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Why lectures on machine learning?

because

it is an essential set of algorithms for building models in science,
fast development of new tools and algorithms in the past years,
nowadays it is a requirement in experimental and theoretical physics,

large interest from the HEP community: IML, conferences, grants.
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What expect from these lectures?

e Learn the basis of machine learning techniques.

e Learn when and how to apply machine learning algorithms.



The talk is divided in three lectures:

Lecture 1 (today) Lecture 2 (tomorrow)
e Artificial intelligence e Parameter learning
e Machine learning e Non-linear models
e Model representation e Beyond neural networks
e Metrics e Clustering

Lecture 3 (tomorrow)

e Hyperparameter tune
o Cross-validation

e ML in practice

e The PDF case study



Some references

Books:
e The elements of statistical learning, T. Hastie, R.
Tibshirani, J. Friedman.
e An introduction to statistical learning, G. James, SISl
D. Witten, T. Hastie, R. Tibshirani.

e Deep learning, |. Goodfellow, Y. Bengio, A.

Courville.
Online resources: ey

e HEP-ML:
https://github.com/iml-wg/HEP-ML-Resources

e Tensorflow: http://tensorflow.org

e Keras: http://keras.io

e Scikit: http://scikit-learn.org


https://github.com/iml-wg/HEP-ML-Resources
http://tensorflow.org
http://keras.io
http://scikit-learn.org
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Defining A.l.

Artificial intelligence (A.l.) is the science and engineering of making
intelligent machines. (John McCarthy ‘56)
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Artificial intelligence (A.l.) is the science and engineering of making
intelligent machines. (John McCarthy ‘56)

Machine learning

Natural language processing

Artificial intelligence

Computer vision
Planning
Robotics

A.l. consist in the development of computer systems to perform tasks
commonly associated with intelligence, such as learning. 6



A.l. and humans

There are two categories of A.l. tasks:

e abstract and formal: easy for computers but difficult for humans,
e.g. play chess (IBM's Deep Blue 1997).
— Knowledge-based approach to artificial intelligence.




A.l. and humans

There are two categories of A.l. tasks:

e abstract and formal: easy for computers but difficult for humans,
e.g. play chess (IBM's Deep Blue 1997).
— Knowledge-based approach to artificial intelligence.

e intuitive for humans but hard to describe formally:
e.g. recognizing faces in images or spoken words.
— Concept capture and generalization
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A.l. technologies

Historically, the knowledge-based approach has not led to a major success
with intuitive tasks for humans, because:

e requires human supervision and hard-coded logical inference rules.

e lacks of representation learning ability.



A.l. technologies

Historically, the knowledge-based approach has not led to a major success
with intuitive tasks for humans, because:

e requires human supervision and hard-coded logical inference rules.

e lacks of representation learning ability.

Solution: m
The A.l. system needs to acquire its own knowledge. O
This capability is known as machine learning (ML).
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— e.g. write a program which learns the task.



Venn diagram for A.l.

Artificial intelligence

e.g. Knowledge bases

Machine learning

e.g. Logistic regression

Representation learning

e.g. Autoencoders

Deep learning

e.g. MLPs

When a representation learning is difficult, ML provides deep learning
techniques which allow the computer to build complex concepts out of
simpler concepts, e.g. artificial neural networks (MLP).



Machine Learning



Machine learning definition

Definition from A. Samuel in 1959:
Field of study that gives computers the ability to learn without being
explicitly programmed.

10



Machine learning definition

Definition from A. Samuel in 1959:
Field of study that gives computers the ability to learn without being
explicitly programmed.

Definition from T. Mitchell in 1998:

A computer program is said to learn from experience E with respect to
some class of tasks T" and performance measure P, if its performance on
T, as measured by P, improves with experience F.

