Stationary solutions in theories beyond GR

George Pappas

4th of June 2018, Benasque Numerical Relativity beyond General Relativity workshop

European Research Council

イロト イポト イヨト イヨト

Outline

Motivation GR Theories beyond GR Parametrised deviations from GR Conclusions

Motivation

Why theories beyond-GR? How to proceed?

GR

Brief outline

Theories beyond GR

What's out there? Scalar-tensor theories Quadratic gravity theories

Parametrised deviations from GR

Deformations of Kerr Designer metrics

Conclusions

イロン イヨン イヨン イヨン

æ

Why beyond-GR theories:

See morning talk by Thomas (Theoretical motivation for beyond-GR theories).

1 point to remember:

To test GR we also need solutions from theories other than GR in order to form a testbed.

2 approaches:

 \bullet Find solutions in specific modifications to GR and work on a case by case basis.

 \bullet Construct generic parametric deviations from known GR solutions, like the Kerr solution.

3 ways to proceed:

- Generate an analytic parameterised solution without approximations
- Employ some approximation scheme (slow rotation, small coupling)
- Numerical solution

소리가 소문가 소문가 소문가

э

The Einstein-Hilbert action in GR is $S = \frac{1}{16\pi} \int d^4x \sqrt{-g}R + S_m(g_{\mu\nu}, \psi)$, which results to the field equations $R_{ab} = 8\pi \left(T_{ab} - \frac{1}{2}g_{ab}T\right)$

Stationary spacetime: symmetry with respect to time translations and rotations (the spacetime admits a timelike, ξ^a , and a spacelike, η^a , killing vector). The line element for such a spacetime can be written as¹

 $ds^{2} = -e^{2\nu}dt^{2} + r^{2}\sin^{2}\theta B^{2}e^{-2\nu}(d\varphi - \omega dt)^{2} + e^{2(\zeta - \nu)}(dr^{2} + r^{2}d\theta^{2})$

This line element describes the spacetime of a rotating compact object. The field equations can be solved either for vacuum spacetimes (BH solutions) or spacetimes that have matter (NS solutions).

• In vacuum we have the well known BH solutions of the Kerr family (which can be extended to include electromagnetic fields as well).

• For NSs the full field equations can only be solved numerically.

¹E. M. Butterworth and J. R. Ipser, ApJ **204**, 200 (1976). < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The alternative is to employ the slow rotation Hartle-Thorne method.²

 $ds^{2} = -e^{\bar{\nu}}dt^{2} + e^{\lambda}dr^{2} + r^{2}\left[d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right] - 2\varepsilon(\Omega - \omega_{1})r^{2}\sin^{2}\theta d\varphi dt.$

where ε is a slow rotation small bookkeeping parameter. The first order correction ω_1 is given by the equation

 $\omega_1'' = \frac{4}{r} \left[\pi r^2 (\epsilon + p) e^{\lambda} - 1 \right] \omega_1' + 16\pi (\epsilon + p) e^{\lambda} \omega_1.$

• Finally there is a general algorithm for constructing any vacuum stationary axisymmetric space-time. Such a spacetime can be described by the Weyl-Papapetrou line element³,

 $ds^{2} = -f \left(dt - wd\varphi \right)^{2} + f^{-1} \left[e^{2\gamma} \left(d\rho^{2} + dz^{2} \right) + \rho^{2} d\varphi^{2} \right].$

By introducing the complex potential $\mathcal{E}(\rho, z) = f(\rho, z) + i\psi(\rho, z)^4$, the Einstein field equations take the form, $(Re(\mathcal{E}))\nabla^2 \mathcal{E} = \nabla \mathcal{E} \cdot \nabla \mathcal{E}$, where, $f = \xi^a \xi_a$ and ψ is the scalar twist, $\nabla_a \psi = \varepsilon_{abcd} \xi^b \nabla^c \xi^d$. By prescribing an Ernst potential \mathcal{E} one can calculate a vacuum GR solution.

 $^{^{2}}$ Hartle J. B., Astrophys.J. 150, 1005 (1967); Hartle J. B., Thorne K. S., ApJ **153**, 807 (1968)

³A. Papapetrou, Ann. Phys., **12**, 309 (1953).

What's out there? Scalar-tensor theories Quadratic gravity theories

A brief (incomplete) list of theories beyond GR.

