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Why theories beyond-GR? How to proceed?

Why beyond-GR theories:
See morning talk by Thomas (Theoretical motivation for beyond-GR theories).

1 point to remember:
To test GR we also need solutions from theories other than GR in order to form
a testbed.

2 approaches:
• Find solutions in specific modifications to GR and work on a case by case
basis.
• Construct generic parametric deviations from known GR solutions, like the
Kerr solution.

3 ways to proceed:
• Generate an analytic parameterised solution without approximations
• Employ some approximation scheme (slow rotation, small coupling)
• Numerical solution
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The Einstein-Hilbert action in GR is S = 1
16π

∫
d4x
√
−gR + Sm(gµν , ψ),

which results to the field equations Rab = 8π
(
Tab − 1

2
gabT

)
Stationary spacetime: symmetry with respect to time translations and rotations
(the spacetime admits a timelike, ξa, and a spacelike, ηa, killing vector).
The line element for such a spacetime can be written as1

ds2 = −e2νdt2 + r 2 sin2 θB2e−2ν(dϕ− ωdt)2 + e2(ζ−ν)(dr 2 + r 2dθ2)

This line element describes the spacetime of a rotating compact object.

The field equations can be solved either for vacuum spacetimes (BH solutions)
or spacetimes that have matter (NS solutions).

• In vacuum we have the well known BH solutions of the Kerr family (which
can be extended to include electromagnetic fields as well).

• For NSs the full field equations can only be solved numerically.

1
E. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).
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• The alternative is to employ the slow rotation Hartle-Thorne method.2

ds2 = −e ν̄dt2 + eλdr 2 + r 2
[
dθ2 + sin2 θdϕ2

]
− 2ε(Ω− ω1)r 2 sin2 θdϕdt.

where ε is a slow rotation small bookkeeping parameter. The first order
correction ω1 is given by the equation

ω′′1 = 4
r

[
πr 2(ε+ p)eλ − 1

]
ω′1 + 16π(ε+ p)eλω1.

• Finally there is a general algorithm for constructing any vacuum stationary
axisymmetric space-time. Such a spacetime can be described by the
Weyl-Papapetrou line element3,

ds2 = −f (dt − wdϕ)2 + f −1
[
e2γ
(
dρ2 + dz2

)
+ ρ2dϕ2

]
.

By introducing the complex potential E(ρ, z) = f (ρ, z) + iψ(ρ, z) 4,
the Einstein field equations take the form, (Re(E))∇2E = ∇E · ∇E ,
where, f = ξaξa and ψ is the scalar twist, ∇aψ = εabcd ξ

b∇cξd . By prescribing

an Ernst potential E one can calculate a vacuum GR solution.

2
Hartle J. B., Astrophys.J. 150, 1005 (1967); Hartle J. B., Thorne K. S., ApJ 153, 807 (1968)

3
A. Papapetrou, Ann. Phys., 12, 309 (1953).

4
F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
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What’s out there?
Scalar-tensor theories
Quadratic gravity theories

A brief (incomplete) list of theories beyond GR.

I Scalar-tensor theories

I f(R) theories

I Quadratic gravity theories

I Einstein-dilaton-Gauss-Bonnet (EdGB)
I dynamical Chern-Simons (dCS)

I Lorentz-violating theories

I Massive gravity theories

I Theories with non-dynamical fields
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The Bergmann-Wagoner action for Scalar-Tensor theories is,

S =

∫
d4x
√
−ĝ
(
ϕR̂ − ω(ϕ)

ϕ
∇̂µϕ∇̂µϕU(ϕ)

)
+ Sm(ĝµν , ψ)

In the Einstein frame it takes the form,

S =
1

16π

∫
d4x
√
−g̃
(
R̃ − 2∇̃µφ∇̃µφ− V (φ)

)
+ Sm(ĝµν , ψ)

where ϕ is redefined to φ, ĝµν = A2(φ)g̃µν , and V (φ) ≡ A4(φ)U(ϕ(φ)). Then
the field equations take the form,

R̃ab = 2∂aφ∂bφ+8π

(
Tab −

1

2
g̃abT

)
+2V g̃ab, g̃ ab∇̃a∇̃bφ = −4πα(φ)T+

1

4

dV

dφ

These equations can be solved as in GR in vacuum or in the presence of
matter.5 Since the actual physics is done in the Jordan frame (the particles
follow the geodesics of the Jordan metric), one can return to that frame by the
conformal transformation ĝµν = A2(φ)g̃µν .

