor 2

thin tunnel barrier

++ + + + + + +

- - - - -----

+Q

-Q

Superconducting phase difference θ = ϕ
1
 ‒ ϕ

2

Closed system

- compact phase
  (θ=0 and θ=2π are the same state)
- discrete charge eigenvalues

pendulum

A pendulum
or
a particle
in a periodic potential?

- non-compact phase
  (the circuit keeps track of the winding)
- continuous charge
  (some charge remains in the leads)

particle in a periodic potential

System attached to leads



Quantum phase slips in a JJ

θ

Harmonic oscillator levels                 Bloch bands

Quantum tunneling:

quasicharge
QPS amplitude



Josephson junction chains

V. Manucharyan et al.,
Science 326326, 113 (2009)

superconductor

thin oxide layer

SQUID chain [T. Weiβl et al., PRB 92, 104508 (2015)]

- large impedance with little dissipation Maslyuk et al., PRL 109, 137002 (2012) 
- control over quantum coherence (phase slips) Pop et al., Nature Phys. 6, 589 (2010)



Josephson junction chain
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Screened Coulomb interaction

Capacitance matrix:

Inverse capacitance matrix:

Screening length: (typically, 5−10) 

J. Puertas et al., npj Quantum Information 5, 19 (2019)



QPS in open JJ chains
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external circuit external circuit

j
0
 and j

N
 non-compact

j
1
 ... j

N-1
 compact

- 2 non-compact phases and N−1 compact phases
- global phase shift → conjugate to conserved total charge → fix Q

tot
 = 0

- non-compact j
0
 − j

N 
→ periodic potential with minima

- N harmonic oscillators in each minimum → 1d Bloch bands

Quantum phase slips: tunneling between minima → Bloch band width



JJ ring pierced by a flux Φ:

dominated
by E

J Φ/Φ
0

2π

–1

splitting
by tunneling

1/2–1/2 0 1

0 N

n

φ
n

Ivanov et al., PRB 65, 024509 (2001)
Matveev et al., PRL 89, 096802 (2002)

QPS in JJ rings
All phases compact → no Bloch bands

Local potential minima:

Quantum phase slips:
tunneling between minima → splitting at Φ = Φ

0
 / 2

m=0

m=1



Experimental observation in a wire
O. V. Astafiev et al., Nature 484, 355 (2012)

transition probed by microwave spectroscopy



QPS in a fluxonium loop
fluxonium qubit = 1 small junction
embedded in a loop of large junctions

V. Manucharyan et al., Science 326326, 113 (2009)

V. Manucharyan et al., PRB 85, 024521 (2012)

microwave spectroscopy

Phase slips occur predominantly on the small junction



Coherent quantum phase slips
JJ ring pierced by magnetic flux:

Ground state energy

dominated
by E

J Φ/Φ
0

2π

–1

splitting
by tunneling

1/2–1/2 0

Imaginary-time Lagrangian:

kinetic
energy

potential
energy

Tunneling between two
degenerate classical
phase configurations

@ Φ = Φ
0
 / 2:

10 N

n

φ
n

Matveev, Larkin, Glazman, PRL 89, 096802 (2002)
Rastelli, Pop, Hekking, PRB 87, 174513 (2013)

Tunneling amplitude from an instanton calculation



QPS in a spatially uniform ring
1. Phase winding on one of the junctions
2. Phase readjustment on the length ~ ℓ

s

3. Phase readjustment in the rest of the ring
sensitive to the phase normal modes

Matveev, Larkin, Glazman,
PRL 89, 096802 (2002)

Hekking & Glazman,
PRB 55, 6551 (1997);
Rastelli, Pop, Hekking,
PRB 87, 174513 (2013)

Svetogorov et al.,
PRB 97,104514 (2018)

junction charging energy  << E
J

otherwise insulator  Bradley & Doniach, PRB 30, 1138 (1984)
    Korshunov, JETP 68, 610 (1989)

dimensionless
admittance of the chain

amplitudes on different junctions added coherently
(assuming no offset charges)QPS

amplitude:



