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Outline

p Jet algorithms

» How are jets made

p Jet substructure

» What’s inside them
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IRC safety

An observable is infrared and collinear safe if,
in the limit of a collinear splitting, or the emission of an
infinitely soft particle, the observable remains unchanged:
O(X;p1s- -y PnsPnt1 — 0) = O(X;p1, ..., py)
O(X;p1s--sPn || Pnt1) = O(X5p1, -+, P+ Pry1)

This property ensures cancellation of real and virtual divergences
in higher order calculations

If we wish to be able to calculate a jet rate in perturbative QCD
the jet algorithm that we use must be IRC safe:
soft emissions and collinear splittings must not change the hard jets
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Sterman-VWeinberg jets

The first rigorous definition of an
infrared and collinear safe jet in
QCD is due to Sterman and Weinberg,
Phys. Rev. Lett. 39, 1436 (1977):

To study jets, we consider the partial cpfss section
ofE,B,R,¢,8) for ete” hadren production events, in which all but
a fraction e <<]1 of the total e+e- enerqgy E is emitted within
some pair of oppositely directed cones of half-angle § << 11,
lying within two fixed cones of solid angle @ (with né? <<Q << 1)

at an angle & to the e+e' beam line, We expect this to be measur-

S~y

Calculable in pQCD (here is the result) but notice the soft and collinear large logs

0(E,8.0,e,8) = (do/dQ) 0 l'(gé/3ﬂz){3£n6+.4ﬂ.n6 in 2¢ +l'—’--5}
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Why jets

A jet is something that happens

in high energy events:
a collimated bunch of hadrons
flying roughly in the
same direction

We could eyeball the collimated
bunches, but it becomes impractical
with millions of events

The classification of particles into jets is best done
using a clustering algorithm
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quark

Why do jets happen?
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QCD predictions

Taming reality

N
*NY

@."’"5

Real data

One purpose of a ‘jet clustering’ algorithm is to
reduce the complexity of the final state, simplifying many hadrons
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to simpler objects that one can hope to calculate
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Jets

Jets can serve two purposes

» They can be observables, that one can measure
and calculate

» They can be tools, that one can employ to extract
specific properties of the final state

Different clustering algorithms have different properties and characteristics
that can make them more or less appropriate for each of these tasks
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Jet clustering algorithm

A jet algorithm maps the momenta of the final state particles
into the momenta of a certain number of jets:

{p} —— i}

particles, jets
4-momenta,

calorimeter towers, ....

Most algorithms contain a resolution parameter, R,
which controls the extension of the jet
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Jet definitions as projections

NN g N

LO partons NLO partons parton shower hadron level
Jet | Def" Jet | Def" Jet | Def" Jet | Def"
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

VNN

Projection to jets should be resilient to QCD effects

NB: projections are NOT unique:
a jet is NOT EQUIVALENT to a parton
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Reconstructing jets is an ambiguous task

2 Clear |ets 3 jets?
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Reconstructing jets is an ambiguous task

2 Clear jets 3 jets?
or 4 jets?
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Reconstructing jets must respect rules

Collinear Safe Collinear Unsafe
| jet 1 | | jet 1 | | jet 1 | | jet1nI
jet 2
og X (~) Og X (+%) g X (—o0) og X (+0)
Infinities cancel Infinities do not cancel

Perturbative calculations of jet observable will
only be possible with collinear (and infrared) safe
jet definitions
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Two main classes of jet algorithms

» Sequential recombination algorithms
Bottom-up approach: combine particles starting from closest ones
How! Choose a distance measure, iterate recombination until

few objects left, call them jets
Works because of mapping closeness < QCD divergence

Examples: Jade, ki, Cambridge/Aachen, anti-ks, .....
Usually trivially made IRC safe, but their
algorithmic complexity scales like N3

» Cone algorithms

Top-down approach: find coarse regions of energy flow.

How! Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Works because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint, ATLAS cone, CMS cone, SISCone......

Can be programmed to be fairly fast, at the
price of being complex and IRC unsafe
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A little history

» Cone-type jets were introduced first in QCD in the 1970s
(Sterman-Weinberg ’77)

p In the 1980s cone-type jets were adapted for use in hadron
colliders (SppS, Tevatron...) = iterative cone algorithms

» LEP was a golden era for jets: new algorithms and many

relevant calculations during the 1990s
» Introduction of the ‘theory-friendly’ k; algorithm

p sequential recombination type algorithm, IRC safe
» it allows for all order resummation of jet rates

» Several accurate calculations in perturbative QCD of jet
properties: rates, jet mass, thrust, ....
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e*e k¢ (Durham) algorithm

