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Electrodynamics Simulations 
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• for a point source 
• e.g. spontaneous emission rate, (L)DOS, 

thermal emission, dipole-dipole intn’s, … 

Maxwell’s Equations 

Green’s Tensor 

• general sources, general structure 
 



Electrodynamics Simulations 

3 

FDTD/FEM solution 

• Define structure & sources 
• Repeat simulation for each source distribution 
• Hinders study of problems requiring heavy 

computations 

• for a point source 
• e.g. spontaneous emission rate, (L)DOS, 

thermal emission, dipole-dipole intn’s, … 

Maxwell’s Equations 

Green’s Tensor 

• general sources, general structure 
 

Lumerical FDTD 



Electrodynamics Simulations – alternative 
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• eigenmode expansion 
• obtain modes in a single simulation 
• expand fields/Green function in terms of modes 

 
• textbook formulation –  

 
 
 

• Em called normal modes (stationary solutions) 
• E computed via a superposition integral 

 
 

e.g., Morse & Feshbach 1953 
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• obtain modes in a single simulation 
• expand fields/Green function in terms of modes 

 
• textbook formulation – only for closed, loss-free systems  

 
 
 

• Em called normal modes (stationary solutions) 
• E computed via a superposition integral 

• unsuitable for (most) nanophotonic systems 
• open problem! 
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Electrodynamics Simulations – alternative 
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• eigenmode expansion 
• obtain modes in a single simulation 
• expand fields/Green function in terms of modes 

 
• textbook formulation – only for closed, loss-free systems  

 
 
 

• Em called normal modes (stationary solutions) 
• E computed via a superposition integral 

• unsuitable for (most) nanophotonic systems  
• open problem! 

• in this talk – resolve the problem! 
 

e.g., Morse & Feshbach 1953 



• Previous derivations of a spectral formulation relied on frequency 
eigenvalues 

• real part – rate of phase accumulation 

• imaginary part – mode lifetime 

• Called quasi-normal modes 

 

 

 

 

• Lalanne group, Hughes group, Muljarov group, Kuipers group, … 

Eigenmode methods –  
complex frequency (ω) eigenvalues 
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• Previous derivations of a spectral formulation relied on frequency 
eigenvalues 

• real part – rate of phase accumulation 

• imaginary part – mode lifetime 

• Called quasi-normal modes 

• Example – a single sphere 

• Internal field  

• (complex) eigen-frequency defines a resonance 

• associated with a long series of complications 
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ϵb 

ϵi (ωm) 

Eigenmode methods –  
complex frequency (ω) eigenvalues 

• accepts only analytical models for ϵ 
• modes diverges at infinity 
• non-linear eigenvalue equation  
• approximate: incomplete basis 
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ϵb 

ϵi (ωm) 

• accepts only analytical models for ϵ 
• modes diverges at infinity 
• non-linear eigenvalue equation  
• approximate: incomplete basis 

Eigenmode methods –  
complex frequency (ω) eigenvalues 



• Previous derivations of a spectral formulation relied on frequency 
eigenvalues 

• real part – rate of phase accumulation 

• imaginary part – mode lifetime 

• Called quasi-normal modes 

 

 

• Example – 1D slab (Lalanne et al., 2017) 

• Excellent agreement inside the slab 

• Fields outside slab totally wrong;  

increasing # of modes does not help  
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divergence 

Eigenmode methods –  
complex frequency (ω) eigenvalues 



• Previous derivations of a spectral formulation relied on frequency 
eigenvalues 

• real part – rate of phase accumulation 

• imaginary part – mode lifetime 

 

• Alternative – permittivity (ϵ) eigenvalues 

• radiation loss compensated by “artificial” gain in εm  

• decay in space 

• Normal modes! 
 

