
Hands-on exercise on laser-matter irradiation
with TDDFT

8th School on Time-Dependent Density-Functional Theory
Benasque Center for Science (Benasque, Spain)

August 20th – 27th, 2018

1 Introduction

In these exercises, we will do some simulations on laser matter irradia-
tion. Due to the limited time, we will work mostly with one-electron sys-
tems and models, but the level of theory we will be aiming at is that of
non-adiabatic Molecular Dynamics (MD) based on time-dependent density-
functional theory (TDDFT) and the Ehrenfest equations. If you don’t know
much about these topics: Refs [1, 2, 3] are interesting references about
TDDFT; Refs [6, 7, 8, 10] are some example references for the combination
of TDDFT and non-adiabatic first principles MD.

For this purpose, we will use the octopus code, a free code that imple-
ments these ideas. You can learn the essentials on how it works in Refs.[4, 5].

2 Basics: input file, etc.

The code can be freely downloaded at:
http://www.octopus-code.org/

In the web page, you can find some tutorials and documentation. Since
time is limited, however, we will follow a “learn by doing” strategy.

The executable is called octopus. The code must find, in the directory
from where it is launched, an input file that must always be called inp. We
will be working with a number of sample input files called inp.x, where x is
some number. In order to use one of them, simply copy it to the directory
where you are going to do the run, and rename it to inp.

Let us start with the first one: inp.1:

1

##

Ground state of a 1D model of Hydrogen

CalculationMode = gs

Dimensions = 1

BoxShape = sphere

Spacing = 0.5

Radius = 100.0

TheoryLevel = independent_particles

%Species

"Hydrogen1D" | species_user_defined | potential_formula | "-1/sqrt(1+(x)^2)" | valence | 1

%

%Coordinates

"Hydrogen1D" | 0

%

##

The lines that start after # are comments, not considered by the code.
The rest of the lines have the basic syntax “variable = value”, except for the
“blocks”, which start with a line with the syntax %BlockName and end with a
single %. In between, there are a number of lines formed of various elements
separated by a vertical line, |. Variables can go in any order, and are case
insensitive.

The first input variable, CalculationMode, tells the code what kind of
calculation is to be performed; in this case, gs stands for ground state
calculation. The various options of any input file variable can be looked
up at the code web page, under the heading “Variable reference”. There
you will see what other possibilities exist for CalculationMode. You can
also show the variable documentation on you screen terminal by typing
oct-help -p VariableName. If you want to search for a variable, but can
only remember more or less what the name was, you can type oct-help -s

ApproximateName. You will get a list of variables whose name is similar to
ApproximateName.

The next input variable, Dimensions, tells the code that we will be work-
ing in one spatial direction only. For this first example we will do a simple
one-dimensional model of the Hydrogen atom.

The next input variable, BoxShape, describes the shape of the simulation
box. In 1D this is obviously irrelevant (a “sphere” in 1D is just an interval),
but you may check the other options in the variable description in the web
page. The variable Spacing defines the grid spacing: in octopus, the wave
functions, densities, potentials, etc,, are represented in a real space “mesh” or

“grid”, generally regular. Spacing = 0.5 means that the distance between
grid points is 0.5 atomic units (with few exceptions, all units in the input file
are given in atomic units). It remains to specify the size of the simulation
box, in this case, the Radius of the sphere. In this one-dimensional case,
Radius = 100 means that we will represent the system in the (-100,+100)
interval.

TheoryLevel informs the code that we want to do an independent elec-
trons calculation. This makes sense since we are doing one single electron.
By default, the code works in density-functional mode.

Next, the block %Species is used to list the type of atoms (or, in general,
sources of potential, hence the generic name Species) present in the calcu-
lation. Note, however, that “normal” atoms do not have to be defined, and
therefore in some input files you will not find a %Species block – the code
then uses default pseudopotentials. Each line of this block is the description
of one atom or model potential. In this case, we only have one that we call
Hydrogen1D (the first column of the row is the name that will identify that
atom). units). The second column is the “type” of potential source that we
are defining. You can see a description of the various possibilities in the web
page; for this case we use the species user defined option, which informs
octopus that we will be employing a mathematical formula to define the po-
tential. The next columns are grouped by pairs: “potential formula” tells
the code that the next column contains the formula definining the potential,
whereas “valence” tells the code that the next column contains the number
of valence electrons for this atom (1).

We are therefore using a nucleus-electron potential in the form:

V (x) =
−1√

1 + x2
. (1)

This type of potential, which is extensively used for 1D studies, is called
soft-Coulomb potential.

Finally, the last block, %Coordinates, places the various atoms in their
positions. We only want one Hydrogen atom, placed at the center of the
simulation cell.