[Catani, Dokshitzer, Olsson, Turnock, Webber '91]

2min(E?, E?)(1 — cos6;;
Distance: Yij = min(£7, é)2( cos 0;;)

In the collinear limit, the numerator reduces to the relative transverse
momentum (squared) of the two particles, hence the name of the algorithm

» Find the minimum ymin of all yj;

» If ymin is below some jet resolution threshold ycu, recombine i and |
into a single new particle (‘pseudojet’), and repeat

» If NO Ymin < ycucare left, all remaining particles are jets
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e*e” k¢ (Durham) algorithm in action

g
Qo !
€, OPAL (91 GeV) .
e 2-jet
= Durham J
z |
0.8
2 e Characterise events
06 2l in terms of number of jets
© S-jet '
et (as a function of ycut)
04 HERWIG
'\\\\3-jet
02 A \

Resummed calculations for distributions of yc.. doable with the k;algorithm
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e*e” k¢ (Durham) algorithm v. QCD

ke is a sequential recombination type algorithm

One key feature of the k; de—)z'j g
algorithm is its relation to the ~

structure of QCD divergences: dEzdezg mln(Eia EJ)QZJ

The yjj distance is the inverse of the emission probability

» The k¢ algorithm roughly inverts the QCD branching sequence
(the pair which is recombined first is the one with the largest
probability to have branched)

» The history of successive clusterings has physical meaning
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hadron-collider k: algorithm

Two parameters, R and pimin
(These are the two parameters in essentially every widely
used hadron-collider jet algorithm)

AR?,
R?

AR = (y; — y;)* + (6 — ;)

dij = min(p?iap%j)

Sequential recombination algorithm

1. Find smallest of dj;, dis
2. It ij, recombine them
3. It iB, call i a jet and remove from list of particles

4. repeat from step 1 until no particles left
P P P Inclusive k: algorithm

Only use jets with p: > pr,min S.D. Ellis & Soper, 1993
Catani, Dokshitzer, Seymour & Webber, 1993

Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 16}



The kcalgorithm and its siblings

AyQ i Ang

: 2p  2p _ 2D

di] - mln(pti 7ptj ) R2 dZB — Py
p — I kt algorlthm S. Catani,Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187
S.D. Ellis and D.E. Soper, Phys.Rev. D48 (1993) 3160

0 Cambridge/Aachen algorithm
Y. Dokshitzer, G. Leder, S.Moretti and B. Webber, JHEP 08 (1997) 001
M.Wobisch and T.Wengler, hep-ph/9907280

P

p = -1 anti-k¢ algorithm MC, G. Salam and G. Soyez, arXiv:0802.1189

NB: in anti-kt pairs with a hard particle will cluster first: if no other
hard particles are close by, the algorithm will give perfect cones

Quite ironically, a sequential recombination algorithm is the ‘perfect’ cone algorithm
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IRC safety of generalised-k; algorithms

AyQ i Ang
R2

2D 2p)

: 2
d;j = min(py; , py; dip = Pi;

p>0
New soft particle (pc =0) means thatd @ 0 = clustered first, no effect on jets

New collinear particle (Ay?+A®? = 0) means thatd =& 0 = clustered first, no effect on jets

p=0
New soft particle (p: —0) can be new jet of zero momentum = no effect on hard jets

New collinear particle (Ay?+A®2 — 0) means thatd =& 0 = clustered first, no effect on jets

p<o
New soft particle (pc #0) means d # o0 = clustered last or new zero-jet, no effect on hard jets

New collinear particle (Ay?+A®2 — 0) means thatd =& 0 = clustered first, no effect on jets
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IRC safe algorithms

SR
: Catani et al ‘91
I(t dj = mln(Ptiz,Ptjz)ARijz/P\2 Eﬁijnsloepei 93 NInN
hierarchical in rel P, ’
Cambridge/ °R
amoridge d- = AR:2/R2 Dokshitzer et al ‘97 NInN
Aach S = Wengler, Wobish ‘98 n
achen hierarchical in angle

SR
anti-l /i = min(ps?,pg?)AR;

gives perfectly conical hard jets

2102 MC, Salam, Soyez *08 32
/R (Delsart, Loch) N

Seedless iterative cone
SISCone with split-merge Salam, Soyez ‘07 |N2InN

gives ‘economical’ jets

‘'second-generation’ algorithms
All are available in Fast]et, http://fastjet.fr

(As well as many IRC unsafe ones)
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Anti-k: In action

2
Clustering grows g 1 AR g 1
around hard cores Y max(p},pf;) R? )
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Anti-k: In action