5
D.D. Doneva, S.S. Yazadjiev, N. Stergioulas, K.D. Kokkotas, Phys. Rev. D 88, 084060 (2013)
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• In the case of a massless scalar field (V (φ) = 0), the vacuum field equations

R̃ab = 2∂aφ∂bφ, g̃ ab∇̃a∇̃bφ = 0

can admit an Ernst formulation as in GR,6 having the metric,

ds2 = −f (dt − wdϕ)2 + f −1
[
e2γ
(
dρ2 + dz2

)
+ ρ2dϕ2

]
and the field equations, (Re(E))∇2E = ∇E · ∇E ,
with the addition of a Laplace equation for the scalar field, ∇2φ = 0, and a set
of equations for the metric function γ of the Weyl-Papapetrou metric,

∂γ

∂ρ
=

(
∂γ

∂ρ

)
GR

+ρ

[(
∂φ

∂ρ

)2

−
(
∂φ

∂z

)2
]
,
∂γ

∂z
=

(
∂γ

∂z

)
GR

+2ρ

(
∂φ

∂ρ

)(
∂φ

∂z

)
,

Any vacuum stationary axisymmetric GR solution can be turned into a
scalar-tensor solution with a massless scalar field.7

6
GP, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)

7
GP, MNRAS, 466, 4381 (2017)
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• In the case of a massive scalar field, one doesn’t have the Ernst formulation,
but can still do a fully numerical calculation,
• Or employ a HT-like slow rotation approximation, like in GR.8

The TOV equations then become (0th-order in the rotation),

M ′ = 4πr

(
rA4ε0 +

1

2
(r − 2M)φ′20 + rV

)
,

ν′ =
2
(
4πr 3

(
A4p0 − V

)
+ M

)
r(r − 2M)

+ 4πr
(
φ′0
)2
,

p′ = −(p0 + ε0)
1

2
ν′ − αφ′0,

φ′′0 =
2φ′0

(
r
(
2πr 2

(
A4(ε0 − p0) + 2V

)
− 1
)

+ M
)

+ r 2
(
A3A′(ε0 − 3p0) + V ′

)
r(r − 2M)

,

and at 1st-order in the rotation,

ω′′1 =
4
(
πA4r 2(p0 + ε0) (rω′1 + 4ω1) + (r − 2M)ω′1

(
πr 2 (φ′0)

2 − 1
))

r(r − 2M)

8
Pani, Berti, Phys. Rev. D 90, 024025 (2014); Yazadjiev et al., Phys. Rev. D 93, 084038 (2016)
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A lot of work has been done in scalar-tensor theories for both BHs and NSs.
These results also extend to f(R) theories due to the equivalence between them
(although there are subtleties).

I Black Holes:

I Real scalar field:
No-hair theorems. Same BH solutions as in GR, i.e., Kerr BHs.

I Complex scalar field:
Evade the no-hair theorems for Ψ(t, ϕ, x i ) = e−iωte imϕφ(x i ).
Stationary BH solutions with scalar clouds when ω = mΩH .

I Neutron Stars:

Systematic studies in slow rotation and rapid rotation for massless and
massive scalar fields. Spontaneously scalarised solutions.

f(R) theories such as f (R) = R + aR2 studied in their scalar-tensor
formulation.
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The most general action for quadratic gravity with a scalar field is

S =
1

16π

∫
d4x
√
−g
[
R − 2∇µφ∇µφ− V (φ) + f1(φ)R2 + f2(φ)RµνR

µν

+f3(φ)RµνρσR
µνρσ + f4(φ)∗RR] + Sm(γ(φ)gµν , ψ)

Special cases are the EdGB gravity (Gauss-Bonnet scalar)
R2
GB ≡ R2 − 4RµνR

µν + RµνρσR
µνρσ,

and dCS gravity (Pontryagin scalar), ∗RR ≡ 1
2
Rµνρσε

νµλκRρσλκ .