Now you can run the code, e.g.:
prompt> octopus

The code emits quite a lot of information to standard output, it is useful
to store that information also in a file, e.g.:

prompt> octopus > out

Or, if you want to also see it while it is created,
prompt> octopus | tee out

The other source of information for what the code did is in the directory
static, which in this case only contains the file info.

• This model calculation is in fact taken from Ref. [11]. Take a look
at that paper; there you can check that the ground state energy that
you obtained is indeed coincident with the correct number (provided
in Table I of the paper).

• Suggestion: The two key numerical parameters in a real-space grid cal-
culation such as the one you just did are Spacing and Radius. The
correct manner to determine if they are correct is performing a conver-
gence analysis: performing series of calculations at varying values of
those parameters, and plotting the result (typically, the total energy),
as a function of them.

• You will see that file inp.2 does not differ much from inp.1: it cor-
responds to a CalculationMode = unocc supposed to be performed
after the previous gs one. In this mode, the code computes “unoccu-
pied”, or “excited” states of the system. In this case, ExtraStates

= 9 excited states. The energies of these are also listed in Table I of
Ref. [11]. The energies generated by octopus will be listed in a file
called static/eigenvalues.

3 A molecule irradiated with a laser pulse.

Now we will simulate the irradiation of a molecule with a laser field. Since
we cannot do heavy calculations in little time, let us use a simple one, the
Na+

2 molecule, which only has one valence electron. octopus uses pseudo-
potentials (more about this in Refs. [4, 5]), and therefore we will only be
dealing with that one valence electron (all other inner electrons are supposed
to be “frozen” and do not participate in the chemistry).

First, we need to get the ground state of the molecule, which can be done
by making use of file inp.3:

##

Ground state of the Na2+ molecule

CalculationMode = gs

FromScratch = yes

BoxShape = sphere

Spacing = 0.7

Radius = 20.0

TheoryLevel = independent_particles

ExcessCharge = 1

%Coordinates

"Na" | -3.282843 | 0 | 0

"Na" | 3.282843 | 0 | 0

%

EigenSolver = cg

EigenSolverMaxIter = 250

EigenSolverTolerance = 1.0e-6

ConvRelDens = 1.0e-6

##

Note the presence of the ExcessCharge variable. The code computes the
number of electron that it needs according to the type of atoms. In this case,
since Na only has one valence electron, and we have two Na atoms, in princi-
ple the code would use two electrons. However, if we want to have a charged
system, we need to specify it by setting this variable. The EigenSolver...

and ConvRelDens variables refer to the degree of numerical convergence that
should be achieved in the diagonalization of the Hamiltonian for these ground
state calculations. You can learn about them in the variables description of
the web page, or in the tutorials.

• One should perform a convergence analysis to be sure that the Spacing
and Radius are correct. If your are too lazy to to this by hand, you can
fiind a sample bash script to to this job for you on the tutorial page
(section Nitrogen atom).

• By changing the bond-length given in the block Coordinates, you can
check whether or not the system is at the equilibrium geometry. You
can vary the bond length in several consecutive calculations, and plot
the total energy and forces on the ions as a function of bond-length.

We will need to know which are the excitation energies of the system, and
therefore we will need once again to perform a calculation in the CalculationMode
= unocc mode with the inp.4 file:

##

Calculation of excited states of Na2+ molecule.

CalculationMode = unocc

ExtraStates = 4

FromScratch = yes

BoxShape = sphere

Spacing = 0.7

Radius = 20.0

TheoryLevel = independent_particles

ExcessCharge = 1

%Coordinates

"Na" | -3.282843 | 0 | 0

"Na" | 3.282843 | 0 | 0

%

EigenSolver = cg

EigenSolverMaxIter = 250

EigenSolverTolerance = 1.0e-6

ConvRelDens = 1.0e-6

##

Now we will perform time-dependent simulations. Take a look at file
inp.5:

##

Time-dependent simulation of Na2+

CalculationMode = td

FromScratch = yes

BoxShape = sphere

Spacing = 0.7

Radius = 20.0

TheoryLevel = independent_particles

ExcessCharge = 1

%Coordinates

"Na" | -3.282843 | 0 | 0

"Na" | 3.282843 | 0 | 0

%

TDEnergyUpdateIter = 1

TDPropagator = exp_mid

TDExponentialMethod = lanczos

TDExpOrder = 20

AbsorbingBoundaries = mask

AbWidth = 4.0

MoveIons = no

omega = 0.1

electric_amplitude = 0.05

tau0 = 2*(2*pi)/omega

t0 = 2*(2*pi)/omega

totaltime = t0+tau0

TDMaxSteps = 250

TDTimeStep = totaltime/TDMaxSteps

%TDExternalFields

electric_field | i | 0 | 0 | omega | "envelope_function"

%

%TDFunctions

"envelope_function" | tdf_cosinoidal | electric_amplitude | tau0 | t0

%

TDOutput = multipoles + laser + energy

##

Here are the novelties:

• The equations are propagated by discretizing the time interval that
is going to be simulated in smaller pieces or time steps. TDTimeStep

determines the size of this time step. If this value is too large, the
propagations will be unstable. But the larger it is, the faster we will
simulate the system.