2
Clustering grows g 1 AR7; i 1
[/ ’ 1D —
around hard cores 7 max(p},p7;) R? P2 )

anti-kt, d = 1.00e-100
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Anti-k: In action

2

Clustering grows d.. — 1 ARiJ dig = i
1] T y ( -

around hard cores 7 max(p7;,p;;) R? P, )
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Anti-k: In action

. 2
Clustering grows - AR, L 1
W= 2 2 2 7 b — 9
around hard cores max(p;, Py;) L2 .
v

anti-kt, d = 1.00e+100

Anti-k: gives
circular jets
(“cone-like”
N in a way that’s
-~ N infrared safe

Lo
A o,

D
AR
m e
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Example of jet observable

d’c/dp_dy (pb/GeV)
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Jet substructure

First studied by Mike Seymour in the early “90s

Topic revived about 10 years
ago in order to study boosted objects

&
A

atteo Cacciari - LPTHE 2018 Taller de Altas Energias - Benasque 4]



Why boosted objects

/

4 7

Heavy particle X at rest Boosted heavy particle X
Easy to resolve jets and Cross section very much
calculate invariant mass, reduced, but acceptance
but signal very likely better and some
swamped by background backgrounds smaller/

(eg H—bb v.tt =WbWhb) reducible
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G. Salam
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Mass of a single jet

Summing ‘signal’ and ‘background’ (with appropriate cross sections)

shows how much the background dominates

0.016 0.016

0.014 qq —> qq events 0.014 + qq — qq + Wj mixture
- 0012 | - 0012 |
3 >
o 0.0t Pt jets > 700 GeV o 001 Py jets > 700 GeV
£ 0.008 | anti-k, R =0.7 £ 0.008 | anti-k, R=0.7
S S
Z  0.006 | Z 0006 |
€ 0004 | € 0004}

0.002 | 0.002 |

0 * ' 1 0 : ; :
0 50 100 150 200 0 50 100 150
Migy [GeV] Migy [GeV]

Background only

Signal + background
Practically identical

This means that one can’t rely on the invariant mass only.
An appropriate strategy must be found to reduce the background

Matteo Cacciari - LPTHE

and enhance the signal
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How to tell this

Decay of a heavy
(boosted) object

Matteo Cacciari - LPTHE

/ from this
X
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Tagging

Light parton
fragmentation
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Tagging and Grooming

» The substructure of a jet can be exploited to

» tag a particular structure inside the jet, i.e. a massive
barticle

» First examples: Higgs (2-prong decay), top (3-prong decay)

» remove background contamination from the jet or its
components, while keeping the bulk of the perturbative
radiation (often generically denoted as grooming)

» First examples: filtering, trimming, pruning
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Why substructure
Scales:m ~ 100 GeV, p. ~ 500 GeV

(e.g. electroweak particle from decay of ~ | TeV BSM particle)

-~
\

-~

1 - v
boosted X __ , single psm 1
= | Jet ™ pt/z(1 - 2)

—_— /7\?)\\\\ //

» need small R (< 2m/p; ~ 0.4) to resolve two prongs
» need large R (>~ 3m/p; ~ 0.6) to cluster into a single jet

Possible strategies

» Use large R, get a single jet : background large

» Use small R, resolve the jets : what is the right scale?
p Also: small jets lead to huge combinatorial issues

Let an algorithm find the ‘right’ substructure
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What jets to use for substructure?

Different jet algorithms will give different ‘pictures’
of what’s inside a jet
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Distance

Dendrogram

Used to represent graphically the sequence of clustering steps

in a sequential recombination algorithm

Internal node

1 2 l Distance between two objects

¢ 1 4 is given by the height of the
3 R B (S lowest internal node that they
RS iy €N share.

4) A E

{/ &8 -

gfi_ i) fege
3 4 5

Order of clustering here is [,2,3,4

The clustering sequence is 4-5 (1), 2-3 (2),23-45 (3), 1-2345 (4)

Matteo Cacciari - LPTHE
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anti-kt
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|dentifying jet substructure: try out anti-k;
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anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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kinematic variables of the partons in
the jet (e.g. z).

Anti-k; gradually makes its way
through the secondary blob — no
clear identification of substructure
associated with 2nd parton.



