Generalized 2nd law under non-Markovian feedback control using a levitated particle

Quantum Engineering of Levitated Systems
Benasque Sep. 16 – 22

Maxime Debiossac, David Grass, Jose Joaquin Alonso, Eric Lutz & Nikolai Kiesel
Information on a system allows to extract more work

Isothermal process:

- Kelvin-Planck statement: ‘no work can be cyclically extracted from a system coupled to a single reservoir at temperature T’:

\[\dot{W}_{\text{ext}} < 0 \]
Isothermal process:

- Kelvin-Planck statement: ‘no work can be cyclically extracted from a system coupled to a single reservoir at temperature T’:
 \[\dot{W}_{\text{ext}} < 0 \]

- Role of information: $\dot{W}_{\text{ext}} < k_B T \dot{I}$

Shoichi Toyabe et al, Nat. Phys., 2010
Isothermal process:

- Kelvin-Planck statement: ‘no work can be cyclically extracted from a system coupled to a single reservoir at temperature T’:
 \[\dot{W}_{\text{ext}} < 0 \]

- Role of information: \(\dot{W}_{\text{ext}} < k_B T \dot{I} \)

- Pumping entropy: \(\dot{W}_{\text{ext}} < k_B T \dot{S}_{\text{pump}} \)

Rosinberg et al, PRE, 2015
Outline

1. Role of time delay in science
2. Information engine
3. Results
4. Conclusion
Outline

1. Role of time delay in science
2. Information engine
3. Results
4. Conclusion
Schrödinger (1942) : How does a living organism avoid decay?
→ It feeds on 'negative entropy'
Schrödinger (1942): How does a living organism avoid decay?

→ It feeds on 'negative entropy'

‘Negative entropy’ or ‘pumping entropy’ (Kim & Qian, PRL, 2004)
Time delays are ubiquitous in science

- Feedback is never instantaneous due to finite delay τ.
Feedback is never instantaneous due to finite delay τ.

- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)
Time delays are ubiquitous in science

- Feedback is never instantaneous due to finite delay τ.
- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)

Human balance
J. Milton et al, Chaos, 2009
Time delays are ubiquitous in science

- Feedback is never instantaneous due to finite delay τ.
- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)

Human balance
J. Milton et al, Chaos, 2009

Stability of neural networks
CM Marcus & RM Westervelt, PRA, 1989
Time delays are ubiquitous in science

- Feedback is never instantaneous due to finite delay τ.

- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)

Human balance
J. Milton et al, Chaos, 2009

Stability of neural networks
CM Marcus & RM Westervelt, PRA, 1989

HIV infection
Outline

1. Role of time delay in science
2. Information engine
3. Results
4. Conclusion
A maxwell’s daemon that manipulates time

Protocol:

1) Measure position
A maxwell’s daemon that manipulates time

Protocol:
1) Measure position
2) Apply a feedback force $F_{fb} \propto x_{t-\tau}$
A maxwell’s daemon that manipulates time

Protocol:

1) Measure position

2) Apply a feedback force \(F_{fb} \propto x_{t-\tau} \)
A maxwell’s daemon that manipulates time

Protocol:

1) Measure position

2) Apply a feedback force \(F_{fb} \propto x_{t-\tau} \)

Weakly damped system:
\[
x \propto \cos(\Omega_0 t)
\]
\[
F_{fb} \propto \cos(\Omega_0 (t - \tau))
\]
\[
= x \cos \tau - \frac{1}{\Omega_0} v \sin \tau
\]

Time delay ➔ Memory effect ➔ Non-Markovianity
Realization of the protocol with a levitated particle

Harmonic trap:

\[\nu_0 = 400 \text{ kHz} \]
\[\Gamma_p \approx 1 \text{ kHz} \]

\[Q_0 = \frac{\nu_0}{\Gamma_p} \approx 100 \]
Realization of the protocol with a levitated particle

Harmonic trap:

\[
\nu_0 = 400 \text{ kHz} \\
\Gamma_p \approx 1 \text{ kHz}
\]

\[Q_0 = \frac{\nu_0}{\Gamma_p} \approx 100 \]

Feedback:

Feedback gain:

\[g = \frac{\Gamma_{fb}}{\Gamma_p} \approx 0.5 \]

Feedback delay:

\[\tau = 2\pi\nu_0 t \]