10



Machine learning examples

Thanks to work in A.l. and new capability for computers:

e Database mining:
e Search engines
e Spam filters
e Medical and biological records

11



Machine learnin amples

Thanks to work in A.l. and new capability for computers:

e Database mining:

e Search engines

e Spam filters

e Medical and biological records
e Intuitive tasks for humans:

e Autonomous driving
e Natural language processing

Robotics (reinforcement learning)

Game playing (DQN algorithms)

11



Machine learning examples

Thanks to work in A.l. and new capability for computers:

e Database mining:
e Search engines
e Spam filters
e Medical and biological records

e Intuitive tasks for humans:

e Autonomous driving
e Natural language processing

Robotics (reinforcement learning)

Game playing (DQN algorithms)

11



Machine learnin amples

Thanks to work in A.l. and new capability for computers:

e Database mining:

e Search engines

e Spam filters

e Medical and biological records
o Intuitive tasks for humans:

e Autonomous driving
e Natural language processing

Robotics (reinforcement learning)

Game playing (DQN algorithms)
e Human learning:

e Concept/human recognition

e Computer vision
e Product recommendation

11



ML applications in HEP

12



ML in experimental HEP

There are many applications in experimental HEP involving the LHC
measurements, including the Higgs discovery, such as:

e Tracking e Particle identification

e Fast Simulation e Event filtering

13



ML in experimental HEP

Some remarkable examples are:

e Signal-background detection:
Decision trees, artificial neural networks, support vector machines.
e Jet discrimination:

Deep learning imaging techniques via convolutional neural networks.
e HEP detector simulation:

Generative adversarial networks, e.g. LAGAN and CaloGAN.
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ML in theoretical HEP

Machine Learning in HEP-TH

Level 0
Computational techniques and tools

Level 1
Applications of modern ML techniques

1
1
}
Advanced numerical methods :
and applications | Supervised learning: regression
1 and classification

MC event generators and related |
tools 1 . .
. Uncertainty propagation

Higher Orders computational \

I
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1

1

methods " X " X
Experimental” mathematics

Computer algebra techniques
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ML in theoretical HEP

m
Voo

xf(xp?=10° Gev?) |

e Supervised learning: 08
e The structure of the proton at the LHC

e parton distribution functions

e Theoretical prediction and combination osf
e Monte Carlo reweighting techniques N
e neural network Sudakov w0 1
e BSM searches and exclusion limits ==
e Unsupervised learning: ﬂ
e Clustering and compression }
e PDF4LHC15 recommendation g

e Density estimation and anomaly detection

:
e Monte Carlo sampling
0
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Machine learning algorithms

Machine learning algorithms: Supervised leaming

e Supervised learning:
regression, classification, ...

Training Data Set
Desired Output

Labels are known ~
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Machine learning algorithms

Machine learning algorithms: U Snerisedlioaing

e Supervised learning:
regression, classification, ...

e Unsupervised learning:
clustering, dim-reduction, ...

No Training Data Set

Discover
Interpretation
from Features
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~ o @ Algorithm
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Machine learning algorithms

Reinforcement learning

I Input Data |

Machine learning algorithms:

e Supervised learning:

regression, classification, ...

e Unsupervised learning:
clustering, dim-reduction, ...

Best Action Reward

e Reinforcement learning:

real-time decisions, ...

Algorithm

| Output I
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Machine learning algorithms

Naive Bayes

Averaged One-Dependence Estimators (AODE)
Bayesian Belief Nework (BBN)
Gaussian Naive Bayes
Muttinomial Naive Bayes

Deep Boltzmann Machine (DBM)

Deep Belief Networks (DEN) |
PR | Deep Learning
Convolutional Neural Network (CNN) - P-roartind

Bayesian (

\_ Bayesian Network (BN)

Stacked Auto-Encoders \

Random Forest \

Classification and Regression Tree (CART)
Iterative Dichotomiser 3 (ID3)

c4.5
Cs.0

Gradient Boosting Machines (GBM)

Boosting |

Bootstrapped Aggregation (Bagging) l\ Ensemble

Decision Tree

AdaBoost
Stacked Generalization (Blending) )|
Gradient Boosted Regression Trees (GERT) /

Chi-squared Automatic Interaction Detection (CHAID)
Decision Stump

[/ |\_Conditional Decision Trees
v [/ \_Ms
Radial Basis Function Network (RBFN) . .
-\ \ / Principal Component Analysis (PCA
Perceptron_| \ |/ T T ——
——— | Neural Networks \ /
Back-Propagation