- Scalar-tensor theories
- f(R) theories
- Quadratic gravity theories
 - Einstein-dilaton-Gauss-Bonnet (EdGB)
 - dynamical Chern-Simons (dCS)
- Lorentz-violating theories
- Massive gravity theories
- Theories with non-dynamical fields

・ロン ・回と ・ヨン ・ヨン

What's out there? Scalar-tensor theories Quadratic gravity theories

The Bergmann-Wagoner action for Scalar-Tensor theories is,

$$\mathcal{S} = \int d^4 x \sqrt{-\hat{g}} \left(arphi \hat{R} - rac{\omega(arphi)}{arphi} \hat{
abla}^\mu arphi \hat{
abla}_\mu arphi U(arphi)
ight) + rac{\mathcal{S}_{\mathsf{m}}(\hat{g}_{\mu
u},\psi)}{arphi}$$

In the Einstein frame it takes the form,

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-\tilde{g}} \left(\tilde{R} - 2\tilde{\nabla}^{\mu}\phi\tilde{\nabla}_{\mu}\phi - V(\phi) \right) + S_m(\hat{g}_{\mu\nu},\psi)$$

where φ is redefined to ϕ , $\hat{g}_{\mu\nu} = A^2(\phi)\tilde{g}_{\mu\nu}$, and $V(\phi) \equiv A^4(\phi)U(\varphi(\phi))$. Then the field equations take the form,

$$\tilde{R}_{ab} = 2\partial_a \phi \partial_b \phi + 8\pi \left(T_{ab} - \frac{1}{2} \tilde{g}_{ab} T \right) + 2V \tilde{g}_{ab}, \quad \tilde{g}^{ab} \tilde{\nabla}_a \tilde{\nabla}_b \phi = -4\pi \alpha(\phi) T + \frac{1}{4} \frac{dV}{d\phi}$$

These equations can be solved as in GR in vacuum or in the presence of matter.⁵ Since the actual physics is done in the Jordan frame (the particles follow the geodesics of the Jordan metric), one can return to that frame by the conformal transformation $\hat{g}_{\mu\nu} = A^2(\phi)\tilde{g}_{\mu\nu}$.

⁵D.D. Doneva, S.S. Yazadjiev, N. Stergioulas, K.D. Kokkotas, Phys. Rev. (D 88, (084060 (2013) + 🖹 -) 🤤 -) 🔍 🖓

• In the case of a massless scalar field ($V(\phi) = 0$), the vacuum field equations

$$ilde{R}_{ab} = 2\partial_a \phi \partial_b \phi, \quad ilde{g}^{ab} ilde{
abla}_a ilde{
abla}_b \phi = 0$$

can admit an Ernst formulation as in GR,⁶ having the metric,

$$ds^2 = -f \left(dt - wd\varphi \right)^2 + f^{-1} \left[e^{2\gamma} \left(d\rho^2 + dz^2 \right) + \rho^2 d\varphi^2
ight]$$

and the field equations, $(\operatorname{\it Re}(\mathcal{E})) \nabla^2 \mathcal{E} = \nabla \mathcal{E} \cdot \nabla \mathcal{E},$

with the addition of a Laplace equation for the scalar field, $\nabla^2\phi=$ 0, and a set of equations for the metric function γ of the Weyl-Papapetrou metric,

$$\frac{\partial \gamma}{\partial \rho} = \left(\frac{\partial \gamma}{\partial \rho}\right)_{\rm GR} + \rho \left[\left(\frac{\partial \phi}{\partial \rho}\right)^2 - \left(\frac{\partial \phi}{\partial z}\right)^2 \right], \\ \frac{\partial \gamma}{\partial z} = \left(\frac{\partial \gamma}{\partial z}\right)_{\rm GR} + 2\rho \left(\frac{\partial \phi}{\partial \rho}\right) \left(\frac{\partial \phi}{\partial z}\right),$$

Any vacuum stationary axisymmetric GR solution can be turned into a scalar-tensor solution with a massless scalar field.⁷

⁶GP, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)

⁷GP, MNRAS, 466, 4381 (2017)

Outline Motivation GR Scalar-tensor theories Theories beyond GR Quadratic gravity theories Conclusions

• In the case of a massive scalar field, one doesn't have the Ernst formulation, but can still do a fully numerical calculation,