\((g, Q_0, \tau) \)
From equation of motion to the tightest bound of the 2nd law

\[\ddot{x}_t + \Gamma_p \dot{x}_t + \Omega_0^2 x_t = \frac{\Gamma_{fb}}{\Omega_0} x_{t-\tau} - \frac{F_{\text{therm}}}{m} \]
From equation of motion to the tightest bound of the 2nd law

\[\ddot{x}_t + \Gamma_p \dot{x}_t + \Omega_0^2 x_t = \frac{\Gamma_{fb}}{\Omega_0} x_{t-\tau} = \frac{F_{\text{therm}}}{m} \]

Fokker-Plank equation
(Rosinberg \textit{et al}, PRE, 2015)

\[\frac{dS}{dt} = \dot{S}_i - \dot{S}_{\text{pump}} - \frac{\dot{Q}}{T_0} \]
From equation of motion to the tightest bound of the 2nd law

\[\ddot{x}_t + \Gamma_p \dot{x}_t + \Omega_0^2 x_t - \frac{\Gamma_{fb}}{\Omega_0} x_{t-\tau} = \frac{F_{\text{therm}}}{m} \]

\[\frac{dS}{dt} = \dot{S}_i - \dot{S}_{\text{pump}} - \frac{\dot{Q}}{T_0} \]

Steady state: \(\frac{dS}{dt} = 0 \)

First law: \(\dot{Q} = \dot{W} \)

Non negativity: \(\dot{S}_i \geq 0 \)
From equation of motion to the tightest bound of the 2nd law

\[
\ddot{x}_t + \Gamma_p \dot{x}_t + \Omega^2_0 x_t - \frac{\Gamma_{fb}}{\Omega_0} x_{t-\tau} = \frac{F_{\text{therm}}}{m}
\]

Fokker-Plank equation (Rosinberg et al, PRE, 2015)

\[
\frac{dS}{dt} = \dot{S}_i - \dot{S}_{\text{pump}} - \frac{\dot{Q}}{T_0}
\]

Steady state : \(\frac{dS}{dt} = 0\)

First law : \(\dot{Q} = \dot{W}\)

Non negativity : \(\dot{S}_i \geq 0\)

Tightest bound

\[
\frac{\dot{W}_{\text{ext}}}{T_0} \leq \dot{S}_{\text{pump}} \leq \dot{I}
\]

\[
\dot{W}_{\text{ext}} = -\dot{W} = \int F_{fb} dx
\]

\(\dot{I} = \text{mutual information flow}\)
The Information engine can cool or heat the particle motion

Cooling mode

Bath \((T_0) \)

\[Q \]

Particle \((T<T_0) \)

Info.

\[S_{pump} \]

\[W_{ext}>0 \]

Cooling

\[0 < \tau < \pi \]
The Information engine can cool or heat the particle motion

Cooling mode

- **Bath** (T_0)
- **Info.**
- **Particle** ($T<T_0$)

Q, S_{pump}

$W_{\text{ext}}>0$

$0 < \tau < \pi$

Heating mode

- **Bath** (T_0)
- **Info.**
- **Particle** ($T>T_0$)

Q, S_{pump}

$W_{\text{ext}}<0$

$\pi < \tau < 2\pi$
Outline

1. Role of time delay in science
2. Information engine
3. Results
4. Conclusion
Thermodynamics quantities are measured using the velocity variance

\[\frac{\dot{W}_{\text{ext}}}{T_0} = \frac{1}{Q_0} \left(1 - \sigma_v^2 \right) \]

\[\dot{S}_{\text{pump}} = \frac{1}{Q_0} \left(1 - \frac{\sigma_v^2}{\sigma_v^2} \right) \]

\[\sigma_v^2 = f(g, Q_0, \tau) \]
Thermodynamics quantities are measured using the velocity variance

\[
\frac{\dot{W}_{\text{ext}}}{T_0} = \frac{1}{Q_0} \left(1 - \sigma^2_v \right)
\]

\[
\dot{S}_{\text{pump}} = \frac{1}{Q_0} \left(\frac{1 - \sigma^2_v}{\sigma^2_v} \right)
\]

\[
\sigma^2_v = f(g, Q_0, \tau)
\]

\[
x(t)/x_{\text{therm}} \quad \frac{d}{dt} v(t)
\]

Cooling: \(\sigma^2_v < 1 \)