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

dmin is diB = 0.00147749 the “blobs o.f energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 | the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10 -
0 : —
0 1 2 3 4 y



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10
0 v —
0 1 2 3 4 y



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

dmin is diB = 1.9¢ the “blobs o.f energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 | the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10 -
0 : —
0 1 2 3 4 y



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10
0 v —i
0 1 2 3 4 y
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|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm . ) o _
the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
40 the jet (e.g. z).
30 -
20 -
10
0 -
0 1 2 3 4



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

dmin is dij = 1.48276 _
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' ’—j k: clusters soft “junk” early on in the
30 1 7 clustering
20 -
10 -
0 -

0 1 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
40 | the jet (e.g. z).
' k: clusters soft “junk” early on in the
30 1 7 clustering
20 -
10 -
O _I-I T T L
0 1 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

dmin is dij = 2.34277 _
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' ’—j ﬁ k: clusters soft “junk” early on in the
30 1 7 clustering
20 -
10 -
0 —l—I e |—,-|_—L

0 1 2 3 4



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

=

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

How well can an algorithm identify
dmin is dif = 717.825 the “blobs” of energy inside a jet that
p/GeV come from different partons?

ki algorithm

50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' | —\ k: clusters soft “junk” early on in the
ol | T clustering

Its last step is to merge two hard

20 - : . : :
pieces. Easily undone to identify un-
derlying kinematics

10

0 v
0 | 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the

kinematic variables of the partons in

40 | the jet (e.g. z).

' —\ k: clusters soft “junk” early on in the
ol | H‘ T clustering

Its last step is to merge two hard

20 + . : . .
pieces. Easily undone to identify un-
derlying kinematics

10

0 .
0 1 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify
dmin s diB = 11430 the “blobs” of energy inside a jet that
p/GeV come from different partons?

ki algorithm

50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' —\ k: clusters soft “junk” early on in the
ol | H‘ T clustering

Its last step is to merge two hard

20 - : . : :
pieces. Easily undone to identify un-
derlying kinematics

10

0 v
0 | 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the

kinematic variables of the partons in

40 | the jet (e.g. z).

' —\ k: clusters soft “junk” early on in the
ol | H‘ T clustering

Its last step is to merge two hard

20 - . . . .
pieces. Easily undone to identify un-
derlying kinematics

10
This meant it was the first algorithm

0 to be used for jet substructure.
0 1 2 3 4 Seymour '93

Butterworth, Cox & Forshaw '02
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Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40 -
30 -
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR_{ij} = 0.142857 _
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40 -
30 -
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR {ij} = 0.214286 ]
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40 |
30: ]
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR_{ij} = 0.415037 _
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40
0. ]
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR_{ij} = 0.686928 _
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 - C/A identifies two hard blobs with
limited soft contamination

40 -
30 + ’_ﬁ
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
beltaR (i} = 1.20645 the “blobs” of energy inside a jet that
p/GeV B come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

Cambridge/Aachen algorithm

50 -

40 -

30: : KN

20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins
them

40

30 - V1

20 -

10 -

0 42 _ 1

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

DeltaR {ij} = 1.93202 _
p/GeV come from different partons?
50 . C/A identifies two hard blobs with
limited soft contamination, joins
40 them, and then adds in remaining
| soft junk
W T
20 -
10 -
0 44 : L
0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

o T

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

DeltaR {ij} > 2 .
p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

W T

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

I e

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

DeltaR {ij} > 2 .
p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

W T

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 | C/A identifies two hard blobs with
limited soft contamination, joins
0. them, and then adds in remaining
soft junk

30 1 ‘ l—rq“ N The interesting substructure is buried
: inside the clustering sequence — it's
20 - less contamined by soft junk, but
needs to be pulled out with special

10 - techniques
Butterworth, Davison, Rubin & GPS '08
Kaplan, Schwartz, Reherman & Tweedie '08
0 0 1 5 3 ZLL Butterworth, Ellis, Rubin & GPS '09
y Ellis, Vermilion & Walsh '09

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Siide by Hierarchical substructure

Gavin Salam
anti-k; algorithm k: algorithm Cambridge/Aachen
p/GeV p/GeV p,/GeV

50 50 | 50 |

40 4 40 - 40 o
- ; ] ¥

30 | ] 0]l 30 | ‘ g |

20 20 1 20

10 10 10

A L 0 0 1
0 1 2 3 4 y 0 0 1 2 3 4 y

Undo the last
clustering step(s)

Matteo Cacciari - LPTHE 2018 Taller de Altas Energias - Benasque |04



The IRC safe algorithms

Speed Regularity contalr;Jantion Backreaction stiji:s::izcchtiji
kt -~ AN AN o &
Cambridge -~ ~ »»
[Aachen
anti-ke ®/ X
SISCone - - X

Array of tools with different characteristics.
Pick the right one for the job
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QCD v. heavy decay

A possible approach for reducing the QCD background is to identify the two
prongs of the heavy particle decay, and put a cut on their momentum fraction

