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INTRODUCTION

Introduction
Noncommutative space(time) algebras are introduced and studied:

e To avoid UV divergences in QFT [Snyder 1947].

e As an arena to formulate QG, inducing Ax 2 L, predicted by
QG arguments [Mead 1966, Doplicher et al 1994-95].

e As an arena for unification of interactions [Connes-Lott,....]

Fuzzy spaces are particularly appealing: a FS is a sequence Apcn
of finite-dimensional algebras such that A, ™3 A =algebra of
regular functions on an ordinary manifold.

First, seminal example: the Fuzzy Sphere (FS) of Madore [1991]:
Ap =~ M,(C), generated by coordinates x' (i = 1,2, 3) fulfilling
2i

715"1'ka7 r2 = XiXizl, I’IEN\{]-}; (1)

') = —

(1) are covariant under SO(3), but not under the whole O(3); in
particular not under parity x' — —x".
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In fact L' = x'v/n2—1/2 make up the standard basis of so(3) in
the irrep (, V)) characterized by L'L" = I(/ + 1), | = 2n+1.
Does the FS approximate the configuration space algebra of a
particle on 52?7 Problems: a) parity; b) V} is irreducible, whereas

LM =pv
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Here fuzzy approximations of QM on S? (d = 2) solving a),b):

e Start with ordinary quantum particle in RP (D = d+1), under a
potential V/(r) with a very sharp minimum on the sphere r = 1.

e By low enough energy-cutoff E < E we ‘freeze’ radial excitations,
make only a finite-dimensional Hilbert subspace H accessible, and
on it the x' noncommutative a la Snyder, the x' generate the
whole algebra of observables. O(D)-covariant by construction.

e Making E, k := V’(1)/4 > 0 diverge with A€ N (while Eg=0),
we get a sequence Ap of fuzzy approximations of ordinary QM on
sd.
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e On HE the square distance R2 from the origin is not identically
1, but a function of L2 which collapses to 1 in the A — oo limit.

Remarks:

e Our construction is inspired by the Landau model: there
noncommuting x, y obtained projecting QM with a strong
uniform magnetic field B on the lowest energy subspace.

e Physically sound method, applicable to more general contexts.
Imposing a cutoff E on an existing theory:
can yield an effective description of a system when our
measurements, or the interactions with the environment,
cannot bring its state to energies E > E; or even
may be a necessity if we believe E represents the threshold
for the onset of new physics not accountable by that theory.
e If H is invariant under some symmetry group, then the
projection Pz on Hg is invariant as well, and the projected
theory will inherit that symmetry.
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General framework

Consider a quantum particle in RP
configuration space with Hamiltonian

H = —%A LV )

we fix the minimum Vo = V/(1) of the
the confining potential V(r) so that
the ground state has energy Eg = 0.
Choose an energy cutoff E fulfilling

V(r) ~ Vo +2k(r—1)* (4)

|f V(r) S E, so that V(r) has a har_ Figure 1: Three-dimensional
Ey, Plot of V(r)

monic behavior for [r—1[<y/=52.
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Then we restrict to Hg C H = L£2(RD) spanned by ¢ with E < E.
This entails replacing every observable A by A:

A Z = PEAPE’ le=exp(7 5)

where Pg is the projection on Hz. Because = ™
of the behavior of V(r) as k — +00, we ex-
pect that when both k, E diverge dim(Hg)
diverges and we recover standard QM on the
sphere SP~1 The Laplacian in D dimen-
sions decomposes as follows

Vo+ vV2k(r— 1)

|
=

(r

1 1 05 1 15
A:8,2+(D—1);8r—r—2L2. (5) r
where Lj := ix/0; — ix'0; are the angular momentum components
(in normalized units), and L? = L;L; is the square angular
momentum, i.e. the Laplacian on the sphere SP—1.
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H, Lij, Pg commute. As known, the eigenvalues of L? are
J(+ D —2); the Ansatz ¢ = g(r)Y(¢p,...) (Y are eigenfunctions
of L2 and of the elements of a Cartan subalgebra of so(D); r, ¢, ...
are polar coordinates) transforms the eigenvalue equation
Hv = Ev) into this auxiliary ODE in the unknown g(r):

- P2, AUEDED Ly g - By (0

we must stick to solutions g leading to square-integrable v¥». To
obtain the lowest eigenvalues we don't need to solve it exactly:
condition (4) allows us to approximate (6) with the eigenvalue
equation of a 1—dimensional harmonic oscillator, by Taylor
expanding V(r), 1/r, 1/r? around r = 1.
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D=3: O (3)-covariant fuzzy sphere
Ansatz ¢ = @Ylm (0,¢). Y™ are the spherical harmonics:

L2Y(0,0) = 11 +1)Y["(0,¢), L3 Y/™(0, ) = mY["(0, ),

I € No, m € Z,|m| < I. Under assumption (4) the harmonic
oscillator approximation of (6) admits the (Hérmite) eigenfunctions

r—r 2 k
fo(r) = Nn,,e—i( el ((r —7) JI,) . n=0,1,..

