[Lecture 1]

Heavy lons

Carlos A. Salgado IGFAE - Santiago de Compostela TAE2018 - Benasque

QCD is the theory of strong interactions.

 \Rightarrow It describes interactions between hadrons (p, π , ...)

- Asymptotic states.
- Normal conditions of temperature and density.
- Nuclear matter (us).
- Colorless objects.

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - Fundamental particles.

charge=+2/3	u (\sim 5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (~10 MeV)	s (~100 MeV)	b (\sim 5 GeV)

Colorful objects. color = charge of QCD ---- vector Similar to QED, but gluons can interact among themselves

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - Fundamental particles.

charge=+2/3	u (\sim 5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (~10 MeV)	s (~100 MeV)	b (\sim 5 GeV)

Colorful objects. color = charge of QCD ---- vector Similar to QED, but gluons can interact among themselves

Gluons carry color charge → This changes everything...

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
- \Rightarrow No free quarks and gluons: Confinement.

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
- \Rightarrow No free quarks and gluons: Confinement.
- \Rightarrow Strength smaller at smaller distances: Asymptotic freedom.

In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).

- In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \implies isolated quarks (gluons) = infinite energy

- In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \implies isolated quarks (gluons) = infinite energy
- \Rightarrow colorless packages (hadrons) \Rightarrow vacuum excitations.

- In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \implies isolated quarks (gluons) = infinite energy
- \Rightarrow colorless packages (hadrons) \Rightarrow vacuum excitations.

⇒ <u>masses:</u>

	mass (GeV)	$\sum q_m$ (GeV)
р	\sim 1	$2m_u + m_d \sim 0.03$
π	~0.13	$m_u + m_d \sim 0.02$

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

\Rightarrow Colorless object

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

 \Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + Kr$$

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

 \Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + Kr$$

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

 \Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + Kr$$

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons.

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

 \Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + Kr$$

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons.

 \Rightarrow In the limit $m_q \rightarrow \infty$ the string cannot break (infinite energy)

Chiral symmetry

In the absence of quark masses the QCD Lagrangian splits into two independent quark sectors

 $\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{gluons}} + i\bar{q}_L\gamma^\mu D_\mu q_L + i\bar{q}_R\gamma^\mu D_\mu q_R$

 \Rightarrow For two flavors $(i = u, d) \mathcal{L}_{QCD}$ is symmetric under $SU(2)_L \times SU(2)_R$

 \Rightarrow However, this symmetry is not observed

Solution: the vacuum $|0\rangle$ is not invariant

 $\langle 0|\bar{q}_L q_R|0\rangle \neq 0 \longrightarrow \text{chiral condensate}$

Symmetry breaking

Golstone's theorem \implies massless bosons associated: pions

So, properties of the QCD vacuum

- Confinement
- Chiral symmetry breaking

Is there a regime where these symmetries are restored?

QCD phase diagram

Free quarks and gluons?

Asymptotic freedom: Quarks and gluons interact weakly at

- @ Small distances increase density
- @ Large momentum increase temperatures

Needs large energy density deposited in a macroscopic (in QCD scales) region of space

Real data - event from first collisions recorded with by in 2010

HIC: some history

Landau (1953) applies fluid dynamics to hadronic collisions

Assumptions

Large amount of the energy deposited in a short time in a small region of space (little fireball) with the size of a Lorentz-contracted nucleus

□ Created matter treated as a relativistic (classical) fluid

Equation of state $P = \epsilon/3$

□ The hydrodynamical flow stops when the mean free path becomes of the order of the size of the system: freeze out

Hydrodynamics is nowadays the main tool to check the degree of thermalization in HIC

Lodynamics Ont =0 The (e+p) utu - pght Viscosity consections (+ Equation of State)

Does not address the question on how thermal equilibrium is reached

- Far from equilibrium initial state needs to equilibrate fast (less than I fm)

Most of the theoretical progress in the last years

- Viscosity corrections
- Fluctuations in initial conditions

The golden measurement

Anisotropies in the initial spacial distributions - <u>geometry</u> - translate into anisotropies in the momentum distributions

Impossible with instantaneous, point-like, interactions unless initial- or final-state correlations

Viscosity from data

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

[Cabibbo and Parisi 1975]

⇒ First lattice calculation found a first order phase transition

First lattice calculation found a first order phase transition
Including quark masses probably not a first order

First lattice calculation found a first order phase transition
Including quark masses probably not a first order
Present status: several different phases found.

