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Assumptions 

We consider:  
– monochromatic optical fields  
– in isotropic and lossless media. 
 
(a) The fields are generally structured (inhomogeneous): 
  
 
(b,c) The media are inhomogeneous and dispersive: 
 
 
This includes “structured light  
in structured matter”. 

Re E r( )e− iωt⎡⎣ ⎤⎦ , Re H r( )e− iωt⎡⎣ ⎤⎦;

ε r,ω( ) , µ r,ω( ).
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are in general not symmetric (γ+ ≠  γ−) and the β factor is direction- 
dependent; see Box 2 for a detailed introduction of the β factor.

In the ideal case, the polarizations at the position of the emitter are 
circular and thus orthogonal for opposite propagation directions. These 
in-plane polarizations for specific propagation directions are illustrated 
in Fig. 2a, c. A circularly polarized dipole emitter that is matched to the 
local polarization of one propagation direction emits solely along this 
direction. This is the basic principle of chiral coupling leading to direc-
tional photon emission: a circularly polarized dipole emits preferentially 
along one direction in the waveguide depending on the polarization of 
the transition. This phenomenon is shown in Fig. 4a for a photonic- 
crystal waveguide. Directional emission has been observed experi-
mentally with a range of different emitters coupled to various photonic 
nanostructures19–33.

We emphasize that the propagation of light in the waveguides consid-
ered here is fully reciprocal. Chiral effects occur only from the interplay 
between spin–momentum locking and the polarization properties of the 
emitter. Consequently, chiral light–matter interaction is distinctly different  
from the phenomena of chiral edge channels, which were observed 
in recent seminal experiments in condensed-matter36 and photonic 

systems37–41. These chiral edge channels emerge as manifestations of 
topology in two-dimensional materials, leading to topological protection 
against backscattering from disorder. The coupling of quantum emitters to 
photonic chiral edge channels has been proposed42. However, for photons,  
full protection against backscattering requires breaking of Lorentz reciproc-
ity via, for example, magneto-optical materials. In this case, the direction  
of the waveguide–emitter coupling is therefore externally imposed, 
whereas for chiral coupling of an emitter to a reciprocal waveguide that 
features spin– momentum locking both coupling directions are available 
for (quantum) applications and protocols.

Two different coupling regimes are identified depending on the cou-
pling strength between the emitter and the counter-propagating modes. 
For free-space beams or homogeneous dielectric waveguides, chiral 
effects occur when the emitter is positioned away from the beam centre. 
Consequently, substantial coupling to non-guided modes occurs (β <<  1). 
Nonetheless, the residual coupling to the waveguide modes may still be 
fully chiral—for example, γ+ ≠  0 and γ− =  0. For β ! 1/2 the emitter 
dynamics is dominated by the coupling to the waveguide mode, and in the 
extreme case of β ≈  1 a fully deterministic single-photon–single-emitter  
interface is obtained. This regime can be reached by suppressing the 
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Figure 2 | Electric field polarization and spin in optical nanofibres 
and waveguides. a, Colour map of the field intensity of a vacuum-clad 
optical nanofibre. The local polarization is represented by blue, red and 
black arrows to indicate the two circular in-plane polarizations (blue and 
red) and linear polarization (black). The radius of the fibre is 250 nm, 
its refractive index is 1.45 and the propagation direction is along + z at 
a wavelength of 852 nm. b, Colour map of the electric spin density | SE|  

in the cross-sectional plane of the nanofibre, with arrows indicating the 
spin direction. c, Colour map of the field intensity and local polarization 
of a photonic-crystal glide-plane waveguide27. The grey arrow shows the 
propagation direction. In all panels, the linear colour scale ranges from 
zero (dark colours) to maximum (light colours). The lattice constant is 
240 nm, the membrane thickness is 160 nm, the wavelength is 911 nm and 
the membrane refractive index 3.46.
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Figure 3 | Nanophotonic devices used for chiral coupling between light 
and quantum emitters. a, Optical nanofibre with an array of cold atoms 
(yellow circles) trapped in the evanescent field surrounding the fibre.  
A left-handed circularly polarized laser beam (vertical green arrow) excites 
the atoms. The fluorescence light that the atoms emit into the nanofibre 
propagates almost exclusively in the –z-direction (horizontal green arrow). 
b, c, Whispering-gallery-mode microresonators that confine light via 
total internal reflection and provide strong coupling to a single rubidium 
atom. d, Cross of two nanowire planar waveguides with guided modes 
coupled to a quantum dot placed in the crossing region. Two out-coupling 
gratings at the end of the waveguides are used to couple light vertically 

off the photonic chip. e, Two-dimensional photonic-crystal membrane 
with an introduced waveguide obtained by leaving out a row of holes of 
the photonic lattice. A single layer of quantum dots is embedded in the 
centre of the membrane (indicated as yellow triangles in the inset). The 
inset shows a close-up of the photonic crystal lattice. Image in a adapted 
from ref. 26, Nature Publishing Group. Image in b adapted from ref. 20, 
American Physical Society. Image in c adapted from ref. 25, American 
Association for the Advancement of Science. Image in d adapted from 
ref. 19, American Physical Society. Image in e reproduced from ref. 87, 
American Association for the Advancement of Science.
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Abraham–Minkowski dilemma 

When mentioning optical momentum in a medium, 
the first question is: Abraham or Minkowski?  

    
PA = k0 Re E*× H( )   PM = εµPA

M. Abraham H. Minkowski 

Brevik PR (1979); Pfeifer et al. RMP (2007); Milloni, Boyd AOP (2010); Kemp JAP (2011)  



Abraham–Minkowski dilemma 

The “naïve” explanation of the Abraham momentum 
density is related to the relativity, velocity of photons, 
i.e., their kinetic properties: 
 
 
 
 
 
 
 
 
However, this makes sense only for plane–wave–like 
photons in homogeneous transparent media. 

    
PA = mv = E

c2

c
!n
=
"k0

!n

A. Einstein   n = εµ ,
  
!n = n+ω dn

dω



In turn, the Minkowski momentum density is 
explained via the quantum–mechanical de Broglie 
relation with the wavevector,  
i.e., canonical property: 
 
 
 
 
 
However, this works only for  
plane–wave–like photons in  
homogeneous, non–dispersive, and transparent media. 

Abraham–Minkowski dilemma 

    PM = !k = n!k0

L. de Broglie 



Abraham–Minkowski dilemma 

Therefore, the Abaraham and Minkowski momenta are 
often associated with the kinetic (velocity) and 
canonical (wavevector) properties of plane–wave–like 
photons in homogeneous, transparent, and 
dispersionless media. 
 
 

Even in simple dispersive media, one needs to modify 
the Minkowski momentum to get the canonical de 
Broglie result: 
 
 

However, we need a theory working for structured light 
in structured media! 

    
!PM = PM + disp.{ } = "k

Dewar (1977); Nelson (1991);  
Garrison & Chiao (2004); Barnett (2010); Dodin & Fisch (2012). 



Abraham–Minkowski dilemma 
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are in general not symmetric (γ+ ≠  γ−) and the β factor is direction- 
dependent; see Box 2 for a detailed introduction of the β factor.