with kj:=2k+31(1+1), =334 Eoo=0= Vo=—v2k+0(1);
fn I(r)

then the energies associated to ¢, m = == Y/"(0,p) are

Eny =202k +1(1 4+ 1) + 0 (1/V2K)

Eo; = I(I 4+ 1) =: E; are the eigenvalues of the Laplacian L% on S?,
while E, ; — 00 as k— o0 if n>0.
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We can eliminate the latter (con-

strain n = 0) imposing a cutoff v}
And setting E =

A(A + 1) we obtain

(7) = & ——E

Ew\
i.e. we project the theory on the sub- & E‘_En;
space Ha C L?(IR3) spanned by - \ fEicEis
1 EanwEE e 7
U= Yo, m vy
~3\2
~ Me—w Y/(0, ), (8) Figure 2: Two-dimensional
r plot of V(r) including the
Im| <1, <A energy-cutoff
Clearly dlm(H/\) (A+1)2. Let x0 =z, x* = X\iéy. The action
of x@ r— (a=— 0 +) on " factorizes into the one of r on

fo’(r) and the one of %= on Y,".
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After projection we find

~a,,m __ a,m_;m+a —a,m+a_; m+a
X = gAY+ an AL Y

CoZC/\_H:O, C/:\/].Jr% 1</ <A

up to O (1/k%> and AP, B"™ are the coefficients determined by

(9)

X2
m __ aA3,mMy,/m-+a —a,m+ay,/m+a
?Y/ =AY I ALST YA
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At leading order the L;, %, i € {1,2,3}, fulfill

A
[IC-w+ni)=0  J] (-mhP=0, (10)
/=0 m=—/

=1, [L,]=i", *'=x, XL=0 (i1)

_ . . o .. 1 ~\ —
[L;, ] = ielhx", [x', %] = ilh <—k + KPA> Ly, (12)
—_——
Snyder—like
Snyder—like
2 __ _
where K = L4 & T? .= [,L; = L,L_, is L2 projected on Ha,

and P, is the projection on its eigenspace with eigenvalue /(/ + 1).
Moreover, the square distance from the origin is

L2+1_[1 (/\+1)2] A+1

R? :=x'x =1+ Pr.  (13)

k k 2N +1

These relations are exact if we adopt (9) as definitions of X?.
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To obtain a fuzzy space we can choose k as a function of A
fulfilling (7); one possible choice is k = A2(A + 1)?, and the
commutative limit will be A — +o0.

Some remarks...

e [x,X] = ... and [L,X] = ... are Snyder-like: [X,X] = —L/k (plus
term containing Pp) and vanish as A—o0; ¢ —0(r—1)Y,™.

e Hence (10-12) are covariant under the whole O(3), including
parity X;— —X;, L;+ L;, contrary to Madore FS.

e R? # 1; its eigenvalues slightly grow with / (for each fixed A),
but collapse to 1 as A — oo.

e The ordered monomials in X;, L; make up a basis of the
(A+1)*-dim vector space Ap:=End(Hnp)~Mp;1)2(C)
(P, can be expressed as polynomials in 12).

e Actually, X; generate the x-algebra Ax (also the L; can be
expressed as a non-ordered polynomial in the X;).
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Realization of the algebra of observables through Uso(4)

so(4) ~ su(2) @ su(2) is spanned by {E}, E,?}?:l fulfilling
ELE =0, [ELE=icFEL  [E2EY =B (19)

L := E} + E?, X;:= E} — E? make up alternative basis of so(4):
[Li, L] =i Ly, [Li, X] = igP Xy, [X;, X;] = i Ly. (15)

The L; close another su(2). Passing to generators labelled by
ae{-,0,+},

[L+7 L—] - L07 [L07 L:t] - j:L:|: - [X07X:t]7 [X+7X—] = L07 (]‘6)
[L:IZ7X$] = :l:X()a [LOa X:t] = :I:X:I: = [X07 L:t]v [L87 Xa] = 0(17)

(no sum over a), where [2= L;L; = L,L_,, X?= X;X; = XaX_,.
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In the tensor product representation mp = A & ™ of

Uso(4) ~ Usu(2) ® Usu(2) on the Hilbert space Vp := V% ® V% it

is Ct:= E}E} = §(5 + 1) = E?E? =: C2, or equivalently
X-L=L-X=0, X?*+1?>=N\AN+2) (18)

(we have dropped the symbols 7p). Vi admits an orthonormal
basis consisting of common eigenvectors of L2 and Ly:

Lo|l,m) =m|l,m), L3I, m) = I(I +1)|I, m) (19)

with 0 </ < A and |m| < /. Vj,Ha have the same dimension
(A+1)? and decomposition in irreps of the L; subalgebra; we
identify them setting ¢{” = |/, m). The action of X2 on V reads

X2, m) = dAP" |1 =1, m+ a) + di41B™" |1+ 1, m + a) (20)

dy:=y/(A+1)2 = I?
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We can naturally realize L,, X in w A [Usu(2) @ Usu(2)].
Define \ := 7““22*171; then \|/,m) = I|l,m). The Ansatz

™~

a= L, X7 = g()‘) Xag()‘)’ (21)

fulfills (9) and therefore (10-12) provided

-1 [5] (F-2j)2
_ 1
s() = | o2 T St e (22)
[Th—o(A+14+1=2h) 5 1+ F=35
(3+1-5)

r(A1) T r(z+1+7”)r
+gE) (1)
)

T

>‘
Ln

\ TR TR ) Var (g

The inverse of (21) is clearly X? = [g(\)] 1 x? [g(\)] !
We have thus explicitly constructed a *-algebra map

Ap = End(Hp) ~ My(C) ~ mwp[Uso(4)], N := (A+1)2. (23)
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As known, the group of x-automorphisms of My(C) ~ Ap is
SU(N) and

b — gbg™1, be Apn, g € SU(N).