Quite some work has been done in quadratic gravity for both BHs and NSs.

I Black Holes:
Solutions have been found in the perturbative slow-rotation limit. The
BH solutions are scalarised. In EdGB solutions have been also found for
rapidly rotating BHs. EdGB also has spontaneously scalarised BHs.

I Neutron Stars:

I EdGB: Studies in slow rotation and rapid rotation.
Spontaneously scalarised solutions. There exists a critical pc .

I dCS: Studies in 1st and 2nd order in rotation. Scalar dipole.
No-scalar-monopole theorem for both theories at the perturbative level.
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It is probably impossible to study all solutions of all the theories beyond GR.

Still, without committing to a specific theory, one could construct
parameterised spacetimes that can be used to test GR.

These spacetimes do not necessarily satisfy some specific field equations.

• One such example is the Cardoso, Pani, Rico extension of the
Johannsen-Psaltis non-Kerr metric,9

ds2 = −fdt2 +
Σ(1 + hr )

∆ + a2 sin2 θhr
dr 2 + Σdθ2 − 2a sin2 θ (H − f ) dϕdt

+ sin2 θ
[
Σ + a2 sin2 θ (2H − f )

]
dϕ2

where f =
(
1− 2mr

Σ

)
(1 + ht), H =

√
(1 + hr )(1 + ht), Σ = r 2 + a2 cos2 θ,

∆ = r 2 + a2 − 2mr , and hr,t =
∑k=∞

k=0

(
εr,t2k + εr,t2k+1

mr
Σ

) (
m2

Σ

)k
Asymptotic flatness imposes εr,t0 = 0, while the mass is M = m(1− εt1/2).
Caveat: seems to be mapped to known static solutions but not stationary.

There are other more successful approaches in that respect.10

9
Cardoso, Pani, Rico, Phys.Rev. D 89, 064007 (2014);Johannsen, Psaltis, Phys.Rev. D83, 124015 (2011)

10
Konoplya et al., Phys. Rev. D 93, 064015 (2016): rotating EdGB BHs.
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• Another approach: metrics with special properties, i.e., a Carter constant.
Such examples are the bumpy Kerr and the Johannsen metric,11

ds2 = −
2a
[
(r 2 + a2)A1(r)A2(r)−∆

]
Σ̃ sin2 θdϕdt[

(r 2 + a2)A1(r)− a2A2(r) sin2 θ
]2 +

Σ̃dr 2

∆A5(r)
+ Σ̃dθ2

−
Σ̃
[
∆− a2A2(r)2 sin2 θ

]
dt2[

(r 2 + a2)A1(r)− a2A2(r) sin2 θ
]2 +

Σ̃ sin2 θ
[
(r 2 + a2)A1(r)2 − a2∆ sin2 θ

]
dϕ2[

(r 2 + a2)A1(r)− a2A2(r) sin2 θ
]2

where Σ̃ = Σ + f (r), and A1,A2,A5, and f are expansions in powers of 1/r .
The Johannsen metric can be related to the bumpy Kerr and these two can
describe slowly rotating dCS, and some static EdGB BHs.

History note: Johannsen’s metric is of the form of Carter’s canonical metric12,

ds2 =
Z

∆r
dr 2 +

Z

∆θ
dθ2 +

∆θ

Z
(Prdϕ− Qrdt )2 +

∆r

Z
(Qθdt − Pθdϕ )2 ,

where Z = PrQθ − QrPθ, and the P,Q, and ∆ are functions of either r or θ.
11

Vigeland, Yunes, Stein, Phys.Rev. D83,104027 (2011); Johannsen, Phys.Rev. D88, 044002 (2013)
12

B. Carter, Comm.Math.Phys. 10,280 (1968).
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Berti et al. (2015) Class. Quantum Grav. 32 243001
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