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Electrodynamics Simulations

tMaxweII’s EquationsJ

V x (V x E(r)) — e(r)K*E(r) = iwpo]f(r) e general sources, general structure

[Green’s Tensor J

e for a point source
* e.g.spontaneous emission rate, (L)DOS,
thermal emission, dipole-dipole intn’s, ...

V x(V x &(r,r’)) - e(r)kz(H}(r,r’) = kzg(r— 7]



Electrodynamics Simulations

LMaxweII’s Equations

V x (V x E(r)) — e(r)K*E(r) = iwpo]f(r) * general sources, general structure

[ Green’s Tensor J

e for a point source
* e.g.spontaneous emission rate, (L)DOS,
thermal emission, dipole-dipole intn’s, ...

V x (V x 8(1‘,1")) - e(r)kz(H}(r,r’) = kzg(r —7')

' FDTD/FEM solution

* Define structure & sources

* Repeat simulation for each source distribution

e Hinders study of problems requiring heavy
computations

Lumerical FDTD



Electrodynamics Simulations — alternative

* eigenmode expansion
e obtain modes in a single simulation
* expand fields/Green function in terms of modes

e textbook formulation —

Er ) = Em/gri;;r')

e.g., Morse & Feshbach 1953
m

* E,, called normal modes (stationary solutions)
* E computed via a superposition integral
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Electrodynamics Simulations — alternative

* eigenmode expansion

e obtain modes in a single simulation
* expand fields/Green function in terms of modes

e textbook formulation — only for closed, loss-free systems

Er ) = E”’”‘Q’?ﬁ)

e.g., Morse & Feshbach 1953
m

* E,, called normal modes (stationary solutions)
* E computed via a superposition integral

e unsuitable for (most) nanophotonic systems
e open problem!

* in this talk — resolve the problem!




Eigenmode methods —
complex frequency (w) eigenvalues

- Previous derivations of a spectral formulation relied on frequency
eigenvalues

- real part — rate of phase accumulation
- imaginary part — mode lifetime

- Called quasi-normal modes

- Lalanne group, Hughes group, Muljarov group, Kuipers group, ...
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Eigenmode methods —

complex frequency (w) eigenvalues

- Previous derivations of a spectral formulation relied on frequency
eigenvalues

- real part — rate of phase accumulation
- imaginary part — mode lifetime €,

- Called quasi-normal modes

- Example — a single sphere
- Internal field E~ (2¢5+¢;)7" €i(wm) = —2¢,
- (complex) eigen-frequency defines a resonance
- associated with a long series of complications
* accepts only analytical models for €
 modes diverges at infinity

1 W\ 2
* non-linear eigenvalue equation e i (T) Em
e approximate: incomplete basis
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Eigenmode methods —
complex frequency (w) eigenvalues

- Previous derivations of a spectral formulation relied on frequency
eigenvalues

- real part — rate of phase accumulation
- imaginary part — mode lifetime

- Called quasi-normal modes

(a) 15

— 5 QNMs
— 13 QNMs

- Example — 1D slab (Lalanne et al., 2017) 1 |--z01anms

O Fabry-Perot

W
;

- Excellent agreement inside the slab 05 |

- Fields outside slab totally wrong; S o
increasing # of modes does not help g

dive rgence /’1'_53“2 -LI2 L2 L2



Eigenmode methods —
complex permittivity (€) eigenvalues

- Previous derivations of a spectral formulation relied on frequency
eigenvalues

- real part — rate of phase accumulation
- imaginary part — mode lifetime

- Alternative — permittivity (€) eigenvalues

- radiation loss compensated by “artificial” gain in €, 2 €,

- decay in space \/\/\/\/\/
Em*€;

- Normal modes!

- Previous work — Bergman (1979 — ), Agranovitch group, Stone group (SALT)



Eigenmode methods —
complex permittivity (€) eigenvalues

- Previous derivations of a spectral formulation relied on frequency
eigenvalues

- real part — rate of phase accumulation
- imaginary part — mode lifetime

- Alternative — permittivity (€) eigenvalues

- radiation loss compensated by “artificial” gain in €, - €,
)
- decay in space W
€, 7E€;
- Normal modes! i

* In this talk
1. simple derivation

2. expression for Green’s tensor
3. easy numerical implementation



Derivation |

N | / Begin with Helmholtz equation with sources
—e— V x (V x E(r)) — e(r)RE(r) = icopoJy (r)

Treat structure as another source of inhomogeneity
V x (V x E) — e,k*E = (e; — €;)0(r)k*E + iwpo ¢ (r)