In the ideal case, the polarizations at the position of the emitter are 
circular and thus orthogonal for opposite propagation directions. These 
in-plane polarizations for specific propagation directions are illustrated 
in Fig. 2a, c. A circularly polarized dipole emitter that is matched to the 
local polarization of one propagation direction emits solely along this 
direction. This is the basic principle of chiral coupling leading to direc-
tional photon emission: a circularly polarized dipole emits preferentially 
along one direction in the waveguide depending on the polarization of 
the transition. This phenomenon is shown in Fig. 4a for a photonic- 
crystal waveguide. Directional emission has been observed experi-
mentally with a range of different emitters coupled to various photonic 
nanostructures19–33.

We emphasize that the propagation of light in the waveguides consid-
ered here is fully reciprocal. Chiral effects occur only from the interplay 
between spin–momentum locking and the polarization properties of the 
emitter. Consequently, chiral light–matter interaction is distinctly different  
from the phenomena of chiral edge channels, which were observed 
in recent seminal experiments in condensed-matter36 and photonic 

systems37–41. These chiral edge channels emerge as manifestations of 
topology in two-dimensional materials, leading to topological protection 
against backscattering from disorder. The coupling of quantum emitters to 
photonic chiral edge channels has been proposed42. However, for photons,  
full protection against backscattering requires breaking of Lorentz reciproc-
ity via, for example, magneto-optical materials. In this case, the direction  
of the waveguide–emitter coupling is therefore externally imposed, 
whereas for chiral coupling of an emitter to a reciprocal waveguide that 
features spin– momentum locking both coupling directions are available 
for (quantum) applications and protocols.

Two different coupling regimes are identified depending on the cou-
pling strength between the emitter and the counter-propagating modes. 
For free-space beams or homogeneous dielectric waveguides, chiral 
effects occur when the emitter is positioned away from the beam centre. 
Consequently, substantial coupling to non-guided modes occurs (β <<  1). 
Nonetheless, the residual coupling to the waveguide modes may still be 
fully chiral—for example, γ+ ≠  0 and γ− =  0. For β ! 1/2 the emitter 
dynamics is dominated by the coupling to the waveguide mode, and in the 
extreme case of β ≈  1 a fully deterministic single-photon–single-emitter  
interface is obtained. This regime can be reached by suppressing the 
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Figure 2 | Electric field polarization and spin in optical nanofibres 
and waveguides. a, Colour map of the field intensity of a vacuum-clad 
optical nanofibre. The local polarization is represented by blue, red and 
black arrows to indicate the two circular in-plane polarizations (blue and 
red) and linear polarization (black). The radius of the fibre is 250 nm, 
its refractive index is 1.45 and the propagation direction is along + z at 
a wavelength of 852 nm. b, Colour map of the electric spin density | SE|  

in the cross-sectional plane of the nanofibre, with arrows indicating the 
spin direction. c, Colour map of the field intensity and local polarization 
of a photonic-crystal glide-plane waveguide27. The grey arrow shows the 
propagation direction. In all panels, the linear colour scale ranges from 
zero (dark colours) to maximum (light colours). The lattice constant is 
240 nm, the membrane thickness is 160 nm, the wavelength is 911 nm and 
the membrane refractive index 3.46.
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Figure 3 | Nanophotonic devices used for chiral coupling between light 
and quantum emitters. a, Optical nanofibre with an array of cold atoms 
(yellow circles) trapped in the evanescent field surrounding the fibre.  
A left-handed circularly polarized laser beam (vertical green arrow) excites 
the atoms. The fluorescence light that the atoms emit into the nanofibre 
propagates almost exclusively in the –z-direction (horizontal green arrow). 
b, c, Whispering-gallery-mode microresonators that confine light via 
total internal reflection and provide strong coupling to a single rubidium 
atom. d, Cross of two nanowire planar waveguides with guided modes 
coupled to a quantum dot placed in the crossing region. Two out-coupling 
gratings at the end of the waveguides are used to couple light vertically 

off the photonic chip. e, Two-dimensional photonic-crystal membrane 
with an introduced waveguide obtained by leaving out a row of holes of 
the photonic lattice. A single layer of quantum dots is embedded in the 
centre of the membrane (indicated as yellow triangles in the inset). The 
inset shows a close-up of the photonic crystal lattice. Image in a adapted 
from ref. 26, Nature Publishing Group. Image in b adapted from ref. 20, 
American Physical Society. Image in c adapted from ref. 25, American 
Association for the Advancement of Science. Image in d adapted from 
ref. 19, American Physical Society. Image in e reproduced from ref. 87, 
American Association for the Advancement of Science.
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Structured light in free space 

The momentum and angular momentum (AM) 
properties of structured light were recently studied in 
detail in free space.  
 

In this case the Abraham and Minkowski momenta 
converge to the Poynting momentum: 
 
 
 
However, the Poynting vector is a  
kinetic (energy–flux) property, which  
cannot describe canonical (wavevector) 
momentum of structured light. 
 

    
P = k0 Re E*× H( )

J. H. Poynting 



Simple example: an evanescent wave 
 
 

 
 

 
 
 
Its wavevector corresponds to the “supermomentum” 
                
   

but the Poynting vector is always “subluminal”:  
 

                                     i.e.,                  per photon.  

Structured light in free space 

 !kz > !k0,

∝ exp ikzz −κ x( ).

 c
2 P /W < c,

Huard & Imbert (1978); Matsudo et al. (1998); Bliokh et al.; Barnett & Berry (2013) 

kz > k0

 kx = iκ  k
 x

z
y

 E

 H

  P < !k0



Structured light in free space 

The canonical (orbital) momentum density for 
structured free–space light was first written by  
M. V. Berry (2009): 
 
 
 
 
It describes the local wavevector  
properties of structured fields, 
Including “supermomentum” 
 

                       i.e.,  

Berry JOA (2009); Bliokh et al. NJP (2013) 

M. V. Berry 

P = 1
2

Im E* ⋅ ∇( )E+ H* ⋅ ∇( )H⎡⎣ ⎤⎦

c2 P /W > c,  P = !kz > !k0.



Structured light in free space 

The difference between the kinetic (Poynting) and 
canonical pictures is closely related to the spin–orbital 
AM decomposition: 
 
 
 

P = 1
2

Im E* ⋅ ∇( )E+ H* ⋅ ∇( )H⎡⎣ ⎤⎦    
P = k0 Re E*× H( )

  J = r ×P

Kinetic (Poynting) Canonical (spin–orbital) 

S = 1
2

Im E* × E+ H* × H⎡⎣ ⎤⎦

L = r × P

  J = L + S   P = P ,Integral: 



Structured light in free space 

Canonical picture perfectly describes momentum, spin, 
and orbital AM properties of free–space light: 
 
 
 
 
 
 
 
 
 
What are the canonical properties of light in media? 

O’Neil et al. PRL (2002);  Garces-Chavez et al. PRL (2003); 
Bliokh et al., NC (2014); PRL (2014); PRX (2015); PR (2015); NP (2016). 





Brillouin energy density 

The main known quantity that works perfectly for 
structured fields in complex media is the Brillouin 
energy density (1921):  
 

 
!W = ω

2
!ε E 2 + !µ H 2( )

L. Brillouin 

   
!ε , !µ( ) = ε ,µ( )+ω d ε ,µ( )

dω

Dispersive corrections are crucial! 