Partial Least Squares Regression (PLSR
sammon Mapping

Hopfield Nework

Multidimensional Scaling (MDS)
Ridge Regression
Least Absolute Shrinkage and Selection Operator (LASSO) |

Projection Pursuit

~ /
ElasticNet

Principal Component Regression (PCR)
Dimensionality Red uction
Partial Least Squares Discriminant Analysis
Least Angle Regression (LARS)

Mixture Discriminant Analysis (MDA)

Cubist / \
One Rule (OneR) | / \
R TR Rule System /|
ZeroRule ZeroR) ¢~ \
Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

Quadratic Discriminant Analysis (QDA)

Regularized Discriminant Analysis (RDA)

Flexible Discriminant Analysis (FDA)
Linear Regression

Ordinary Least Squares Regression (OLSR) /

_Linear Discriminant Analysis (LDA)

\ k-Nearest Neighbour (kNN)
| / Learning Vector Quantization (LVQ)

Stepwise Regression | / v\ e ———

—— | Regression / 4 Self-Organizing Map (SOM
Multivariate Adaptive Regression Splines (MARS) \ T —

\_ Locally Weighted Learning (LWL)
Locally Estimated Scatterplot Smoothing (LOESS) e
S k-Means
Logistic Regression \ rr—

a [ k-Medians
lustering )———— —
I ey pectation Maximization

Hierarchical Clustering

More than 60 algorithms.
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Workflow in machine learning

The operative workflow in ML is summarized by the following steps:

Data

Cost function

Optimizer

The best model is then used to:

e supervised learning: make predictions for new observed data.

e unsupervised learning: extract features from the input data.

19



Models and metrics




Models and metrics

Optimizer

‘ Training —— Cross-validation —»-

20



Model representation in supervised learning

We define parametric and structure models for statistical inference:

e examples: linear models, neural networks, decision tree...

Data Set
for Training

\

Machine Learning
Algorithm

Estimated
w Model Prediction

e Given a training set of input-output pairs A = (z1,41),---, (Tn, Yn)-
e Find a model M which:

M(z) ~y
where x is the input vector and y discrete labels in classification and

real values in regression.
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Model representation in supervised learning

Examples of models:

— linear regression we define a vector € R"™ as input and predict the

value of a scalar y € R as its output:
gx) =wlz+b

where w € R"™ is a vector of parameters and b a constant.

22



Model representation in supervised learning

Examples of models:

— linear regression we define a vector € R"™ as input and predict the
value of a scalar y € R as its output:

gx) =wlz+b
where w € R"™ is a vector of parameters and b a constant.

— Generalized linear models are also available increasing the power of
linear models:
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Model representation in supervised learning

Examples of models:

— linear regression we define a vector € R"™ as input and predict the
value of a scalar y € R as its output:

gx) =wlz+b
where w € R"™ is a vector of parameters and b a constant.

— Generalized linear models are also available increasing the power of
linear models:

Linear 00 Quadratic oo
o

o
©

— Non-linear models: neural networks (talk later).

22



Model representat de-offs

However, the selection of the appropriate model comes with trade-offs:

e Prediction accuracy vs interpretability:

— e.g. linear model vs splines or neural networks.

A

Interpretability

@ Linear Regression

@ Decision Tree
@ K-Nearest Neighbors

@ Random Forest

@ Support Vector Machines

@ Neural Nets

-

Accuracy

23



Model representation trade-offs

However, the selection of the appropriate model comes with trade-offs:

e Prediction accuracy vs interpretability:
— e.g. linear model vs splines or neural networks.

e Optimal capacity/flexibility: number of parameters, architecture
— deal with overfitting, and underfitting situations

Underfitting Appropriate capacity Overfitting
ryd
= /< > =
° ®
Zg Ly Zy
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Assessing the model performance

How to check model performance?
— define metrics and statistical estimators for model performance.
Examples:

e Regression: cost / loss / error function,

e Classification: cost function, precision, accuracy, recall, ROC, AUC

24



Assessing the model performance - cost function

To access the model performance we define a cost function J(w) which
often measures the difference between the target and the model output.