First lattice calculation found a first order phase transition
Including quark masses probably not a first order
Present status: several different phases found.

QCD thermodynamics I

In the grand canonical ensemble, the thermodynamical properties are determined by the (grand) partition function

$$Z(T, V, \mu_i) = \operatorname{Tr} \exp\{-\frac{1}{T}(H - \sum_i \mu_i N_i)\}$$

where $k_B = 1$, *H* is the Hamiltonian and N_i and μ_i are conserved number operators and their corresponding chemical potentials.

 \Rightarrow The different thermodynamical quantities can be obtained from Z

$$P = T \frac{\partial \ln Z}{\partial V}, \quad S = \frac{\partial (T \ln Z)}{\partial T}, \quad N_i = T \frac{\partial \ln Z}{\partial \mu_i}$$

 \Rightarrow Expectation values can be computed as

$$\langle \mathcal{O} \rangle = \frac{\text{Tr}\mathcal{O}\exp\{-\frac{1}{T}(H - \sum_{i} \mu_{i} N_{i})\}}{\text{Tr}\exp\{-\frac{1}{T}(H - \sum_{i} \mu_{i} N_{i})\}}$$

QCD thermodynamics II

In order to obtain Z for a field theory with Lagrangian \mathcal{L} one normally makes the change -it = 1/T, with this, the action

$$iS \equiv i \int dt \mathcal{L} \longrightarrow S = -\int_0^{1/T} d\tau \mathcal{L}_E$$

and the grand canonical partition function can be written (for QCD) as

$$Z(T, V, \mu) = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A^{\mu} \exp\{-\int_0^{1/T} dx_0 \int_V d^3x(\mathcal{L}_E - \mu\mathcal{N})\},\$$

where $\mathcal{N} \equiv \bar{\psi} \gamma_0 \psi$ is the number density operator associated to the conserved net quark (baryon) number.

Additionally, (anti)periodic boundary conditions in [0, 1/T] are imposed for bosons (fermions)

$$A^{\mu}(0, \mathbf{x}) = A^{\mu}(1/T, \mathbf{x}), \ \psi(0, \mathbf{x}) = -\psi(1/T, \mathbf{x})$$

QCD thermodynamics III

In order to solve these equations

- \Rightarrow Perturbative expansion
 - $\sim \alpha_S(T)$ small for large $T \longrightarrow$ bad convergence, but some results obtained.

\Rightarrow Lattice QCD

- **Discretization in** (1/T, V) **space**
- Subscriptions to Z are computed by random configurations of fields in the lattice
- \rightarrow Most of the results for $\mu = 0$

First example: EoS

Naïve estimation:Let's fix $\mu = 0$, the pressure of an ideal gas (of massless particles) is proportional to the number of d.o.f: $P \propto NT^4$

 $P_{\pi} \propto 3 \times T^4; \qquad P_{QGP} \propto (2 \times 2 \times 3 + 2 \times 8) \times T^4$

quarks

gluons

[notice that proportionality factors are different, Fermi/Bose-Einstein statistics]

Perturbative calculations

Different orders in PT compared to lattice results

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

First order: discontinuity in the order parameter

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

Second order: discontinuity in the derivative

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

Cross-over: continuous function

QCD order parameters I

TAE 2018 - Benasque - Heavy Ions

QCD order parameters II

<u>Confinement</u>: for $m_q \rightarrow \infty$ the order parameter is the potential

However...

When masses are taken into account the potential is screened even below $T_{c} \end{tabular}$

Light $\bar{q}q$ pair creation breaks the string

Physical quark masses

For physical masses, all results indicate a cross over at present

Quarkonia spectral functions

Naively, all bound states are destroyed in deconfinement. Quarkonia should then disappear in HIC [Matsui, Satz 1986]. The situation is, however, more complicated

A possible picture of hot QCD

[Taken from Hatsuda, J/Ψ workshop BNL, May 2006]

Conclusions - lecture 1

QCD has a rich dynamical content

- Confinement and chiral symmetry breaking in vacuum
- New phases of matter at high energies/densities
- Quark gluon plasma universal form of matter at high enough energies

Heavy ion collisions are the experimental tools

However, QGP is only one of the manifestations of a **wider and richer accessible physics**

QCD is the only sector in the Standard Model where studies of collectivity at the fundamental level are experimentally possible