Kinetic–Abraham energy flux 

The Poynting vector also preserves its meaning for 
structured light in complex media as the kinetic–
Abraham momentum: 
 
 
 
In fact, it describes the energy flux and group velocity 
of the wave rather than its momentum. For localized 
solutions in an inhomogeneous dispersive medium: 
 

    
PA = k0 Re E*× H( )

     
v g =

c2 PA

!W  
vg =

∂ω
∂k

< c



Canonical–Abraham quantities 

First, in 2012 we performed the spin–orbital 
decomposition of the the Poynting–Abraham vector, 
introducing the canonical–Abraham picture: 
 
 
 
 
 
 
 
 

However, these quantities involve gradient corrections 
and singularities at interfaces between media. 

   
PA =

1
2 Im

E∗ ⋅ ∇( )E
µ

+
H∗ ⋅ ∇( )H

ε
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ grad.{ }

Bliokh & Nori PRA (2012); Bliokh et al. NC (2014) 

   
SA =

1
2

Im E* ×E
µ

+ H* × H
ε

⎛
⎝⎜

⎞
⎠⎟

,   L A = r × PA



Canonical–Abraham quantities 

First, in 2012 we performed the spin–orbital 
decomposition of the the Poynting–Abraham vector, 
introducing the canonical–Abraham picture: 
 
 
 
 
 
 
 
 

However, these quantities involve gradient corrections 
and singularities at interfaces between media. 

  
grad.{ } = − 1

4
∇µ−1× Im E∗ ×E( ) +∇ε−1× Im H∗ × H( )⎡
⎣

⎤
⎦...

Bliokh & Nori PRA (2012); Bliokh et al. NC (2014) 

   
SA =

1
2

Im E* ×E
µ

+ H* × H
ε

⎛
⎝⎜

⎞
⎠⎟

,   L A = r × PA



Kinetic–Minkowski quantities 

Second, in 2011–2012, T. G. Philbin derived, using the 
phenomenological Lagrangian–Noether approach, the 
kinetic Minkowski–type momentum and AM of light 
in a dispersive medium: 
 
 
 
 
 
However, these quantities involve  
cumbersome dispersive corrections. 

    
!PM = PM + disp.1{ }

Philbin PRA (2011); Philbin & Allanson PRA (2012) 

     
!J M = r × !PM + disp.2{ }

T. G. Philbin 



Kinetic–Minkowski quantities 

Second, in 2011–2012, T. G. Philbin derived, using the 
phenomenological Lagrangian–Noether approach, the 
kinetic Minkowski–type momentum and AM of light 
in a dispersive medium: 
 
 
 
 
 
 
These dispersive corrections have canonical–like forms.   

   
disp.1{ } = ω

2
Im dε

dω
E* ⋅ ∇( )E+ dµ

dω
H* ⋅ ∇( )H⎡

⎣⎢
⎤

⎦⎥

Philbin PRA (2011); Philbin & Allanson PRA (2012) 

   
disp.2{ } = ω

2
Im dε

dω
E* ×E+ dµ

dω
H* × H

⎡

⎣⎢
⎤

⎦⎥



Canonical–Minkowski quantities 

Thus, both the canonical (spin–orbital) Abraham 
approach and kinetic (Poynting–like) Minkowski 
approach have considerable drawbacks and not entirely 
clear physical meaning. 
 
To have a proper momentum and AM pictures for 
structured light in complex media, we developed the 
canonical Minkowski–type approach.  
It corresponds to the kinetic Minkowski–type 
quantities derived by Philbin: 

    
!J M = !L M + !SM     

!PM = !PM ,

     
!PM = !PM +∇× SM / 2



Canonical–Minkowski quantities 

Remarkably, the canonical Minkowski–type quantities 
take very natural forms similar to the Brillouin energy, 
without awkward gradient/dispersive corrections: 

 
!W = ω

2
!ε E 2 + !µ H 2( )

 
!PM = 1

2
Im !ε E∗⋅ ∇( )E+ !µH∗⋅ ∇( )H⎡⎣ ⎤⎦

 
!SM = 1

2
Im !ε E∗ × E+ !µH∗ × H( ), !LM = r × !PM

Bliokh, Bekshaev, Nori PRL (2017), NJP (2017). 



Canonical–Minkowski quantities 

These expressions are valid for structured (mono–
chromatic) optical fields in arbitrary inhomogeneous 
and dispersive (isotropic and lossless) media: 

Bliokh, Bekshaev, Nori PRL (2017), NJP (2017). 
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are in general not symmetric (γ+ ≠  γ−) and the β factor is direction- 
dependent; see Box 2 for a detailed introduction of the β factor.

In the ideal case, the polarizations at the position of the emitter are 
circular and thus orthogonal for opposite propagation directions. These 
in-plane polarizations for specific propagation directions are illustrated 
in Fig. 2a, c. A circularly polarized dipole emitter that is matched to the 
local polarization of one propagation direction emits solely along this 
direction. This is the basic principle of chiral coupling leading to direc-
tional photon emission: a circularly polarized dipole emits preferentially 
along one direction in the waveguide depending on the polarization of 
the transition. This phenomenon is shown in Fig. 4a for a photonic- 
crystal waveguide. Directional emission has been observed experi-
mentally with a range of different emitters coupled to various photonic 
nanostructures19–33.

We emphasize that the propagation of light in the waveguides consid-
ered here is fully reciprocal. Chiral effects occur only from the interplay 
between spin–momentum locking and the polarization properties of the 
emitter. Consequently, chiral light–matter interaction is distinctly different  
from the phenomena of chiral edge channels, which were observed 
in recent seminal experiments in condensed-matter36 and photonic 

systems37–41. These chiral edge channels emerge as manifestations of 
topology in two-dimensional materials, leading to topological protection 
against backscattering from disorder. The coupling of quantum emitters to 
photonic chiral edge channels has been proposed42. However, for photons,  
full protection against backscattering requires breaking of Lorentz reciproc-
ity via, for example, magneto-optical materials. In this case, the direction  
of the waveguide–emitter coupling is therefore externally imposed, 
whereas for chiral coupling of an emitter to a reciprocal waveguide that 
features spin– momentum locking both coupling directions are available 
for (quantum) applications and protocols.

Two different coupling regimes are identified depending on the cou-
pling strength between the emitter and the counter-propagating modes. 
For free-space beams or homogeneous dielectric waveguides, chiral 
effects occur when the emitter is positioned away from the beam centre. 
Consequently, substantial coupling to non-guided modes occurs (β <<  1). 
Nonetheless, the residual coupling to the waveguide modes may still be 
fully chiral—for example, γ+ ≠  0 and γ− =  0. For β ! 1/2 the emitter 
dynamics is dominated by the coupling to the waveguide mode, and in the 
extreme case of β ≈  1 a fully deterministic single-photon–single-emitter  
interface is obtained. This regime can be reached by suppressing the 
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Figure 2 | Electric field polarization and spin in optical nanofibres 
and waveguides. a, Colour map of the field intensity of a vacuum-clad 
optical nanofibre. The local polarization is represented by blue, red and 
black arrows to indicate the two circular in-plane polarizations (blue and 
red) and linear polarization (black). The radius of the fibre is 250 nm, 
its refractive index is 1.45 and the propagation direction is along + z at 
a wavelength of 852 nm. b, Colour map of the electric spin density | SE|  