• The TDPropagator variable sets which propagation algorithm is used.
You may read about this topic in Ref. [12], and also consult the various
options in the variable description of the web page. The exponential
midpoint rule, which is the option chosen in the input file, is given by:

ϕ(t+ ∆t) = exp{−i∆tĤ(t+ ∆t/2)}ϕ(t) . (2)

• Even though the propagation scheme is now fixed, it requires of an
algorithm to compute the action of the exponential of a matrix on a
wave function, which is a non-trivial task when the dimension is large.
The algorithm to do this is chosen by the TDExponentialMethod and
TDExpOrder variables.

• When the electrons are propagated in time with an intense laser field,
some ionization may occur. In order to account for this, one has to add

absorbing boundaries to the simulation box. This is done, in this case,
by applying a “mask function” (AbsorbingBoundaries = mask) that
at each time step cancels a part of the wave function that is close to
the simulation box boundary.

• MoveIons = no means that we will perform the calculation with the
nuclei fixed to their original position. We will relax this condition in
the next section.

• The external field (that simulates the electric field created by a laser
pulse) is described through the blocks TDExternalFields and TDFunctions.
These are reasonably well described in the code web page, so we will
not repeat the explanations here. Note only that the applied electric
field has the form:

E(t) = Re[f(t)eiωtp] , (3)

where f(t) is the envelope funciton, ω is the carrier frequency (omega
in the inp file), and p is the polarization vector, which can be complex.

Now it is time to analyze the results. Take a look at the variable TDOutput:
it orders the code to create some output files, with information about the
multipoles of the system (monopole – i.e. the total electronic charge present
in the simulation box – and the dipole), the laser field, or the energy as the
system evolves in time. You will find the files in the directory td.general.

You should try to plot these files with some plotting program (gnuplot
should be installed in your computers). For example, the second column of
the file multipoles contains the time at each time step, whereas the third
column contains the electronic charge in the simulation box. One of the most
relevant information to learn from this simulation is the ionization yield, as
a function of time.

You can also plot the laser field that you have used in this simulation:
column number two of the file laser is the time, whereas column number
three is the x component of the electric field.

• The total ionization is strongly dependent on the peak electric am-
plitude of the laser pulse. You can analyze this effect by performing
various runs at varying values of this value.

• The polarization of the laser pulse is also relevant: how does this aspect
affect the total ionization for this system? The effect of this parameter
will be specially visible in the evolution of the dipole of the system.
You can check this by looking at the multipoles file.

• Are we well converged with respect to the simulation box? This is
especially difficult in cases where one studies ionization (in fact, it is
impossible to obtain perfect convergence).

4 Photo-dissociation – or not.

In the previous calculation, the nuclei were frozen at their equilibrium po-
sition. In reality, they should move. To simulate this, we will utilize the
Ehrenfest model. The relevant file is now inp.6. We will not explain this
file in detail, since by now you have learnt most that it is to be known about
it. The goals of this section are the following:

• The inp.6 files contains the specification of a non-resonant calcula-
tion: the frequency of the laser field is not tuned to any of the excita-
tion energies of the system (transition from the ground state to any of
the excited states). What are the effects of this pulse on the system?
Specifically, does it lead to the ionization of the system or not?

• Tune the laser frequency to the first resonance of the system, and check
now whether or not the system dissociates. Is this dissociation accom-
panied of simultaneous ionization of the system?

• What happens if you keep the resonant frequency, but change the po-
larization direction of the laser field?

5 High harmonic generation

The goal of this exercise is to compute the high harmonic generation (HHG)
spectrum emitted by a 1D model of Hydrogen when irradiated with a laser
pulse. The goal is to reproduce, approximately, Fig. 1 (it is also one of the
calculations present in Ref. [15]). Since you are now an expert in the use of
octopus, we will not give you input files, but only some instructions.

Therefore, some hints:

• You need to build a model in 1D: use the variable “Dimensions”.

• The model is the usual soft-Coulomb Hydrogen. You need to define it
such a potential with the “Species” block.

• You must use absorbing boundaries when doing the td runs.