• Previous work – Bergman (1979 – ), Agranovitch group, Stone group (SALT) 

 

Eigenmode methods –  
complex permittivity (ϵ) eigenvalues 
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ϵb ϵi 

ϵm≠ϵi 

 



• Previous derivations of a spectral formulation relied on frequency 
eigenvalues 

• real part – rate of phase accumulation 

• imaginary part – mode lifetime 

 

• Alternative – permittivity (ϵ) eigenvalues 

• radiation loss compensated by “artificial” gain in εm  

• decay in space 

• Normal modes! 

• In this talk 

1. simple derivation 

2. expression for  Green‘s tensor 

3. easy numerical implementation 
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Eigenmode methods –  
complex permittivity (ϵ) eigenvalues 

ϵb ϵi 

ϵm≠ϵi 

 



Derivation I 

Treat structure as another source of inhomogeneity 
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Begin with Helmholtz equation with sources 

by moving to Right-Hand-Side 

ϵb 

ϵi 

ϴ(r) = Heaviside function 

ϴ(r) = 1 

ϴ(r) = 0 



Derivation I 

Treat structure as another source of inhomogeneity 

Green’s function solution (Lippmann-Schwinger) 

where 

14 

Begin with Helmholtz equation with sources 

by moving to Right-Hand-Side 

ϵb 

ϵi 

ϴ(r) = Heaviside function 

ϴ(r) = 1 

ϴ(r) = 0 In absence of a source, get an eigenvalue problem 



Derivation II 

Formal solution: 
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Compact notation: Farhi & Bergman, PRA (2016) 



Derivation II 

Formal solution: 

Solve by projecting onto eigenmodes (left multiplication) 

Substituting into the Lippmann-Schwinger equation gives field everywhere  

operate to the left (on bra) 
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NB: ϵm≠ϵi 

ϵb ϵi 
ϵm 

Compact notation: Farhi & Bergman, PRA (2016) 



Analytic solution for Fields 

Eigenmodes provide total field 
for all source and detector configurations in a single simulation! 
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NB: ϵm≠ϵi 

r’ r ϵi 

ϵb 

ϵm 

radiation  
w/o structure 

detuning 
from resonance 

source-mode overlap structure w/o radiation 



Analytic solution for Fields 
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• Straightforward physical interpretation 
• Rigorous everywhere (completeness) 
• Applicable to any (complex) inclusion material 
• Same analytical form for all sources – far field, near field, …  

 

NB: ϵm≠ϵi 

r’ r ϵi 

ϵb 

ϵm 

radiation 
w/o structure 

detuning 
from resonance 

source-mode overlap 

Eigenmodes provide total field 
for all source and detector configurations in a single simulation! 



Analytic solution for Green’s Function – I 
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NB: ϵm≠ϵi 

r’ r ϵi 

ϵb 

ϵm 

for a point source: 

free-space 
Green’s tensor 

detuning 
from resonance 

Eigenmodes provide Green’s tensor 
for all source and detector configurations in a single simulation! 
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NB: ϵm≠ϵi 

r’ r ϵi 

ϵb 

ϵm 

for a point source: 

• Different from “standard” Green function expansion 
• valid for lossy and/or open systems 
• includes source 
• rigorous everywhere (completeness) 
• extra factor vanishes on resonance 

Analytic solution for Green’s Function – II 

free-space 
Green’s tensor 

detuning 
from resonance 

Eigenmodes provide Green’s tensor 
for all source and detector configurations in a single simulation! 
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NB: ϵm≠ϵi 

r’ r ϵi 

ϵb 

ϵm 

for a point source: 

GEneralised Normal Mode Expansion – GENOME  

Analytic solution for Green’s Function – II 

free-space 
Green’s tensor 

detuning 
from resonance 

Chen, Bergman & Sivan, ArXiv 

Eigenmodes provide Green’s tensor 
for all source and detector configurations in a single simulation! 
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solve by contour methods (Chen & Sivan, Comp. Phys. Comm. 2017) 

Finding the ϵ-Eigenmodes 

Analytic 
spheres, slabs, cylinders For simple structures solve dispersion relation 

e.g., step-index fiber dispersion relation e.g., sphere dispersion relation e.g., slab dispersion relation 



Comparison to Mie Solution 

Mie 

ka = 1, εm = -1.4+0.2i, εi = -1.4-0.2i, source at 1.5a 
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Real 

Imaginary 

On Resonance 

 Eigenmode search: PY Chen, Y Sivan, 

CPC 214 105 (2017); free codes! 