in the cross-sectional plane of the nanofibre, with arrows indicating the 
spin direction. c, Colour map of the field intensity and local polarization 
of a photonic-crystal glide-plane waveguide27. The grey arrow shows the 
propagation direction. In all panels, the linear colour scale ranges from 
zero (dark colours) to maximum (light colours). The lattice constant is 
240 nm, the membrane thickness is 160 nm, the wavelength is 911 nm and 
the membrane refractive index 3.46.
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Figure 3 | Nanophotonic devices used for chiral coupling between light 
and quantum emitters. a, Optical nanofibre with an array of cold atoms 
(yellow circles) trapped in the evanescent field surrounding the fibre.  
A left-handed circularly polarized laser beam (vertical green arrow) excites 
the atoms. The fluorescence light that the atoms emit into the nanofibre 
propagates almost exclusively in the –z-direction (horizontal green arrow). 
b, c, Whispering-gallery-mode microresonators that confine light via 
total internal reflection and provide strong coupling to a single rubidium 
atom. d, Cross of two nanowire planar waveguides with guided modes 
coupled to a quantum dot placed in the crossing region. Two out-coupling 
gratings at the end of the waveguides are used to couple light vertically 

off the photonic chip. e, Two-dimensional photonic-crystal membrane 
with an introduced waveguide obtained by leaving out a row of holes of 
the photonic lattice. A single layer of quantum dots is embedded in the 
centre of the membrane (indicated as yellow triangles in the inset). The 
inset shows a close-up of the photonic crystal lattice. Image in a adapted 
from ref. 26, Nature Publishing Group. Image in b adapted from ref. 20, 
American Physical Society. Image in c adapted from ref. 25, American 
Association for the Advancement of Science. Image in d adapted from 
ref. 19, American Physical Society. Image in e reproduced from ref. 87, 
American Association for the Advancement of Science.
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Canonical–Minkowski quantities 

In the simplest case of a plane wave in a homogeneous 
transparent medium, different momenta and spins 
yield the following values per photon: 
 
 
 
 
 
 
Importantly, the Minkowski–type quantities are 
conserved in media with proper symmetries (see, e.g., 
Snell’s law and transverse beam shifts).  

Fedoseyev (1988), Player (1987), Bliokh & Bliokh (2006,2007), … 

     
PA = PA =

1
!nn
"k ,

     
!PM = !PM = "k ,

    
SA =

1
!nn
"σk

   
!SM = "σk





Surface plasmon–polaritons 

SPPs provide a simple but very nontrivial example:  
– highly dispersive medium; 
– highly inhomogeneous medium; 
– structured field (with a well–defined wavevector). 
 

ε = 1−
ω p

2

ω 2 < −1, µ = 1, kp =
ε

1+ ε
k0 > k0 !ε > 0,

 x

z
y

  
!S ε ω( )

 SPP

 metal



Abraham momentum and group velocity 

The kinetic Abraham (Poynting) momentum provides 
the SPP group velocity (always subluminal,           ): 
 

     
v g =

c2 PA

!W
= c

−ε −1− ε( )3/2

1+ ε 2 z = ∂ω
∂kp

z

Nkoma et al. JPC (1974) 

  
... = ...dx∫

 
vg < c



The novel canonical Minkowski–type momentum 
corresponds to the SPP wave vector and, hence, super–
momentum                           per polariton: 
 
 
 
 
 
 
 
 
 
None of the previous approaches yield this simple result! 
 

Canonical super–momentum 

   

!PM
!W
=
!PM

!W
=

kp

ω
z

   
!PM = "kp > "k0



Canonical super–momentum 

 x

z
y

  
!S

  
v g    

!PM

ε ω( )

Huard & Imbert OC (1978); Matsudo et al. OC (1998) 

Thus, slow velocity of propagation is accompanied by 
high momentum carried by SPP: 
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MESURE DE L'IMPULSlON ECHANGEE AU COURS DE L'INTERACTION 
ONDE EVANESCENTE-ATOME 

Serge HUARD et Christian IMBERT 
lnstitut d'Optique, Bat 503, Centre Universitaire d'Orsay. B.P. 43, 91406 Orsay Cedex, France 

Re~u le 16 Novembre 1977 

In vacuo, during an interaction between a moving atom and a surface wave of frequency v, the exchanged momentum is 
greater than hv/c. First we show, using a semi-classical treatment, that this momentum is ~k x in agreement with De Broglie's 
relation p = ilk, but unlike the usual notion of wave momentum attached to the Poynting vector, We present experimental 
methods to measure this momentum and we give results for two atom speeds. 

1. Introduction 

Lors de r interact ion r6sonante onde 6vanescente-  
atome, certaines quantit6s sont 6chang6es telle que 
l'6nergie, l ' impulsion ou le moment  cin6tique. Nous 
nous proposons de mesurer l ' impulsion c6d6e 
l 'a tome dans la direction de propagation OX de l 'onde.  
Classiquement, l ' impulsion associ6e h une onde plane, 
dans le vide, est proportionnelle au vecteur de 
Poynting S = E × H. Dans le cas d 'une onde plane 
mais inhomog6ne (onde 6vanescente ou onde de sur- 
face) il n 'en est plus ainsi [1]. Nous calculons d 'abord 
le quantum d' impulsion transf6rd puis nous pr6sentons 
les m6thodes exp6rimentales utilis6es pour mesurer ce 
quantum; enfin nous donnons et discutons les r6sul- 
tats obtenus. 

2. Impulsion dchang6e au cours de l ' interaction 

Soit une onde harmonique de frdquence v se propa- 
geant dans le vide, ~ la surface X O Z  d'un di61ectrique 
parfait d ' indice de r6fraction n, dans la direction OX 
(fig. 1). 

Le champ 61ectromagn6tique est ddcrit par le po- 
tentiel vecteur A:  

A = A 0 ~ exp 0 k ' R )  exp ( - j2rrvt)  + cc . ,  (1) 

A 0 est une constante, E le vecteur polarisation et k le 

vecteur d 'onde complexe de composantes: 

kx = "nko > k O, ky = jO, kz = O , 
(2) 

aveck 0 = 2 n v / c ,  o = k 0 ( ~ 2 - 1 ) 1 / 2  et l < ~ < n .  

Sans restreindre la g6n6ralit6, soit un atome 
d'hydrog6ne dont on ne consid6re que deux niveaux 
I e t  F s6par6s de hvo(v 0 ~ v). Cet atome se d6place 
vitesse constante v sur une droite parall61e h OX dans 
le plan Z = 0 (fig. 1). La s6paration du mouvement du 
centre de masse (masse M, posit ion R,  impulsion P) 
du mouvement de la particule relative (masse m, 
position r, impulsion n)  conduit  ~ l 'Hamiltonien 
atomique (sans tenir compte des spins) H A [2] : 

H A = p2 /2M+  7r2/2m + V(r ) ,  (3) 

A 

,0 

k ,>~ 

Fig. 1. Atome A en mouvement rectiligne uniforme h vitesse 
o darts une onde inhomogbne. 
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Another quantity of high interest is the transverse spin 
of a SPP: 
 

Transverse spin of a SPP 

Bliokh & Nori PRA (2012) 
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Rodriguez–Fortuno et al., Science (2013); Petersen et al., Science (2014);  
le Feber et al., Nat. Commun. (2014); Soller et al., Nat. Nanotechnology (2015); … 
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Chiral quantum optics
Peter Lodahl1, Sahand Mahmoodian1, Søren Stobbe1, Arno Rauschenbeutel2, Philipp Schneeweiss2, Jürgen Volz2, 
Hannes Pichler3,4 & Peter Zoller3,4

T he canonical setting of quantum optics is that of a single photon  
interacting with a single quantum emitter1. This elementary 
process underlies the essential physics of many phenomena and 

applications, including photosynthesis, vision, photovoltaics, optical com-
munication and digital imaging. A central goal in quantum optics is to 
develop techniques for complete control of light–matter interaction at the 
level of single quanta, while decoherence by the surrounding environment 
is suppressed2,3. This quantum optics toolbox is the basis for disruptive 
applications in quantum communication and quantum-information pro-
cessing where quantum-enhanced security and speed-up is realized with 
the aid of genuine quantum features such as quantum superposition or 
entanglement. Developing new elements of the toolbox is the focus of 
ongoing research, with the overarching goal of being able to assemble 
complex quantum networks from basic elements4,5.