A special role is played by the subgroup SO(4) acting through the
representation a, namely g = ma [e'®], « € so(4).

O(3) C SO(4) plays the role of isometry subgroup.

In particular, choosing a = a;L; («j € R) the automorphism
amounts to a SO(3) transf. (a rotation in 3-dimensional space).
An O(3) transformation with determinant —1 in the X1X2X3
space is parity (L;, X') = (L;, —X'), or equivalently E} <+ E? (this
is the only automorphism of so(4), corresponding to the exchange
of the two nodes in the Dynkin diagram).
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Convergence to O(3)-equivariant quantum mechanics on S® as N — oo
Define O(3)-equivariant embedding Z : Hp < L3(S?)=Hs by
Z(Ym) =Y/, below drop Z and identify )" = Y.

Ppngp — ¢ in the Hgs-norm || ||: Ha ‘invades’ Hs as A — oo.

7 induces an embedding 7 : Ap < B [Hs].

Li=L; onHp, and Li¢p — Lip as N — oo, Vo € D(L;)

Bounded (continuous) functions f on S2, acting as multiplication

operators f-: ¢ € Hs ++ f¢p € Hs, make up a subalgebra B(S?)
[resp. C(S?)] of B[Hs]. Fuzzy analog of vector space B(S?):

2A i 2A
Cp = {Z Sy, f,mec}:@v,cAA, (24)
1=0

1=0 m=—1

(I + m)12/-m

i —my &)

where \7,"7 =M,

are the fuzzy analogs of Y/™- € B(S?).
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We first show X'¢p — (x7/r).
Moreover, Vf- € B(52) let # := 2,220 Z|m\§/ f,’"\A/,'" € Ca.

Proposition. Choose k(A) > 23A3AMS(AL1). Then o — -,
(fg)p — fg-, fngn — fg- strongly as A — oo, Vf-,g- € B(S?).
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Final remarks and conclusions

For d =2 we have built a sequence (A, Hp) of finite-dim,
O(D)-covariant (D = d+1) approximations of QM of a spinless
particle on the sphere S9; R? > 1 collapses to 1 as A — oo.
Achieved imposing E < A(A+d—1) on QM of a particle in RP
subject to a sharp confining potential V/(r) on the sphere r = 1.
Ap are fuzzy approximations of the whole algebra of observables of
the particle on S¢ (phase space algebra).

Ap ~ mp[Uso(D+1)], with a suitable irrep mp of Uso(D-+1) on Ha.
Hp carries a reducible representation of the Uso(D) subalgebra
generated by the L;:  Ha = @irreps fulfilling L2 < A(A+d—1).
The same decomposition holds for the subspace Cp C Ap of
completely symmetrized polynomials in the X'.

As A — oo these resp. become the decompositions (2) of £2(S9)
and of C(S9) acting on £2(S9).
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Comparison with literature

The fuzzy spheres of dimension d = 4 [Grosse, Klimcik, Presnajder
1996], d > 3 [Ramgoolam 2001, Dolan, O'Connor 2003, ...], are
based on End(V) where V carries a particular irrep of SO(d + 1);
R? is central, can be set=1. Snyder-like commutation relations,
hence O(d + 1)-covariant.

In [Steinacker 2016-17] fuzzy 4-spheres Sy, through reducible repr.
of Uso(5) obtained decomposing irreps 7 of Uso(6) with suitable
highest weights (N, ny1, n2); so End(V') ~ w[Uso(6)], in analogy
with our result. The elements X' of a basis of so(6) \ so(5) (as a
vector space) play the role of noncommuting cartesian coordinates.
Hence, the SO(5)-scalar R? = XX is no longer central, but its
spectrum is still very close to 1 only if N > n1, no;

if n = ny =0 then R? = 1 (= irrep), and one recovers the fuzzy
4-sphere [Grosse, Klimcik, Presnajder 1996].

Here R? ~ 1 is guaranteed by adopting X' = g(L?)X g(L?) rather
than X' as noncommutative cartesian coordinates, and R? = X'x'.
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Bonus slide: Coherent states

It's interesting to look for the states x € Ha minimizing the
uncertainty on the localization. We suggest that we have to
minimize

where ||x|| = 1. It's easy to see that (26) is O(3)-covariant, and
we've proved that our coherent states are more “localized” than
the Perelomov coherent states of the Madore's fuzzy sphere.
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