In a optimization procedure, given a model ¢,,, we search for:

arg min J(w)
w

The mean square error (MSE) is the most commonly used for regression:

J(w) = =3 (i — o ()2

n-
i=1

n

a quadratic function and convex function in linear regression.

Linear regression example
3 T T

Optimization of w
T T T

T T

ain)

MSE(ts

Y10 05 00 05 10
x
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Assessing the model performance - cost function

Other cost functions are depending on the nature of the problem.

Some other examples:

P,

* e
ety et

e regression with uncertainties, chi-square:

n

T(w) = > (yi—fow(®:)) (07 )i (45— (25))

Gogi=ll

where:

e 0;; is the data covariance matrix.
e.g. for LHC data experimental statistical

and systematics correlations.
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Assessing the model performance - cost func

e logistic regression (binary classification): cross-entropy

n

Jw) =~ 3" yilog g @) + (1~ 1) lo8(1 — ()

i=1

where G, (x;) = 1/(1 + e’me’i).

Classification with TMVA (ROOT)
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Assessing the model performance - cost function

e density estimate / regression: negative log-likelihood:

J(w) = — Z log(fuw (x:))

—— Gaussian mixture pdf
0.08 —— RTBM model
0.07 Sampling N, = 10° 4

0.06
0.05

0.04

0.03

0.02

0.01

0.00

=20 -10 0 10 20 -6 -4 -2 0 2 4 6 000 025 050
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Assessing the model performance - cost function

e density estimate / regression: negative log-likelihood:

J(w) = — Z log(fuw (x:))

—— Gaussian mixture pdf
0.08 —— RTBM model
0.07 Sampling N, = 10° 4

0.06
0.05

0.04

0.03

0.02

0.01

0.00

=20 -10 0 10 20 -6 -4 -2 0 2 4 6 000 025 050

e Kullback-Leibler, RMSE, MAE, etc.

28



Training and test sets

Another common issue related to model capacity in supervised learning:

e The model should not learn noise from data.

e The model should be able to generalize its output to new samples.

29



Training and test sets

Another common issue related to model capacity in supervised learning:

e The model should not learn noise from data.

e The model should be able to generalize its output to new samples.
To observe this issue we split the input data in training and test sets:
e training set error, Jp,(w)

e test set/generalization error, Jrest(w)

Total number of examples

Training Set Test Set

29



Training and test sets

The test set is independent from the training set but follows the same
probability distribution.

Training Set _—’m—> Permanent model

Test Set 1 Prediction — Estimate performance

30



nce trade-off

From a practical point of view dividing the input data in training and test:

— - 'Training error
[Underfitting zone | Overfitting zone

—— Generalization error

Error

0 Optimal Capacity
Capacity

The training and test/generalization error conflict is known as
bias-variance trade-off.
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Bias-variance trade-off

Supposing we have model §j(x) determined from a training data set, and
considering as the true model

Y =y(X)+e withy(z) = E(Y|X = z),

where the noise ¢ has zero mean and constant variance.

32



Bias-variance trade-off

Supposing we have model §j(x) determined from a training data set, and
considering as the true model

Y =y(X)+e withy(z) = E(Y|X = z),

where the noise ¢ has zero mean and constant variance.

If we take (z0,y0) from the test set then:

E[(yo — 9(0))?] = (Bias[j(wo)])* + Var[g(x0)] + Var(e),

e Bias[j(zo)] = E[j(w0)] — y(x0)

o Var[j(zo)] = E[§(z0)?] — (E[i(x0)])”
So, the expectation averages over the variability of yo (bias) and the
variability in the training data.
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Bias-variance trade-off

If 4 increases flexibility, its variance increases and its biases decreases.

Choosing the flexibility based on average test error amounts to a
bias-variance trade-off:

e High Bias — underfitting:
erroneous assumptions in the learning algorithm.
e High Variance — overfitting:

erroneous sensitivity to small fluctuations (noise) in the training set.