Chiral interfaces constitute an exciting new approach to quantum con-
trol of light–matter interaction. Here, the coupling between light and 
emitters depends on the propagation direction of light and the polari-
zation of the transition dipole moment of the emitter. Consequently, the 
photon–emitter interaction becomes non-reciprocal; that is, forward- and 
backward-propagating photons interact differently with the emitter and, 
in the most extreme case, photon emission and absorption become unidi-
rectional. Chiral coupling emerges naturally in nanophotonic structures 
such as photonic waveguides and nanofibres in which light is tightly trans-
versely confined. The coupling to the emitter can be so pronounced that 
the paradigmatic setting of a ‘one-dimensional quantum emitter’6 may be 
reached. The confinement introduces a link between local polarization 
and the propagation direction of light, which is a manifestation of optical 
spin–orbit coupling7–10. If such spin–momentum-locked light is coupled 
to quantum emitters with polarization-dependent dipole transitions, then 
direction-dependent emission, scattering and absorption of photons is 
obtained (Fig. 1a–c). These are the fundamental processes underpinning 
chiral quantum optics. On the basis of these effects, for example, nano-
photonic optical isolators and circulators can be controlled by individual 
quantum emitters and, therefore, operated in a quantum superposition.

Moreover, intriguing quantum many-body effects arise for an ensemble 
of chirally interfaced one-dimensional quantum emitters. Here, direc-
tional coupling between the emitters implies that a photon sent out from 
one emitter may be absorbed by a second emitter downstream, but not 

vice versa (Fig. 1d). Within the framework of chiral quantum optics, 
it also becomes possible to realize cascaded quantum systems2,3,11,12, 
whereby two entities are directionally coupled without information back-
flow. Unidirectional coupling has immediate applications in quantum 
information for achieving deterministic quantum state transfer between 
qubits via a chiral quantum channel. Non-reciprocal photon-mediated 
interaction between emitters also enables a whole new class of quantum 
many-body systems to be implemented, which are unconventional from 
the perspective of condensed-matter physics. Beyond interest in the phys-
ics of chiral photon–emitter coupling per se, this new paradigm of chiral 
quantum optics has deep conceptual and practical implications. In this 
Review, we outline the fundamental processes of chiral light–matter inter-
action, discuss the experimental state-of-the-art, and outline exciting new 
applications and research directions.

Physics of nanophotonic devices
Nanophotonic devices control and confine the flow of light at a length 
scale that is smaller than the optical wavelength (400–700 nm for visible  
light). Recent years have witnessed remarkable progress in the ability 
to design and fabricate nanophotonic structures that are now widely 
deployed in quantum optics to control light–matter interaction13. In 
many nanophotonic devices, light is strongly confined transversely, that 
is, in the plane orthogonal to the propagation direction. This generally 
leads to a longitudinal component of the electric field14. The longitudinal 
and transverse field components oscillate ± π /2 radians out of phase with 
each other, with the sign depending on the propagation direction of the 
light—forwards or backwards. The electric field is consequently ellipti-
cally polarized and, therefore, carries spin angular momentum, which has 
a transverse component15 in contrast to the situation of paraxial waves. 
For symmetry reasons, the transverse spin component flips sign with 
the inversion of propagation direction8–10 and the resultant locking of 
transverse spin and propagation direction is the precondition for chiral 
light–matter interaction. Similar behaviour can be obtained in a cavity 
that supports two degenerate modes of orthogonal circular polarization16; 
that is, spin–momentum locking of light can be emulated with a specially 
designed optical resonator. Conversely, in the waveguide geometry, the 
degeneracy of the forward- and backward-propagation modes is enforced 
by time-reversal symmetry. The properties of light in transversely  

Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications 
ranging from light technology to quantum-information processing. The strong light confinement in these structures can 
lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, 
scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, 
or chiral, light–matter interaction is not accounted for in standard quantum optics and its recent discovery brought 
about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: 
it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two 
or more of their operational states and the realization of deterministic spin–photon interfaces. Moreover, engineered 
directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could 
simulate novel classes of quantum many-body systems.

1Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. 2Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 
1020 Vienna, Austria. 3Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria. 4Institute for Quantum Optics and Quantum Information of the Austrian Academy of 
Sciences, 6020 Innsbruck, Austria.
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In the beam of light emitted by a laser pointer, photons travel 
predominantly along one direction and the beam is therefore 
said to be collimated. The electric field carried by these photons 

is ‘transverse’ because it possesses essentially only two Cartesian 
components perpendicular to the direction of propagation. Vice 
versa, when light is focused by a lens with high numerical aperture 
(NA), the beam is no longer collimated and the photons carry an 
electric field that exhibits both transverse and longitudinal compo-
nents, the latter being parallel to the beam’s direction of propaga-
tion. Moreover, when the longitudinal electric field component is in 
quadrature (π/2 out of phase) with the transverse components, the 
light is elliptically polarized in the so-called meridional or propaga-
tion plane, which contains the beam’s axis of propagation. In this 
case, the electric field vector spins around an axis perpendicular to 
the meridional plane. Such circular motion is ultimately responsible 
for the main topic discussed in this paper: the transverse spin angu-
lar momentum (SAM) of light.

It has long been known in waveguide theory1 that electromag-
netic radiation may be generated with components of the electric and 
magnetic fields along the direction of propagation. Furthermore, it 
is also well-known that partial confinement, provided, for example, 
by diffraction gratings and metal surfaces, may lead to excitations of 
longitudinal evanescent/plasmonic waves2. However, it is perhaps 
less well-known that already in 1959, Richards and Wolf, in their 
celebrated studies about vectorial diffraction theory3, illustrated the 
occurrence of light with longitudinal electric and magnetic com-
ponents in the focal plane of an optical focusing system. They also 
showed that these longitudinal components oscillate phase-shifted 
by π/2 with respect to their transverse counterparts. Most impor-
tantly for today’s work, Richards and Wolf explicitly pointed out that 
at some points the polarization ellipse does not lie within the focal 
plane. This yields nonzero transverse components of the field’s SAM 
density, although this was not identified as such in their articles.

