Generalized 2nd law under non-Markovian feedback control using a levitated particle

Quantum Engineering of Levitated Systems Benasque Sep. 16 – 22

<u>Maxime Debiossac</u>, David Grass, Jose Joaquin Alonso, Eric Lutz & Nikolai Kiesel

Information on a system allows to extract more work

Isothermal process :

• Kelvin-Planck statement : 'no work can be cyclically extracted from a system coupled to a single reservoir at temperature T' :

 $W_{\rm ext} < 0$

Information on a system allows to extract more work

Isothermal process :

• Kelvin-Planck statement : 'no work can be cyclically extracted from a system coupled to a single reservoir at temperature T' :

 $\dot{W}_{\text{ext}} < 0$

• Role of information : $\dot{W}_{\rm ext} < k_B T \dot{I}$

Shoichi Toyabe et al, Nat. Phys., 2010

Information on a system allows to extract more work

Isothermal process :

• Kelvin-Planck statement : 'no work can be cyclically extracted from a system coupled to a single reservoir at temperature T' :

 $\dot{W}_{\rm ext} < 0$

• Role of information : $\dot{W}_{\rm ext} < k_B T \dot{I}$

• Pumping entropy : $\dot{W}_{ext} < k_B T \dot{S}_{pump}$

Rosinberg *et al*, PRE, 2015

Outline

- 1. Role of time delay in science
- 2. Information engine
- 3. Results
- 4. Conclusion

Outline

- 1. Role of time delay in science
- 2. Information engine
- 3. Results
- 4. Conclusion

Schrödinger: What is life?

Schrödinger (19**42**) : How does a living organism avoid decay? → It feeds on 'negative entropy'

Schrödinger: What is life?

Schrödinger (1942) : How does a living organism avoid decay? → It feeds on 'negative entropy'

'Negative entropy' or 'pumping entropy' (Kim & Qian, PRL, 2004)

VOLUME 93, NUMBER 12

PHYSICAL REVIEW LETTERS

week ending 17 SEPTEMBER 2004

Entropy Production of Brownian Macromolecules with Inertia

Kyung Hyuk Kim^{*} Department of Physics, University of Washington, Seattle, Washington 98195, USA

Hong Qian

Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA (Received 19 July 2003; published 16 September 2004)

We investigate the nonequilibrium steady-state thermodynamics of single Brownian macromolecules with inertia under feedback control in an isothermal ambient fluid. With the control being represented by a velocity-dependent external force, we find such an open system can have a <u>negative entropy</u> <u>production rate</u>, and we develop a mesoscopic theory consistent with the second law. We propose an equilibrium condition and define a class of external force, which includes the transverse Lorentz force, leading to equilibrium.

• Feedback is never instantaneous due to finite delay au.

- Feedback is never instantaneous due to finite delay τ .
- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)

- Feedback is never instantaneous due to finite delay τ .
- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)

Human balance J. Milton *et al*, Chaos, 2009

- Feedback is never instantaneous due to finite delay au.
- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)

Human balance J. Milton *et al*, Chaos, 2009

Stability of neural networks CM Marcus & RM Westervelt, PRA, 1989

- Feedback is never instantaneous due to finite delay τ .
- Continuous time-delayed differential equation (biology, chemistry, physics, engineering)

Human balance J. Milton *et al*, Chaos, 2009

Stability of neural networks CM Marcus & RM Westervelt, PRA, 1989

HIV infection PW Nelson & AS Perelson, Math. Biosci., 2002

Outline

- 1. Role of time delay in science
- 2. Information engine
- 3. Results
- 4. Conclusion

Protocol :

1) Measure position

Protocol :

1) Measure position

2) Apply a feedback force $\,F_{
m fb} \propto x_{t- au}$

Protocol:

1) Measure position

2) Apply a feedback force $\,F_{
m fb} \propto x_{t- au}$

Protocol:

1) Measure position

2) Apply a feedback force $\,F_{
m fb} \propto x_{t- au}$

 $\begin{array}{l} \mathbf{a} \\ \hline \mathbf{b} \\ \mathbf{b} \\ \mathbf{c} \\$