• Or employ a HT-like slow rotation approximation, like in GR.⁸ The TOV equations then become (0th-order in the rotation),

$$\begin{split} M' &= 4\pi r \left(rA^4 \epsilon_0 + \frac{1}{2} (r - 2M) \phi_0'^2 + rV \right), \\ \nu' &= \frac{2 \left(4\pi r^3 \left(A^4 p_0 - V \right) + M \right)}{r(r - 2M)} + 4\pi r \left(\phi_0' \right)^2, \\ p' &= -(p_0 + \epsilon_0) \frac{1}{2} \nu' - \alpha \phi_0', \\ \phi_0'' &= \frac{2\phi_0' \left(r \left(2\pi r^2 \left(A^4 (\epsilon_0 - p_0) + 2V \right) - 1 \right) + M \right) + r^2 \left(A^3 A' (\epsilon_0 - 3p_0) + V' \right)}{r(r - 2M)}, \end{split}$$

and at 1st-order in the rotation,

$$\omega_1^{\prime\prime} = \frac{4\left(\pi A^4 r^2 (p_0 + \epsilon_0) \left(r \omega_1^{\prime} + 4 \omega_1\right) + (r - 2M) \omega_1^{\prime} \left(\pi r^2 \left(\phi_0^{\prime}\right)^2 - 1\right)\right)}{r(r - 2M)}$$

⁸Pani, Berti, Phys. Rev. D 90, 024025 (2014); Yazadjiev et al., Phys. Rev. D 93, 084038 (2016) = > =

Outline Motivation GR Scalar-te Parametrised deviations from GR Conclusions

What's out there? Scalar-tensor theories Quadratic gravity theories

A lot of work has been done in scalar-tensor theories for both BHs and NSs. These results also extend to f(R) theories due to the equivalence between them (although there are subtleties).

- Black Holes:
 - Real scalar field: No-hair theorems. Same BH solutions as in GR, i.e., Kerr BHs.
 - Complex scalar field:
 Evade the no-hair theorems for Ψ(t, φ, xⁱ) = e^{-iωt}e^{imφ}φ(xⁱ).
 Stationary BH solutions with scalar clouds when ω = mΩ_H.
- Neutron Stars:

Systematic studies in slow rotation and rapid rotation for massless and massive scalar fields. Spontaneously scalarised solutions.

f(R) theories such as $f(R) = R + aR^2$ studied in their scalar-tensor formulation.

소리가 소문가 소문가 소문가

What's out there? Scalar-tensor theories Quadratic gravity theories

The most general action for quadratic gravity with a scalar field is

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - 2\nabla^\mu \phi \nabla_\mu \phi - V(\phi) + f_1(\phi) R^2 + f_2(\phi) R_{\mu\nu} R^{\mu\nu} + f_3(\phi) R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + f_4(\phi)^* RR \right] + S_m(\gamma(\phi) g_{\mu\nu}, \psi)$$

Special cases are the EdGB gravity (Gauss-Bonnet scalar) $R_{GB}^2 \equiv R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$, and dCS gravity (Pontryagin scalar), * $RR \equiv \frac{1}{2}R_{\mu\nu\rho\sigma}\epsilon^{\nu\mu\lambda\kappa}R_{\lambda\kappa}^{\rho\sigma}$.

Quite some work has been done in quadratic gravity for both BHs and NSs.

Black Holes:

Solutions have been found in the perturbative slow-rotation limit. The BH solutions are scalarised. In EdGB solutions have been also found for rapidly rotating BHs. EdGB also has spontaneously scalarised BHs.

- Neutron Stars:
 - EdGB: Studies in slow rotation and rapid rotation.
 Spontaneously scalarised solutions. There exists a critical p_c.
 - ▶ dCS: Studies in 1st and 2nd order in rotation. Scalar dipole.

No-scalar-monopole theorem for both theories at the perturbative level.

It is probably impossible to study all solutions of all the theories beyond GR. Still, without committing to a specific theory, one could construct parameterised spacetimes that can be used to test GR.

These spacetimes do not necessarily satisfy some specific field equations.

 \bullet One such example is the Cardoso, Pani, Rico extension of the Johannsen-Psaltis non-Kerr metric, 9

$$ds^{2} = -fdt^{2} + \frac{\Sigma(1+h')}{\Delta + a^{2}\sin^{2}\theta h'}dr^{2} + \Sigma d\theta^{2} - 2a\sin^{2}\theta (H-f) d\varphi dt$$
$$+ \sin^{2}\theta \left[\Sigma + a^{2}\sin^{2}\theta (2H-f)\right]d\varphi^{2}$$

where $f = (1 - \frac{2mr}{\Sigma})(1 + h^t)$, $H = \sqrt{(1 + h^r)(1 + h^t)}$, $\Sigma = r^2 + a^2 \cos^2 \theta$, $\Delta = r^2 + a^2 - 2mr$, and $h^{r,t} = \sum_{k=0}^{k=\infty} \left(\varepsilon_{2k}^{r,t} + \varepsilon_{2k+1}^{r,t} \frac{mr}{\Sigma}\right) \left(\frac{m^2}{\Sigma}\right)^k$ Asymptotic flatness imposes $\varepsilon_0^{r,t} = 0$, while the mass is $M = m(1 - \varepsilon_1^t/2)$. Caveat: seems to be mapped to known static solutions but not stationary. There are other more successful approaches in that respect.¹⁰