From a historical perspective, significant progress concerning 
the terminology and interpretation of light’s angular momentum 
(AM) was made in the 2000s4–7, accompanied by rising interest 
for the so-called spin-Hall effect of light8–17, the optical-beam ana-
logue of the eponymous electronic phenomenon18. However, it was 
only in 2009 that interest in the transverse (intrinsic) SAM of light 
and its role in different optical phenomena started to emerge19–22. 
Shortly afterwards, circular polarization in the propagation plane 

From transverse angular momentum to 
photonic wheels
Andrea Aiello1,2, Peter Banzer1,2,3*, Martin Neugebauer1,2 and Gerd Leuchs1,2,3

Scientists have known for more than a century that light possesses both linear and angular momenta along the direction of 
propagation. However, only recent advances in optics have led to the notion of spinning electromagnetic fields capable of carry-
ing angular momenta transverse to the direction of motion. Such fields enable numerous applications in nano-optics, biosens-
ing and near-field microscopy, including three-dimensional control over atoms, molecules and nanostructures, and allowing for 
the realization of chiral nanophotonic interfaces and plasmonic devices. Here, we report on recent developments of optics with 
light carrying transverse spin. We present both the underlying principles and the latest achievements, and also highlight new 
capabilities and future applications emerging from this young yet already advanced field of research.

of evanescent plane waves — a phenomenon described in the 
late 1970s23–25 — was identified as transverse SAM for the case of 
polariton surface waves26,27. Then, early in 2012 the occurrence of 
transverse SAM in strongly focused beams was predicted and dem-
onstrated28,29. Specifically, this was the first experimental demonstra-
tion29 of a freely propagating light beam carrying purely transverse 
AM resulting from transversely spinning electric fields.

At the theoretical level, further important insights on the trans-
verse SAM of light came from the works of Bliokh, Bekshaev, Nori 
and co-workers in Japan/Ukraine30,31, and Capasso and co-workers 
in the USA32. At the experimental level, notable work has been done 
by the Rauschenbeutel group in Austria33,34, Zayats and co-workers 
in the UK and Russia35,36, Martínez in Spain37, and Banzer, Aiello and 
co-workers in Germany38–40. Other important contributions to the 
understanding of transverse SAM came from Ebbesen, Genet and 
co-workers in Germany41–43, and Rikken and Mathevet in France44, 
following theoretical work by the Cohen group in the USA45. This 
short historical excursus would not be complete without mention-
ing fundamental contributions to the theoretical understanding of 
light with complex structures by Berry, Dennis and co-workers in 
the UK (see ref. 46 and references therein), and by Freund in Israel47.

In this paper we discuss recent developments and breakthroughs 
concerning theoretical descriptions, experimental implementa-
tions and applications of the transverse SAM of light across various 
optical systems.

Spin and orbital angular momentum of light
Light is electromagnetic radiation described by the celebrated 
Maxwell’s equations established in their definitive form more than 
a century ago. Physically admissible solutions to these equations are 
wavefields characterized by a number of conserved dynamical quan-
tities such as energy, the three components of linear momentum 
and the three components of AM. It is nowadays well-understood 
that there are two kinds of optical AM: SAM, which is possessed 
by light with circular polarization, as first suggested by Poynting in 
190948, and orbital AM (OAM). We distinguish between intrinsic 
OAM, which is manifested by light beams with a helical wavefront, 
as emphasized by Allen et al.49, and extrinsic OAM, which depends 
on the origin of the coordinate frame17.

The physical quantity most relevant to this article is the AM den-
sity j = jS + jO ≡ s + l where jS and jO denote the spin and orbital parts, 
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Light consists of electromagnetic waves that oscillate in time and 
propagate in space. Scalar waves are described by their intensity 
and phase distributions. These are the spatial (orbital) degrees of 

freedom common to all types of waves, both classical and quantum. 
In particular, a localized intensity distribution determines the posi-
tion of a wave beam or packet, whereas the phase gradient describes 
the propagation of a wave (that is, its wavevector or momentum). 
Importantly, electromagnetic waves are described by vector fields1. 
Light therefore also possesses intrinsic polarization degrees of free-
dom, which are associated with the directions of the electric and 
magnetic fields oscillating in time. In the quantum picture, the 
right- and left-hand circular polarizations, with the electric and 
magnetic fields rotating about the wavevector direction, correspond 
to two spin states of photons2.

Recently, there has been enormous interest in the spin–orbit 
interactions (SOI) of light3–6. These are striking optical phenomena 
in which the spin (circular polarization) affects and controls the 
spatial degrees of freedom of light; that is, its intensity distributions 
and propagation paths. The intrinsic SOI of light originate from the 
fundamental spin properties of Maxwell’s equations7,8 and, there-
fore, are analogous to the SOI of relativistic quantum particles2,9,10 
and electrons in solids11,12. As such, intrinsic SOI phenomena appear 
in all basic optical processes but, akin to the Planck-constant small-
ness of the electron SOI, they have a spatial scale of the order of 
the wavelength of light, which is small compared with macroscopic 
length scales.

Traditional ‘macroscopic’ geometrical optics can safely neglect 
the wavelength-scale SOI phenomena by treating the spatial and 
polarization properties of light separately. In particular, these 
degrees of freedom can be independently manipulated: by lenses or 
prisms, on the one hand, and polarizers or anisotropic waveplates, 
on the other. SOI phenomena come into play at the subwavelength 
scales of nano-optics, photonics and plasmonics. These areas of 
modern optics essentially deal with nonparaxial, structured light 
fields characterized by wavelength-scale inhomogeneities. The usual 
intuition of geometrical optics (based on the properties of scalar 
waves) does not work in such fields and should be substituted by 
the full-vector analysis of Maxwell waves. The SOI of light represent 
a new paradigm that provides physical insight and describes the 
behaviour of polarized light at subwavelength scales.

In the new reality of nano-optics, SOI phenomena have a two-fold 
importance. First, the coupling between the spatial and polarization 

Spin–orbit interactions of light
K. Y. Bliokh1,2*, F. J. Rodríguez-Fortuño3, F. Nori1,4 and A. V. Zayats3

Light carries both spin and orbital angular momentum. These dynamical properties are determined by the polarization and 
spatial degrees of freedom of light. Nano-optics, photonics and plasmonics tend to explore subwavelength scales and addi-
tional degrees of freedom of structured — that is, spatially inhomogeneous — optical fields. In such fields, spin and orbital 
properties become strongly coupled with each other. In this Review we cover the fundamental origins and important applica-
tions of the main spin–orbit interaction phenomena in optics. These include: spin-Hall effects in inhomogeneous media and at 
optical interfaces, spin-dependent effects in nonparaxial (focused or scattered) fields, spin-controlled shaping of light using 
anisotropic structured interfaces (metasurfaces) and robust spin-directional coupling via evanescent near fields. We show that 
spin–orbit interactions are inherent in all basic optical processes, and that they play a crucial role in modern optics.

properties must be taken into account in the analysis of any nano-
optical system. This is absolutely essential in the conception and 
design of modern optical devices. Second, the SOI of light can bring 
novel functionalities to optical nano-devices based on interactions 
between spin and orbital degrees of freedom. Indeed, SOI provide 
a robust, scalable and high-bandwidth toolbox for spin-controlled 
manipulations of light. Akin to semiconductor spintronics, SOI-
based photonics allows information to be encoded and retrieved 
using polarization degrees of freedom.