GENOME 

Line dipole source near cylinder;  Gxx component of the electric field 



Comparison to Mie Solution 

Mie 

ka = 1, εm = -1.4+0.2i, εi = -1.4-0.2i, source at 1.5a 
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Real 

Imaginary 

On Resonance 

 Eigenmode search: PY Chen, Y Sivan, 

CPC 214 105 (2017); free codes! 

• inside and arbitrarily far outside cylinder 
• including source.. 
• Imaginary and real part 

GENOME 

Line dipole source near cylinder; Arbitrary close to Mie solution  

~ QNM 

GENOME 



Line dipole source near cylinder; Arbitrary close to Mie solution  

Mie 
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Real 

Imaginary 

Half Maximum 

Comparison to Mie Solution 

 Eigenmode search: PY Chen, Y Sivan, 

CPC 214 105 (2017); free codes! 

ka = 1, εm = -1.4+0.2i, εi = -2-0.2i, source at 1.5a 

GENOME 

• on and off resonance  



General structure – COMSOL implementation 
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Eigenvalue equation – differential form 

However, COMSOL only solves for k as eigenvalue 

solved by simple substitution trick 

ϵm = 0.28+0.056i ϵm = 0.42+0.016i ϵm = 0.56+0.009i 

Chen, Bergman & Sivan, ArXiv 

Results Bowtie antenna 
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Results Bowtie antenna 

• agreement up to  2-3 digits with < 10 
modes 

Chen, Bergman & Sivan, ArXiv 

Eigenvalue equation – differential form 

However, COMSOL only solves for k as eigenvalue 

solved by simple substitution trick 

Imag(Gxx) Real(Gxx) 

General structure – COMSOL implementation 



Extensions – I 
• Compute modes of “distorted” geometries semi-analytically  

• with E. Muljarov, Cardiff 

• reliable eigenvalue solver for any geometry; inhomogeneous permittivity 

• exact solution without solving any PDE!  
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“distortions” can be arbitrarily deep due to completeness 
~ 100 times faster than COMSOL; fully reliable 



Extensions – II 
• Compute modes of “distorted” geometries semi-analytically  

• with E. Muljarov, Cardiff 

• reliable eigenvalue solver for any geometry; inhomogeneous permittivity  

• exact solution without solving any PDE!  

 

 

 

 

 

• “Distort” frequency 
• obtain lineshapes from a single calculation 

• overcome only advantage of quasi-normal modes… 
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“distortions” can be arbitrarily deep due to completeness 
~ 100 times faster than COMSOL; fully reliable 



Additional results  
• Exact version of “hybridization theory” 

 

 

 

 

 

• Extend formulation to periodic systems (underway) 

 

• Solve an old problems in nonlinear optics – surface nonlinearity 

   [Reddy et al. JOSAB (2017)] 

• Extend to magnetic materials [Bergman, Farhi, Chen, submitted] 
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Two Cylinder 

Modes 

eigenmode “source” 



Summary – I  
• Generalization of normal mode expansions to lossy/open 

systems (GENOME) 
• solve problem that was open for decades 

 

• Orders-of-magnitude faster than “brute-force” numerics 

 

• Exact; compatible with any numerical scheme currently in 
use.. 

 

• Deep physical insights 
• modal contribution, interference and competition, … 
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Summary – II  
• Especially useful for computationally-heavy problems 

• Metamaterial design, thermal emission, heat transfer, … 

• Purcell effect calculations  

• e.g., graphene flakes.. 

• vdW forces, quantum friction, … 

• Forster energy transfer 

• … 

•  Looking for interesting problems & interested colleagues… 
• experimentalists , theoreticians, numerics experts, … 

• open positions for students/post docs 
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