Underfitting zone Overfitting zone

Generalization

€ITor

Variance

~) | e—
——-'-_-.‘T"---—--;

Ly
Optimal Capacity

capacity
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Bias-variance trade-off

More examples of bias-variance trade-off:

M « & — MSE

o o

o o

0 v |

R W\ osocodescoocococadb 2 |
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S 7 S
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o o
B T T T T T T T T
2 5 10 20 2 5 10 20 2 5 10 20

Flexibility Flexibility Flexibility
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Bias-variance trade off

Regularization techniques can be applied to modify the learning
algorithm and reduce its generalization error but not its training error.

For example, including the weight decay to the MSE cost function:

li — G (;)) +/\'wTw.

3

where X is a real number which express the preference for weights with
smaller squared L? norm.
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Solution for the bias-variance trade off

Tuning the hyperparameter A we can regularize a model without
modifying explicitly its capacity.

Underfitting Appropriate weight decay Overfitting
(Excessive \) (Medium \) (A=0)
°®
> —- > t=
o ®
z, ) z
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Solution for the bias-variance trade off

A common way to reduce the bias-variance trade-off and choose the
proper learning hyperparamters is to create a validation set that:

e not used by the training algorithm
e not used as test set

Total number of examples

Training Set m Test Set

e Training set: examples used for learning.

e Validation set: examples used to tune the hyperparameters.
e Test set: examples used only to access the performance.

Techniques are available to deal with data samples with large and small
number of examples. (talk later)
37



Assessing model performance for classification

In binary classification tasks we usually complement the cost function
with the accuracy metric defined as:

TP+ TN
TP+TN+FP+FN'

Accuracy =

Example:

True Positives (TP) False Positives (FP)
eg.8 eg.2

e Accuracy = 82%

False Negatives (FN)  True Negatives (TN)
eg. 4 e.g.20

38



Assessing model performance for classification

In binary classification tasks we usually complement the cost function
with the accuracy metric defined as:

TP+ TN
TP+TN+FP+FN'

Accuracy =

Example:

True Positives (TP) False Positives (FP)
eg.8 eg.2

e Accuracy = 82%

False Negatives (FN)  True Negatives (TN)
eg. 4 e.g.20

However accuracy does not represents the overall situation for skewed
classes, i.e. imbalance data set with large disparity, e.g. signal and
background.

In this cases we define precision and recall.
38



Assessing model performance for classification

Precision: proportion of correct positive identifications.

Recall: proportion of correct actual positives identifications.

Precisi TP Recall TP
eClsion = ———— ecall = ———
TCSIOn = T p T Fp’ TP+ FN

True Positives (TP) False Positives (FP)

— 0
s s e Accuracy = 82%

e Precision = 80%
False Negatives (FN)  True Negatives (TN)
0.4 eg.20 e Recall = 67%
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Assessing model performance for classification

Precision: proportion of correct positive identifications.

Recall: proportion of correct actual positives identifications.

Precisi TP 1 TP
3 = — ecall = ——————
recision TP , R TP+ FN

True Positives (TP) False Positives (FP)

— 0
s s e Accuracy = 82%

e Precision = 80%
False Negatives (FN)  True Negatives (TN)
0.4 eg.20 e Recall = 67%

Various metrics have been developed that rely on both precision and
recall, e.g. the F score:

Precision - Recall

=2 = 73%

Precision + Recall
39



Assessing

odel performance for classification

In a binary classification we can vary the probability threshold and define:

e the receiver operating characteristic curve (ROC curve) is a
metric which shows the relationship between correctly classified
positive cases, the true positive rate (TRP /recall) and the incorrectly
classified negative cases, false positive rate (FPR, (1-effectivity)).

08+

P FP
TPR = ——— FPR= ——
TP+ FN’ FP+TN

_ N

05 o4 05 06 07
FPR or (1 - specificity)
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Assessing model performance for classification

The area under the ROC curve (AUC) represents the probability that
classifier will rank a randomly chosen positive instance higher than a
randomly chosen negative one.

AUC provides an aggregate measure of performance across all possible
classification thresholds.

e AUC is 0 if predictions are 100% wrong
e AUC is 1 if all predictions are correct.

e AUC is scale-invariant and
classification-threshold-invariant.
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Summary




We have covered the following topics:

Motivation and overview of A.l.

Definition and overview of ML.

Model representation definition and trade-offs
e Learning metrics for accessing the model performance

Metrics for classification.
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