Below we overview the SOI of light in paraxial and nonparaxial 
fields, in both simple optical elements (planar interfaces, lenses, 
anisotropic plates, waveguides and small particles) and complex 
nano-structures (photonic crystals, metamaterials and plasmonics 
structures). We divide the numerous SOI phenomena into several 
classes based on the following most representative examples:

(1) A circularly polarized laser beam reflected or refracted at a 
planar interface (or medium inhomogeneity) experiences 
a transverse spin-dependent subwavelength shift. This is a 
manifestation of the spin-Hall effect of light13–20. This effect 
provides important evidence of the fundamental quantum 
and relativistic properties of photons16,18, and it causes specific 
polarization aberrations at any optical interface. Supplied with 
suitable polarimetric tools, it can be employed for precision 
metrology21,22.

(2) The focusing of circularly polarized light by a high-numeri-
cal-aperture lens, or scattering by a small particle, generates 
a spin-dependent optical vortex (that is, a helical phase) in 
the output field. This is an example of spin-to-orbital angu-
lar momentum conversion in nonparaxial fields23–31. Breaking 
the cylindrical symmetry of a nonparaxial field also produces 
spin-Hall effect shifts32–37. These features stem from funda-
mental angular-momentum properties of photons8,38, and they 
play an important role in high-resolution microscopy35, opti-
cal manipulations25,26,39, polarimetry of scattering media40,41 
and spin-controlled interactions of light with nano-elements or 
nano-apertures29,34,37,42,43.

(3) A similar spin-to-vortex conversion occurs when a paraxial 
beam propagates in optical fibres44 or anisotropic crystals45–47. 
Most importantly, properly designing anisotropic and inho-
mogeneous structures (for example, metasurfaces or liquid 
crystals) allows considerable enhancement of the SOI effects 
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Using our canonical definitions of the spin and orbital 
AM, we obtain the following values: 
 
 
 
 
 
 
 
 
 
This is the first accurate 
calculation of the transverse spin of a SPP, 5 years later! 
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We apply our formalism to the modes of cylindrical 
waveguides: both dielectric and metallic (nanowires): 
 
 
 
 
 
The Abraham (Poynting) and canonical momenta yield: 

Angular momentum of guided modes 

Angular momentum of light in an optical nanofiber
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We show that light confined in a circularly polarized fundamental mode of a nanofiber has a finite angular
momentum, with both spin and orbital components. We derive exact analytical expressions for the angular
momentum and its spin and orbital components. We show that the spin component is dominant when the fiber
radius is small or large compared to the light wavelength. For intermediate fiber radii, a substantial orbital
component appears, which is absent in the two limits mentioned above. The orbital component is maximized
when the fiber radius is about one-fourth of the light wavelength.
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I. INTRODUCTION

Electromagnetic radiation carries both energy and mo-
mentum. An interaction between radiation and atoms inevi-
tably involves an exchange of momentum. Such an exchange
can involve either linear momentum or angular momentum.
This leads to radiation forces and torques, and often has me-
chanical consequences. Spectacular results have been ob-
tained in manipulation and control of motion and tempera-
ture of free atoms by radiation forces #1$. However, most of
the treatments of the mechanical effects of radiation on at-
oms have been concerned almost exclusively with the linear
momentum to control the translational motion of atoms #2$.

Recently, there has been a growing recognition of the po-
tential of the orbital angular momentum associated with cer-
tain types of laser lights to control the rotational motion of
atoms and ions #3,4$. It has been shown that Laguerre-
Gaussian #5–7$ and Bessel #8$ light beams carry orbital an-
gular momentum associated with the azimuthal-phase depen-
dence of the field distribution. Such orbital angular
momentum can be transferred to the center-of-mass motion
of atoms through the atom-field interaction #3,4$. Certain
beams with no phase singularity, such as focused elliptical
Gaussian beams, can also possess orbital angular momentum
#9$. A number of experiments have demonstrated the influ-
ence of orbital angular momentum of light on polarizable
matter, leading to interesting features, such as the optical
spanner effect #10$.

Although angular momentum of light is a fundamental
characteristic, it has not been studied well enough. In addi-
tion, only a few forms of light beams are known to possess
orbital angular momentum. Therefore, it is necessary to ex-
tend the study of angular momentum of light and to search
for new forms of light beams that possess orbital angular
momentum.

A special form of propagating light waves is light in a
guided mode of an optical fiber #11$. When the fiber is thin
compared to the light wavelength, the field can penetrate
deeply into the space outside the fiber, creating an evanes-

cent wave #12,13$. It has been shown that the optical poten-
tial generated by the field outside the thin fiber permits the
control and manipulation of individual neutral atoms in a
microscopic !at subwavelength size" optical dipole trap #12$
that is of great importance for various applications in both
fundamental and applied physics #14$.

In this paper, we study the angular momentum of light in
a guided mode of an optical fiber. We show that light con-
fined in a circularly polarized fundamental mode of a nanofi-
ber has a finite angular momentum, with both spin and or-
bital components.

Before we proceed, we note that, due to recent develop-
ments in taper fiber technology, thin fibers can be produced
with diameters down to 50 nm #15$. Thin fiber structures can
be used as building blocks in future atom and photonic
micro- and nano-devices.

The paper is organized as follows. In Sec. II we describe
the field in a circularly polarized fundamental guided mode.
In Sec. III we present analytical results for the angular mo-
mentum of the guided field. In Sec. IV we present numerical
results. Our conclusions are given in Sec. V.

II. FIELD IN A CIRCULARLY POLARIZED
FUNDAMENTAL GUIDED MODE

We consider a light field propagating in a circularly po-
larized fundamental mode of a subwavelength-diameter fiber
!nanofiber" !see Fig. 1". The frequency, free-space wave
number, and free-space wavelength of the light are denoted

*Also at the Institute of Physics and Electronics, Vietnamese
Academy of Science and Technology, Hanoi, Vietnam.

FIG. 1. !Color online" Components and trajectory of the Poyn-
ting vector of the field in a circularly polarized fundamental mode
of a nanofiber. The period of the trajectory is 2" /# where #
=S$ /rSz.
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Most importantly, we obtain the quantization of the 
total AM of the cylindrical eigenmodes in 
inhomogeneous media: 

Angular momentum of guided modes 
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Extending the quantum-like operator approach to the 
canonical quantities, we derived helicity density in 
dispersive inhomogeneous media: 
 
 
 
 
 
 
 
 
Plane wave: 
 

Optical helicity in media 
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Importantly, we performed microscopic calculations 
(fields + electron plasma) of the SPP momentum and 
AM densities in the metal, and found these to be fully 
consistent with the kinetic (Philbin) and canonical (our) 
Minkowski–type quantities: 
 
In particular, we showed that the electrons in the metal 
move along small ellipses, thereby providing the material 
dispersion contributions to the transverse spin AM: 
 

Microscopic calculations 

     
!W , !PM , !J M , !PM , !SM .

   
Smat =

ω
2

dε
dω

Im E* ×E( )



Since electrons are charged particles, this motion also 
generates a magnetization of the metal: 
 
 
 
This is a special case of the inverse Faraday effect. 
 