— EI. —
' d
/ \ \ by moving to Right-Hand-Side

©(r) = Heaviside function




Derivation |

N [ / Begin with Helmholtz equation with sources
— 0 — V x (V x E(r)) — e(r)K*E(r) = icwpo] ¢ (r)

Treat structure as another source of inhomogeneity
— sy V x (V x E) — e,k*E = (€ — €,)0(r)k*E + icwpoJ(r)

/ \ \ by moving to Right-Hand-Side

Green’s function solution (Lippmann-Schwinger)

E(r) = (=) [ Gollr = DOG)EW) Y + —— [ Go(lr—#'])J,(r) ar
—— - A~ Wep - _
u r 0 I

6(r) = Heaviside function where ¥ x (V x &0) _ ekaEO _ kz‘g(r —7)

1 6(r) = 0 ; .
: : In absence of a source, get an eigenvalue problem
[ o ” A 1
: 1 Eu(r) =(ey — eb)/Go(\r—r’\)@(r’)Em(r')dr’ ——> (E |6 = E<Em‘
I : — DY —~
I ! U r 0



Derivation Il

E(r) = (ci— ) [ Collr =7/

u

O(r VE(r') dr’ + WLGO/ EO(|r—r'|)J]f(r')dr'

f

,

=

E

Compact notation: E

A A i A
ul'6E + —T i
+ weo Jf Farhi & Bergman, PRA (2016)

1 I .
Formal solution: E = (1 — é)



Derivation Il

E(r) = (e _Eb)/a

N N

o(lr = OEC) d - [ Gollr = )15

u I

=

T

——>  Compact notation: E=ul0E+ —F]f Farhi & Bergman, PRA (2016)

wep
Formal solution: —( ! ) =y
ormal solution: =\ ) el
. Solve by projecting onto eigenmodes (left multiplication)
b 1
S =Y 0|En)(En|0 (Ep|T0 = —(E,,|
A L 61En) (Enl —(En
operate to the left (on bra)
NB: €, #€ £
—iwed|E) = 29|Em (Eml= MUf ):9|Em A

Substituting into the Lippmann-Schwinger equation gives field everywhere




Analytic solution for Fields

’ €
ro =9/ r

° € -~ NB: €, #€;
(Em

Eigenmodes provide total field
for all source and detector configurations in a single simulation!

— €p + r
(T") I(U€ Z m (Em - 61 em o Gb) f
| J \ ’
radiation structure w/o radiation

w/o structure
N
- . —
/ l AN >
!

[ Gollr =+ 1)1 dr



Analytic solution for Fields

7 € —_
oS =

° € -~ NB: €, #€;

Eigenmodes provide total field
for all source and detector configurations in a single simulation!

E(r) = L Y En(r — fE’f £(r')dv
I(JJE’Q p — 6’1 E’m — Gb
N d
radiation detunlng

source-mode overlap
w/o structure from resonance

e Straightforward physical interpretation

* Rigorous everywhere (completeness)

» Applicable to any (complex) inclusion material

e Same analytical form for all sources — far field, near field, ...



Analytic solution for Green’s Function — |

for a point source:

oS = &
(') = Joo(r") ° e NB: €,,7€;
» m
Eigenmodes provide Green’s tensor
for all source and detector configu rations in a single simulation!

pas € —€p t
G(r,r G r—r E ! E' (r
( ) \ 0 | | k2 Z m —ei)(Em—eb)J m( )
free-space detuning

Green’s tensor from resonance



Analytic solution for Green’s Function — I

for a point source:
r —>.f
e r

€; : .
Jr(r") = Jod(r) ° VAN NB: €,#€

m
»

Eigenmodes provide Green’s tensor
for all source and detector configurations in a single simulation!

E(r,r) GO r—r| ZZEm i EY (r)
. k €m — €i)(€m — €p)
free-space detuning

Green’s tensor from resonance

* Different from “standard” Green function expansion
* valid for lossy and/or open systems .
* includes source G(r,r') =
* rigorous everywhere (completeness)
* extra factor vanishes on resonance

En(r)E; (r7)
A — A

1



Analytic solution for Green’s Function — I

for a point source:
-

€; : .
Jr(r") = Jod(r) ° VAN NB: €,#€

’.m

Eigenmodes provide Green’s tensor
for all source and detector configu rations in a single simulation!