Phase normal modes
N−1 harmonic oscillators in each potential minimum:

plasma oscillations, Mooij-Schön modes

plasma frequency

π

Infinitely long chain:

linear dispersion

screening length

1/ℓ
s



Phase normal modes
N−1 harmonic oscillators in each potential minimum:

plasma oscillations, Mooij-Schön modes

Finite length, N junctions:

Measured resonances
in the microwave transmission coefficient

of a 200-junction chain
Yu. Krupko et al., PRB 98, 094516 (2018)



All normal modes are localized

Random spatial modulation of areas
Josephson energy, junction capacitance ∝ junction area

weak relative modulation
of the junction areas

weak relative modulation
of the ground capacitances

Long chains: localization length from the DMPK equation

diverges at k → 0 (standard for Goldstone modes)

Short chains              : random perturbative shifts of the discrete frequencies

Basko & Hekking, PRB 88, 094507 (2013)



Random offset charges

Classically: no effect on normal modes

Quantum-mechanically: energy levels sensititve
to the fractional part of κ

n



Effect of a periodic spatial modulation

modulation
depth << 1

modulation
period >> 1 

Φ

Mooij-Schön modes
are modified

Effect on the QPS amplitude?

structured
environment

Josephson energy, junction capacitance ∝ junction area

weak relative modulation
of the junction areas

weak relative modulation
of the ground capacitances



Effect of a periodic spatial modulation

wave equation with modulation
↓

correction to mode wave functions
↓

correction to the QPS amplitude on junction n:

Svetogorov et al., PRB 97,104514 (2018)

local admittance
at the QPS
position

If  a >> ℓ
s
 only;

otherwise ~ a2/ℓ
s
2

purely
local

determined
by modes

1/N < k < 1/ℓ
s determined

by modes
1/a < k < 1/ℓ

s

modulation
depth << 1

modulation
period >> 1 

Josephson energy, junction capacitance ∝ junction area

weak relative modulation
of the junction areas

weak relative modulation
of the ground capacitances



Effect of a random spatial modulation

QPS amplitude on junction n: random offset charges

Ivanov et al., PRB 65, 024509 (2001)
Matveev et al., PRL 89, 096802 (2002) 

Josephson energy, junction capacitance ∝ junction area

weak relative modulation
of the junction areas

weak relative modulation
of the ground capacitances



Effect of a random spatial modulation

QPS amplitude on junction n:

Homogeneous chain: 

determined by 
the slipping 

junction

determined by modes
with 1/N < k < 1/ℓ

s

determined by modes with k ~ 1/ℓ
s

Disordered
chain:

Coherent QPS amplitude is NOT sensitive to Anderson localization of the normal modes

random offset charges

Svetogorov & Basko, PRB 98, 054513 (2018) 

Josephson energy, junction capacitance ∝ junction area

weak relative modulation
of the junction areas

weak relative modulation
of the ground capacitances



Mesoscopic fluctuations

Corrections to the QPS amplitude are determined
by the local values of the slipping junction parameters



Mesoscopic fluctuations

Corrections to the QPS amplitude are determined
by the local values of the slipping junction parameters

Gaussian, uncorrelated

but may be
Strong mesoscopic fluctuations
of the QPS amplitude

1. No random charges:

Central limit theorem for                        ,  otherwise long tail in the distribution

Weakest junction dominates when 

Sum of log-normals ~ a log-normal ???



Corrections to the QPS amplitude are determined
by the local values of the slipping junction parameters

1. No random charges:

Direct numerical sampling
Saddle point approximation

Weakest junction approximation
Lognormal fit

Sum of log-normals ~ a log-normal

Mesoscopic fluctuations



Mesoscopic fluctuations

Corrections to the QPS amplitude are determined
by the local values of the slipping junction parameters

2. Strong random charges:                      uniformly and independently

Central limit theorem for   

Weakest junction dominates when 



Conclusions
Theory of coherent QPSs in spatially inhomogeneous JJ chains:

spatial inhomogeneity
↓

Mooij-Schön modes
↓

hydrodynamic part of the QPS action

homogeneous chain:

periodic spatial modulation: 

random spatial modulation: 

Mesoscopic fluctuations of the QPS amplitude
are dominated by the local values of the parameters
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