Realization of the protocol with a levitated particle

Harmonic trap :

$$\frac{\nu_0 = 400 \text{ kHz}}{\Gamma_p \approx 1 \text{ kHz}} \left. \right\} Q_0 = \frac{\nu_0}{\Gamma_p} \approx 100$$

Realization of the protocol with a levitated particle

Harmonic trap :

$$\begin{array}{c} \nu_0 = 400 \text{ kHz} \\ \Gamma_p \approx 1 \text{ kHz} \end{array} \right\} Q_0 = \frac{\nu_0}{\Gamma_p} \approx 100$$

Feedback :

Feedback gain : $g = \frac{\Gamma_{\rm fb}}{\Gamma_p} \approx 0.5$

Feedback delay : $au=2\pi
u_0 t$

$$(g,Q_0,\tau)$$

From equation of motion to the tightest bound of the 2nd law

From equation of motion to the tightest bound of the 2nd law

From equation of motion to the tightest bound of the 2^{nd} law

From equation of motion to the tightest bound of the 2nd law

The Information engine can cool or heat the particle motion

Cooling mode

The Information engine can cool or heat the particle motion

Outline

- 1. Role of time delay in science
- 2. Information engine
- 3. Results
- 4. Conclusion

Thermodynamics quantities are measured using the velocity variance

 $\sigma_v^2 = f(g, Q_0, \tau)$

Thermodynamics quantities are measured using the velocity variance

Pumping entropy is the tightest bound to the extracted work

Pumping entropy is the tightest bound to the extracted work

$$\dot{S}_{
m vfb}=\dot{S}_{
m pump}$$
 for $au=rac{\pi}{2}$

Pumping entropy is the tightest bound to the extracted work

Very long delays lead to a colored noise

- Memory effect for $\tau
 ightarrow \infty$?
- Correlation between $x_{t-\tau}$ and v_t : $c(\tau) = \frac{1}{g} \frac{1}{\sigma_x \sigma_v} \left(\sigma_v^2 1 \right)$

Very long delays lead to a colored noise

- Memory effect for $\tau
 ightarrow \infty$?
- Correlation between $x_{t-\tau}$ and v_t : $c(\tau) = \frac{1}{g} \frac{1}{\sigma_x \sigma_v} \left(\sigma_v^2 1 \right)$

Outline

- 1. Role of time delay in science
- 2. Information engine
- 3. Results
- 4. Conclusion

Conclusion

- Importance of time delays in science.
- Pumping entropy is the tightest bound to the 2nd law.
- Memory effects blurred for very long delays.

Perspectives :

- Include noise
- A cyclic information engine

$$\sigma_v^2 = \frac{1}{Q_0} \frac{\omega_2 f(\omega_2) - \omega_1 f(\omega_1)}{\omega_2^2 - \omega_1^2}$$
$$\omega_{1,2} = \sqrt{1 - \frac{1}{2Q_0^2} \pm \frac{1}{Q_0} \sqrt{\Delta}}$$
$$\Delta = g^2 - 1 + \frac{1}{4Q_0^2}$$
$$f(\omega) = \frac{\omega + [Q_0(1 - \omega^2) - g] \tan(\omega\tau/2)}{Q_0(1 - \omega^2) - g - \omega \tan(\omega\tau/2)}$$

Shrodinger : he asks himself how a living body manage to avoid decay. A obvious answer is by eating, drinking. But this causes the entropy in the living body to increase, therefore accelerating its death. This is why Shrodinger suggested that a living body feeds on negative entropy. But a living body is not a closed system where the entropy will have to increase. For open systems, the entropy can be reduced by exchanging heat and matter with the environement.

Neural network : Continuous-time analog neural networks with symmetric connections will always converge to fixed points when the neurons have infinitely fast response, but can oscillate when a small time delay is present. We analyze the dynamics of continuous-time analog networks with delay, and show that there is a critical delay above which a symmetrically connected network will oscillate. The results are useful as design criteria for building fast but stable electronic networks.

HIV infection : It is still an interesting exercise to determine how the intercellular delay affects overall disease progression. The stability of the steady infection state depends on the delay and even delay-induced oscillations could occur via instability.