It means that a SPP carries not only transverse spin but 
also the transverse magnetic moment:  
 
 

Magnetization of the metal 

   
M = e

2mc
Smat =

eω
4mc

dε
dω

Im E* ×E( )

    
µ =
!ω M
"W

= 2 −ε
1+ ε 2 µB y

 
µB =

e !
2mc

Pitaevskii (1961), Kono et al. (1981), Hertel (2006),…  



The presence of the magnetic moment     immediately 
explains the nonreciprocical magneto–plasmonic 
spectrum in an applied magnetic field                  :  
 
 
 

Magneto–plasmonic effects 

   H0 = H0y

 δω = −!−1µ ⋅H0

µ

Yu et al. PRL (2008), Bliokh et al. OL (2018) 

 x

z
y

  H0



Finally, note that we used the dual–symmetric forms of 
all equations. For free–space fields, this is a matter of the 
convention. One can equally use the electric (or 
magnetic) biased canonical quantities: 
 
 
 
 
 
 
However, this is true only for localized free–space fields 
(not for evanescent waves). 
 
 

Duality aspects 

Barnett JMO (2010), Berry JOA (2010), Bliokh et al. NJP (2013)  

P→ 2P e = Im E* ⋅ ∇( )E⎡⎣ ⎤⎦,

S → 2S e = Im E* × E⎡⎣ ⎤⎦,

P = 2 P e

S = 2 S e



This is not the case for localized fields in media. For 
example, SPPs have purely–electric transverse spin:  

 
 
Moreover, the microscopic calculations are consistent 
only with the dual–symmetric form of the canonical 
quantities: 
 
 
 
 
This supports the dual–symmetric theory (QED ???). 

Duality aspects 

 
!PM ≠ 2 !PM

e ,
 
!SM ≠ 2 !SM

e

   
Smat =

ω
2

dε
dω

Im E* ×E( )

 
!SM = 1

2
Im !ε E∗ × E+ !µH∗ × H( )  

2 !SM
e = Im !ε E∗ × E( )



 



M. Abraham H. Minkowski J. H. Poynting 

L. Brillouin M. V. Berry T. G. Philbin 



 
!W = ω

2
!ε E 2 + !µ H 2( )

 
!PM = 1

2
Im !ε E∗⋅ ∇( )E+ !µH∗⋅ ∇( )H⎡⎣ ⎤⎦

 
!SM = 1

2
Im !ε E∗ × E+ !µH∗ × H( ), !LM = r × !PM
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are in general not symmetric (γ+ ≠  γ−) and the β factor is direction- 
dependent; see Box 2 for a detailed introduction of the β factor.

In the ideal case, the polarizations at the position of the emitter are 
circular and thus orthogonal for opposite propagation directions. These 
in-plane polarizations for specific propagation directions are illustrated 
in Fig. 2a, c. A circularly polarized dipole emitter that is matched to the 
local polarization of one propagation direction emits solely along this 
direction. This is the basic principle of chiral coupling leading to direc-
tional photon emission: a circularly polarized dipole emits preferentially 
along one direction in the waveguide depending on the polarization of 
the transition. This phenomenon is shown in Fig. 4a for a photonic- 
crystal waveguide. Directional emission has been observed experi-
mentally with a range of different emitters coupled to various photonic 
nanostructures19–33.

We emphasize that the propagation of light in the waveguides consid-
ered here is fully reciprocal. Chiral effects occur only from the interplay 
between spin–momentum locking and the polarization properties of the 
emitter. Consequently, chiral light–matter interaction is distinctly different  
from the phenomena of chiral edge channels, which were observed 
in recent seminal experiments in condensed-matter36 and photonic 

systems37–41. These chiral edge channels emerge as manifestations of 
topology in two-dimensional materials, leading to topological protection 
against backscattering from disorder. The coupling of quantum emitters to 
photonic chiral edge channels has been proposed42. However, for photons,  
full protection against backscattering requires breaking of Lorentz reciproc-
ity via, for example, magneto-optical materials. In this case, the direction  
of the waveguide–emitter coupling is therefore externally imposed, 
whereas for chiral coupling of an emitter to a reciprocal waveguide that 
features spin– momentum locking both coupling directions are available 
for (quantum) applications and protocols.

Two different coupling regimes are identified depending on the cou-
pling strength between the emitter and the counter-propagating modes. 
For free-space beams or homogeneous dielectric waveguides, chiral 
effects occur when the emitter is positioned away from the beam centre. 
Consequently, substantial coupling to non-guided modes occurs (β <<  1). 
Nonetheless, the residual coupling to the waveguide modes may still be 
fully chiral—for example, γ+ ≠  0 and γ− =  0. For β ! 1/2 the emitter 
dynamics is dominated by the coupling to the waveguide mode, and in the 
extreme case of β ≈  1 a fully deterministic single-photon–single-emitter  
interface is obtained. This regime can be reached by suppressing the 
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Figure 2 | Electric field polarization and spin in optical nanofibres 
and waveguides. a, Colour map of the field intensity of a vacuum-clad 
optical nanofibre. The local polarization is represented by blue, red and 
black arrows to indicate the two circular in-plane polarizations (blue and 
red) and linear polarization (black). The radius of the fibre is 250 nm, 
its refractive index is 1.45 and the propagation direction is along + z at 
a wavelength of 852 nm. b, Colour map of the electric spin density | SE|  

in the cross-sectional plane of the nanofibre, with arrows indicating the 
spin direction. c, Colour map of the field intensity and local polarization 
of a photonic-crystal glide-plane waveguide27. The grey arrow shows the 
propagation direction. In all panels, the linear colour scale ranges from 
zero (dark colours) to maximum (light colours). The lattice constant is 
240 nm, the membrane thickness is 160 nm, the wavelength is 911 nm and 
the membrane refractive index 3.46.
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Figure 3 | Nanophotonic devices used for chiral coupling between light 
and quantum emitters. a, Optical nanofibre with an array of cold atoms 
(yellow circles) trapped in the evanescent field surrounding the fibre.  
A left-handed circularly polarized laser beam (vertical green arrow) excites 
the atoms. The fluorescence light that the atoms emit into the nanofibre 
propagates almost exclusively in the –z-direction (horizontal green arrow). 
b, c, Whispering-gallery-mode microresonators that confine light via 
total internal reflection and provide strong coupling to a single rubidium 
atom. d, Cross of two nanowire planar waveguides with guided modes 
coupled to a quantum dot placed in the crossing region. Two out-coupling 
gratings at the end of the waveguides are used to couple light vertically 

off the photonic chip. e, Two-dimensional photonic-crystal membrane 
with an introduced waveguide obtained by leaving out a row of holes of 
the photonic lattice. A single layer of quantum dots is embedded in the 
centre of the membrane (indicated as yellow triangles in the inset). The 
inset shows a close-up of the photonic crystal lattice. Image in a adapted 
from ref. 26, Nature Publishing Group. Image in b adapted from ref. 20, 
American Physical Society. Image in c adapted from ref. 25, American 
Association for the Advancement of Science. Image in d adapted from 
ref. 19, American Physical Society. Image in e reproduced from ref. 87, 
American Association for the Advancement of Science.
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It is impossible to study this remarkable  
theory without experiencing the strange  
feeling that the equations somehow have  
a proper life, that they are smarter than we.                                              

       
 
 

   You can recognize truth by its beauty 
   and simplicity. When you get it right, it 
   is obvious that it is right, because  
   usually what happens is that more  
   comes out than goes in. 

 
       

H. Hertz 

R. Feynman 