1 1
— (7, — Tzzgﬁr

Signal: Background:
1+ 22 1+ (1—2)?
P ~ 1 ~ ~
(2) P(2) ~ T P(z) -
Will split mainly Will split mainly
symmetrically asymmetrically

Potential tagger: asymmetric splitting

: 2 -
 Possibly o 5 AR min(pu, pry)
implemented Yy = mzn(ptiaptj)
via a cut on max (pti’ ptj)

m?2
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Splittings and distances

e pi = (1-Z)p:

Quasi-collinear
splitting (pg < pti) m D = ZP
tj — ZPt

Invariant mass: m2 ~ PtiDt AR,LQ] — (1 — Z)Zpt AR2
(Pt1<Ptl) 2 2 2 < 2
ke distance: d AR 1 ™
— Z

For a given mass, the background will have smaller distance dj; than the signal,
i.e. it will tend to cluster earlier in the k; algorithm

Potential tagger: last clustering in k. algorithm

This is where the hierarchy of the k; algorithm becomes relevant.
QCD radiation is clustered first, and only at the end the symmetric,
large-angle splittings due to decays are reclustered

Matteo Cacciari - LPTHE 2018 Taller de Altas Energias - Benasque 107



»—zH—-wbb 1 he BDRS tagger/groomer

Butterworth, Davison, Rubin, Salam, 2008

mass drop

» A two-prong tagger/groomer for boosted Higgs, which
» Uses the Cambridge/Aachen algorithm (because it’s ‘physical’)

» Employs a Mass=-Drop condition, as well as an asymmetry cut to
find the relevant splitting (i.e.‘tag’ the heavy particle)

» Includes a post-processing step, using ‘filtering’ (introduced in the same paper)
to clean as much as possible the resulting jets of UE contamination
(‘grooming’)
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p 2ZH — vvbb

BDRS: tagging

Matteo Cacciari - LPTHE

Hardest jet, pt=246.211 m=150.465
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2018 Taller de Altas Energias - Benasque

Start with the
hardest jet

se C/A with
arge R=1.2

= 150 GeV

109



BDRS: tagging

VVbb

Drop step 1;

Delta R = 1.03129; pt1=243.291 m1=139.158; pt2=3.944 m2=5.24475

p, [GeV]

90
T
70
605
50—
40

s
e

e —
]

-
e B

-~

o

b
o i -
T 6
————

y
(2 2
min\P1, Pe2

Matteo Cacciari - LPTHE

2

> Koor 2
J

2018 Taller de Altas Energias - Benasque

ARZ,

Undo last step of
clustering

Check how the mass splits
between the two subjets
mi = 139 GeV,m; =5 GeV
and how asymmetric the
splitting is

< Yeut repeat
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BDRS: tagging
p —~*/ZH — vvbb

Drop step 2; Delta R = 0.87699; pt1=146.636 m1=52.3423; pt2=102.622 m2=27.7967

p, [GeV]

60—
50

40—
30
20

cmmaneet ]
ey
= -
—— .
-~ S

— 3
N

m| = 52 GeV, m; = 28 GeV

~oo o |Stop when a large mass

drop is observed
(and recombine these
two jets)

4

2

[NB. Parameters used g = 0.67 and ycu: = 0.09]
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oz v BDRS: filtering

Drop step 2;
p step 2; Delta R = 0.87699; pt1=146.636 m1=52.3423; pt2=102.622 m2=27.7967

Start with the
recombined jet
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2 v BDRS: filtering

Rgcluster the
contituents with R

- o
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oz v BDRS: filtering

t] - 2' l

Only keep the nft
hardest jets
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op =ZH — VWbb Visualisation of BDRS

Butterworth, Davison, Rubin, Salam, 2008

g —

Undo the clustering into subjets, Re-cluster with smaller R,
Cluster with a large R until a large asymmetry/mass drop and keep only 3 hardest
is observed: tagging step jets: grooming step
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Conclusion part |

» A number of different IRC-safe jet algorithms exist
» They all try to be good proxies for hard partons, but they have
different characteristics, especially with respect to soft particles

» Jets from all algorithms inevitably suffer from pileup contamination
» Techniques exist to subtract it, either at jet-level, or at particle-level

» Both the jet algorithms and many pileup subtraction techniques are
packaged aither in Fast]Jet or in fjcontrib contributions
» Use of standard algorithms and packages (either directly or
through interfaces) should be privileged, as it ensures
reproducibility

http://fastjet.fr http://fastjet.hepforge.org/contrib/
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Conclusions part 2

The big news of the past few years has been the
emergence of jet-based taggers and groomers

» They have proven their worth in ‘Standard Model’ analyses

» They are being implemented in BSM searches
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