• Be sure to find good values for the grid spacing, the simulation box,
and later for the time-dependent discretization. A converged result
can be obtained with a calculation of a few minutes, but only if those
parameters are chosen wisely.

Remember that the smaller the grid spacing you use, the smaller the
td time step you will need [Question: why?]

• Define the laser through the “TDExternalFields” and “TDFunctions”
blocks.

The laser must have a cosinoidal envelope, and 200 oscillations of a 800
nm frequency. The amplitude is 0.03 a.u.

• Once the td run is done, you must compute the HHG spectrum; for
that purpose, you should use the “oct-harmonic-spectrum” utility. This
program essentially computes:

H(ω) =

∣∣∣∣∫ T

0

dt
d2

dt2
d(t)

∣∣∣∣2 , (4)

where d(t) is the dipole moment. It can be done in two different man-
ners:

1. Reading the td dipole moment from the “multipoles” file, and
taking the second time derivative numerically from it. This is the
default mode, you just need to launch “oct-harmonic-spectrum”
and it will do this. It will generate a file called “hs-mult.x” with
the spectrum.

2. If you run the td calculations with octopus adding the “dipole acceleration”
keyword to the “TDOuput” variable (for example, “TDOutput =
laser + multipoles + dipole acceleration”, octopus will generate
an “acceleration” file in the “td.general” directory, with the ac-
celeration of the dipole as given en Eq. (2) in Ref. [15]. Then you
can run “oct-harmonic-spectrum” with the “-m 2” option, and
it will compute Eq. (1) using that, and generating a “hs-acc.x”
file with the spectrum. Mathematically, this is equivalent to the
former method; numerically they may differ.

• There are some variables related to the “oct-propagation-spectrum”
that you may set, mainly “PropagationSpectrumMaxEnergy”, and “Prop-
agationSpectrumEnergyStep”, of easy meaning: the spectrum will be
plotted up to the maximum energy given by the former, and at inter-
vals of energy given by the latter. It is good, numerically, to set the

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 5 10 15 20 25 30

lo
g

1
0
 H

(ω
)

Harmonic order

Figure 1: Harmonic spectrum emitted by the model Hydrogen molecule.

former to some multiple of the laser carrier frequency, and to set the
latter at the Fourier transform base frequency 2π/T , where T is the
total propagation time.

“But this is not TDDFT because there is only one electron!” Yes, you
are right. But once you learnt to do this, it is straightforward to add one or
more electrons, and get TDDFT HHG spectra.

References

[1] M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427
(2004).

[2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

[3] “Time Dependent Density Functional Theory”, edited by M. A. L. Mar-
ques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. K. U.
Gross (Springer Verlag, Berlin, 2006).

[4] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen,
E. K. U. Gross, M. A. L. Marques and A. Rubio, Phys. Stat. Solidi B
243, 2465 (2006).

[5] M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Comp. Phys.
Comm. 151, 60 (2003).

[6] U. Saalmann, and R. Schmidt, Z. Phys. D 38, 153 (1996).

[7] E. K. U. Gross, J. F. Dobson, and M. Petersilka, in “Density Functional
Theory” (Topics in Current Chemistry 181), edited by R. F. Nalewajski,
p. 81 (Springer-Verlag, Berlin-Heidelberg, 1996).

[8] T. Kunert, and R. Schmidt, Phys. Rev. Lett. 86, 5258 (2001).

[9] C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).

[10] A. Castro, M. A. L. Marques, J. A. Alonso, G. F. Bertsch, and Angel
Rubio, Eur. Phys. J. D 28, 211 (2004).

[11] J. Javanainen, J. H. Eberly, and Q. Su, Phys. Rev. A 38, 3430 (1988).

[12] A. Castro, M. A. L. Marques, and A. Rubio, J. Chem. Phys. 121, 3425
(2004).

[13] Umberto De Giovannini, Daniele Varsano, M A L Marques, H Appel,
E K U Gross, and A Rubio. Ab initio angle- and energy-resolved pho-
toelectron spectroscopy with time-dependent density-functional theory.
Phys. Rev. A, 85:062515, June 2012.

[14] Xavier Andrade, David A Strubbe, Umberto De Giovannini, Ask Hjorth
Larsen, Micael J T Oliveira, Joseba Alberdi-Rodriguez, Alejandro Varas,
Iris Theophilou, Nicole Helbig, Matthieu Verstraete, Lorenzo Stella, Fer-
nando Nogueira, Alán Aspuru-Guzik, Alberto Castro, Miguel A L Mar-
ques, and Angel Rubio. Real-space grids and the Octopus code as tools
for the development of new simulation approaches for electronic systems.
January 2015.

[15] A. Castro, A. Rubio, and E. K. U. Gross, Eur. Phys. J B 88, 191 (2015).