• Another approach: metrics with special properties, i.e., a Carter constant. Such examples are the bumpy Kerr and the Johannsen metric,¹¹

$$ds^{2} = -\frac{2a\left[(r^{2} + a^{2})A_{1}(r)A_{2}(r) - \Delta\right]\tilde{\Sigma}\sin^{2}\theta d\varphi dt}{\left[(r^{2} + a^{2})A_{1}(r) - a^{2}A_{2}(r)\sin^{2}\theta\right]^{2}} + \frac{\tilde{\Sigma}dr^{2}}{\Delta A_{5}(r)} + \tilde{\Sigma}d\theta^{2}$$
$$-\frac{\tilde{\Sigma}\left[\Delta - a^{2}A_{2}(r)^{2}\sin^{2}\theta\right]dt^{2}}{\left[(r^{2} + a^{2})A_{1}(r) - a^{2}A_{2}(r)\sin^{2}\theta\right]^{2}} + \frac{\tilde{\Sigma}\sin^{2}\theta\left[(r^{2} + a^{2})A_{1}(r)^{2} - a^{2}\Delta\sin^{2}\theta\right]d\varphi^{2}}{\left[(r^{2} + a^{2})A_{1}(r) - a^{2}A_{2}(r)\sin^{2}\theta\right]^{2}}$$

where $\tilde{\Sigma} = \Sigma + f(r)$, and A_1, A_2, A_5 , and f are expansions in powers of 1/r. The Johannsen metric can be related to the bumpy Kerr and these two can describe slowly rotating dCS, and some static EdGB BHs.

History note: Johannsen's metric is of the form of Carter's canonical metric¹²,

$$ds^{2} = \frac{Z}{\Delta_{r}}dr^{2} + \frac{Z}{\Delta_{\theta}}d\theta^{2} + \frac{\Delta_{\theta}}{Z}\left(P_{r}d\varphi - Q_{r}dt\right)^{2} + \frac{\Delta_{r}}{Z}\left(Q_{\theta}dt - P_{\theta}d\varphi\right)^{2},$$

where $Z = P_r Q_{\theta} - Q_r P_{\theta}$, and the P, Q, and Δ are functions of either r or θ .

¹¹Vigeland, Yunes, Stein, Phys.Rev. D83,104027 (2011); Johannsen, Phys.Rev. D88, 044002 (2013) ¹²B. Carter, Comm.Math.Phys. 10,280 (1968).

Theory	Solutions	Stability	Geodesics	Quadrupole
Extra scalar field				
Scalar-tensor	$\equiv GR$ [55-60]	61-67	_	-
Multiscalar/Complex scalar	\supset GR [56, 68, 69]	?	?	68,69
Metric $f(R)$	⊃GR [58, 59]	[70, 71]	?	?
Quadratic gravity				
Gauss-Bonnet	NR [72–74]; SR [75, 76]; FR [77]	[78, 79]	SR [75,80,81]; FR [77]	76,82
Chern-Simons	SR [83-85]; FR [86]	NR [87–90]; SR [79]	74,91	[85]
Generic	SR [80]	?	[80]	Eq. (3.12)
Horndeski	92-94	? [95, 96]	?	?
Lorentz-violating				
Æ-gravity	NR [97–99]	?	[98, 99]	?
Khronometric/				
Hořava-Lifshitz	NR, SR [98–101]	? [102]	[98,99]	?
n-DBI	NR [103, 104]	?	?	?
Massive gravity				
dRGT/Bimetric	⊃GR, NR [105–108]	[109-112]	?	?
Galileon	[113]	?	?	?
Nondynamical fields				
Palatini $f(R)$	≡GR	-	-	-
Eddington-Born-Infeld	≡GR	-	-	-

Table 2. Catalogue of BH properties in several theories of gravity. The column "Solutions" refers to asymptotically-flat, regular solutions. Legend: $ST="Scalar-Tensor," = GR="Same solutions as in GR," <math>\supset GR="GR$ solutions are also solutions of the theory," NR="Non rotating," SR="Slowly rotating," FR="Fast rotating," customer of the theory," <math>NR="Non rotating," SR="Slowly rotating," FR="Slowly rotating," Slowly rotating," Slowly rotating, " Slowly rotating," Slowly rotating," Slowly rotating, " Slowly rotating," Slowly rotating," Slowly rotating, " Slowly rotating," Slowly rotating, Slowl

Berti et al. (2015) Class. Quantum Grav. 32 243001

・ロト ・日本 ・モト ・モト

Testing General Relativity

Э