E(rr) G (|r r| ZE i
7 0 -
\ 2 = —€;)(ém — €p)
free-space detuning
Green’s tensor from resonance

E; (1)

GEneralised Normal Mode Expansion — GENOME

Chen, Bergman & Sivan, ArXiv



Finding the e-Eigenmodes

Analytic

spheres, slabs, cylinders For simple structures solve dispersion relation

(ﬁl,n]:fn(”ﬂ) _ Y@ e e _&Hﬁn(aba))_<m_ﬁ)2( 1 )2:0
aed | ]m(ng) ym(a)\aca Jm(aca) — apa Hy(apa) k (ea)?  (awpa)?

e.g., shErdisiiEdreiodispiaticon relation
solve by contour methods (Chen & Sivan, Comp. Phys. Comm. 2017)




Comparison to Mie Solution

Line dipole source near cylinder; G,, component of the electric field

[ On Resonance J ka =1, e, =-1.4+0.2i, ;= -1.4-0.2i, source at 1.5a

ie GENOME
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Eigenmode search: PY Chen, Y Sivan,
CPC 214 105 (2017); free codes!



Comparison to Mie Solution

Line dipole source near cylinder; Arbitrary close to Mie solution

[ On Resonance ‘

Imaginary

-1

-2

inside and arbitrarily far outside cylinder

Mie

OH

-

including source..
Imaginary and real part

GENOME

2

error (dB)

ka =1, e, =-1.4+0.2i, ;= -1.4-0.2i, source at 1.5a

~ QNM

-
GENOME ==

50 100
# modes

Eigenmode search: PY Chen, Y Sivan,
CPC 214 105 (2017); free codes!



Comparison to Mie Solution

Line dipole source near cylinder; Arbitrary close to Mie solution

[ Half Maximum J ka =1, g, =-1.4+0.2i, ;= -2-0.2i, source at 1.5a
Mie GENOME
2 2
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Imaginary 0 o 0
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on and off resonance

Eigenmode search: PY Chen, Y Sivan,
CPC 214 105 (2017); free codes!



General structure — COMSOL implementation

Eigenvalue equation — differential form
V x (V x Ey) — €pkiEym = (e — €4)0(r)k3En,
However, COMSOL only solves for k as eigenvalue
V x (V X Ep(r)) — &(@, r)k3 Ep(r) =0

solved by simple substitution trick

\ Results ‘ Bowtie antenna

€,, = 0.28+0.056i €, = 0.42+0.016i €,, = 0.56+0.009i

Chen, Bergman & Sivan, ArXiv



General structure — COMSOL implementation

Eigenvalue equation — differential form
V x (V x Ey) — €pkiEym = (e — €4)0(r)k3En,
However, COMSOL only solves for k as eigenvalue
V x (V X Ep(r)) — &(@, r)k3 Ep(r) =0

solved by simple substitution trick

[ Results J Bowtie antenna

* agreement up to 2-3 digits with < 10
modes

GENOME
| . B
t .-
- - o #
Direct Simulation
F "
.
{ r %'
Real(G,,) Imag(G,,)

Chen, Bergman & Sivan, ArXiv




Extensions — |

- Compute modes of “distorted” geometries semi-analytically
- with E. Muljarov, Cardiff
- reliable eigenvalue solver for any geometry; inhomogeneous permittivity
- exact solution without solving any PDE!

—> - v

“distortions” can be arbitrarily deep due to completeness
~ 100 times faster than COMSOL; fully reliable




Extensions — |1

- Compute modes of “distorted” geometries semi-analytically
- with E. Muljarov, Cardiff
- reliable eigenvalue solver for any geometry; inhomogeneous permittivity
- exact solution without solving any PDE!

“distortions” can be arbitrarily deep due to completeness
~ 100 times faster than COMSOL; fully reliable

- “Distort” frequency
- obtain lineshapes from a single calculation
- overcome only advantage of quasi-normal modes...



Additional results

- Exact version of “hybridization theory”

eigenmode source

Two Cylinder
Modes

- Extend formulation to periodic systems (underway)

- Solve an old problems in nonlinear optics — surface nonlinearity
[Reddy et al. JOSAB (2017)]
- Extend to magnetic materials [Bergman, Farhi, Chen, submitted]



Summary — |

- Generalization of normal mode expansions to lossy/open
systems (GENOME)

- solve problem that was open for decades

- Orders-of-magnitude faster than “brute-force” numerics

- Exact; compatible with any numerical scheme currently in
use..

- Deep physical insights

- modal contribution, interference and competition, ...




Summary — Il
- Especially useful for computationally-heavy problems

- Metamaterial design, thermal emission, heat transfer, ...

- Purcell effect calculations
* e.g., graphene flakes..

- vdW forces, quantum friction, ...
- Forster energy transfer

- Looking for interesting problems & interested colleagues...

- experimentalists , theoreticians, numerics experts, ...
- open positions for students/post docs