Heating: \(\sigma^2_v > 1 \)
Pumping entropy is the tightest bound to the extracted work

\[
\frac{\dot{W}_{\text{ext}}}{T_0} \leq \dot{S}_{\text{pump}}
\]

\[
\begin{cases}
Q_0 = 122 \\
g = 0.6
\end{cases}
\]

\[
\dot{S}_{\text{vfb}} = \dot{S}_{\text{pump}} \quad \text{for} \quad \tau = \frac{\pi}{2}
\]
Pumping entropy is the tightest bound to the extracted work

\[
\frac{\dot{W}_{\text{ext}}}{T_0} \leq \dot{S}_{\text{pump}}
\]

\[
\begin{aligned}
Q_0 &= 122 \\
g &= 0.6
\end{aligned}
\]

\[
\dot{S}_{\text{vfb}} = \dot{S}_{\text{pump}} \quad \text{for} \quad \tau = \frac{\pi}{2}
\]
Pumping entropy is the tightest bound to the extracted work

\[\frac{\dot{W}_{\text{ext}}}{T_0} \leq \dot{S}_{\text{pump}} \]

\[
\begin{cases}
Q_0 = 122 \\
g = 0.6
\end{cases}
\]

\[\dot{S}_{\text{vfb}} = \dot{S}_{\text{pump}} \text{ for } \tau = \frac{\pi}{2} \]

Efficiencies:

\[\eta_{\text{pump}} = \frac{\dot{W}_{\text{ext}}}{T_0 \dot{S}_{\text{pump}}} \]

\[\eta_{\text{vfb}} = \frac{\dot{W}_{\text{ext}}}{T_0 \dot{S}_{\text{vfb}}} \]
Very long delays lead to a colored noise

- Memory effect for $\tau \rightarrow \infty$?
- Correlation between $x_{t-\tau}$ and v_t:
 $$c(\tau) = \frac{1}{g} \frac{1}{\sigma_x \sigma_v} \left(\sigma_v^2 - 1 \right)$$
Very long delays lead to a colored noise

- Memory effect for $\tau \to \infty$?
- Correlation between $x_{t-\tau}$ and v_t:
 \[c(\tau) = \frac{1}{g} \frac{1}{\sigma_x \sigma_v} \left(\sigma_v^2 - 1 \right) \]
Outline

1. Role of time delay in science
2. Information engine
3. Results
4. Conclusion
Conclusion

- Importance of time delays in science.
- Pumping entropy is the tightest bound to the 2nd law.
- Memory effects blurred for very long delays.

Perspectives:

- Include noise
- A cyclic information engine
\[
\sigma_v^2 = \frac{1}{Q_0} \frac{\omega_2 f(\omega_2) - \omega_1 f(\omega_1)}{\omega_2^2 - \omega_1^2}
\]

\[
\omega_{1,2} = \sqrt{1 - \frac{1}{2Q_0^2}} \pm \frac{1}{Q_0} \sqrt{\Delta}
\]

\[
\Delta = g^2 - 1 + \frac{1}{4Q_0^2}
\]

\[
f(\omega) = \frac{\omega + [Q_0(1 - \omega^2) - g] \tan(\omega \tau/2)}{Q_0(1 - \omega^2) - g - \omega \tan(\omega \tau/2)}
\]
\(Q_0 \hat{S}_{\text{pump}} \)
\(Q_0 \hat{W}_{\text{ext}} / T_0 \)

(a)

(b)
Shrodinger: he asks himself how a living body manage to avoid decay. A obvious answer is by eating, drinking. But this causes the entropy in the living body to increase, therefore accelerating its death. This is why Shrodinger suggested that a living body feeds on negative entropy. But a living body is not a closed system where the entropy will have to increase. For open systems, the entropy can be reduced by exchanging heat and matter with the environment.

Neural network: Continuous-time analog neural networks with symmetric connections will always converge to fixed points when the neurons have infinitely fast response, but can oscillate when a small time delay is present. We analyze the dynamics of continuous-time analog networks with delay, and show that there is a critical delay above which a symmetrically connected network will oscillate. The results are useful as design criteria for building fast but stable electronic networks.

HIV infection: It is still an interesting exercise to determine how the intercellular delay affects overall disease progression. The stability of the steady infection state depends on the delay and even delay-induced oscillations could occur via instability.