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Different j−body loss processes

Density decrease : dn
dt = −κjnj

1-body process. background gas, spin-flip

2-body process. e.g. dipolar collisions for atoms in the low-field
seeking state

3-body process. Formation of a deeply bound dimer in 3-body
collision

Higher order ?

Usually consider as detrimental
Grisin et al., Rauer et al. 2016 : cooling via 1-body losses in 1D
homogeneous Bose gases in the quasi-condensate regime
Effect of j-body losses on BEC or quasi-BEC ? Role of confining
potential ? State produced by losses ?
I.B. et al. arXiv :1806.08759 (2018), M. Schemmer et al. arXiv :1806.09940 (2018),

A. Jonhson et al. Phys. Rev. A 96, 013623 (2017), M. Schemmer et al. Phys. Rev. A 95, 043641

(2017)
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Effect of losses : qualitative picture

Quasi-BEC or BEC : collective modes.
Long wave length : phonons govern by repulsive interactions

Losses⇒ decrease of density fluctuations

⇒ decrease of energy in each collective mode
⇒ cooling

Stocastic nature of losses : increase of density fluctuations
⇒ heating

⇒ Stationnary value of y = kBT/(mc2)
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Discretisation of the problem

r
∆

Effect of losses in each cell
BEC or quasi-condensate gases : small density fluctuations
Small volume ∆.

N0

N = N0 + δN

δN � N0
[θ, δN] = i

Conjugate operator :
phase operator

Effect of losses on δN and θ ?
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Effect on atom-number distribution

Stocastic process :
Number of lost events during dt : dNe = 〈dNe〉+ dξe, 〈dξ2

e 〉 = 〈dNe〉
Modification of atom number :

dN = − κj

∆j−1 Njdt + dξ, 〈dξ2〉 = j
κj

∆j−1 Njdt

Effect on δN : N = N0 + δN, dN0 = −κj(Nj
0/∆

j−1)dt

Dissipative term
reduction of density fluctuations
reduction of interaction energy

Stocastic term
Increase of density fluctuations
Increase of interaction energy

dδN = −jκjn
j−1
0 dtδN + dξ
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Effect on phase distribution

Phase diffusion
If number of lost atoms (Nl) recorded :
⇒ increase of knowledge on δN
⇒ 〈δN2〉 decreases⇒ 〈θ2〉 increases

Bayes formula P(δN|Nl) ∝ P(Nl|δN)

P(Nl|δN) ∝ e−(Nl−κjNjdt/∆j−1)2/(2σ2
l )

To lowest order in δN : Nj = Nj
0 + jNj−1

0 δN

⇒ P(Nl|δN) ∝ e−(δN−δN)2/(2σ2
δN)

d〈θ2〉 =
1

4σ2
δN

=
jκjn

j−1
0

4n0∆
dt
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Continuous limit and reduced dimensions

Continuous limit{
dδn = −jκjn

j−1
0 δn dt + dη

〈dη(r)dη(r′)〉 = jκjn
j
0δ(r− r′)dt

〈dθ(r)dθ(r′)〉 =
j
4
κjn

j−2
0 δ(r− r′)dt

Classical fiel limit : n0 →∞ at fixed δn/n0
⇒ Noise terms negligible

Reduced dimension : effective κ
Loss rate� ω⊥ : atoms stay in transverse ground state
Confinement on a transverse width� volume for j−body process
κj = κ3D

j

∫
d2x⊥|ψ(x⊥)|2j (2D)

κj = κ3D
j

∫
dx⊥|ψ(x⊥)|2j (1D)
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Case Homogeneous gas : intrinsic dynamic

Bogoliubov Hamiltonian

Linearisation in δn(r) and θ(r)
Collective modes : Fourier modes. H =

∑
k Hk

Hk = Akδn2
k + Bkθ

2
k , Bk = ~2k2n0/(2m)

Long wave-length modes (phonons) : Ak = g/2

Effect of decrease of n : reduction of energy in each mode⇒ cooling
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Homogeneous gas : Evolution of energy in phonon modes

Hk = g
2δn2

k + ~2k2n0
2m θ2

k

Small loss rate⇒ Equipartition : g
2〈δn2

k〉 = ~2k2n0
2m 〈θ2

k〉 = 〈Hk〉/2

Effect of modification of δn :
d〈δn2

k〉 = −2jκjn
j−1
0 〈δn2

k〉dt + jκjn
j
0dt

Effect of modification of θ : d〈θ2
k〉 = 1

4 jκjn
j−2
0 dt

Change of mode energy and of y = 〈Hk〉/(gn0) ' Tk/(gn0)

d〈Hk〉/dt = κjn
j−1
0

(
−〈Hk〉(j +

1
2

) + j
g
2

n0 + j
~2k2

8m

)
dy/dt ' κjn

j−1
0

(
−y(j− 1

2
) +

j
2

)
Stationnary value : y∞ = 1/(2− 1/j)
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Homogeneous gas : Evolution of energy in phonon modes

Hk = g
2δn2

k + ~2k2n0
2m θ2

k

Small loss rate⇒ Equipartition : g
2〈δn2

k〉 = ~2k2n0
2m 〈θ2

k〉 = 〈Hk〉/2

Effect of modification of δn :
d〈δn2

k〉 = −2jκjn
j−1
0 〈δn2

k〉dt + jκjn
j
0dt

Effect of modification of θ : negligible for phonons

Change of mode energy and of y = 〈Hk〉/(gn0) ' Tk/(gn0)

d〈Hk〉/dt = κjn
j−1
0

(
−〈Hk〉(j +

1
2

) + j
g
2

n0 +
�
�
�@
@
@

j
~2k2

8m

)
dy/dt ' κjn

j−1
0

(
−y(j− 1

2
) +

j
2

)
Stationnary value : y∞ = 1/(2− 1/j)
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General case : gas intrinsic dynamcis

Evolution of mean profile under losses

n0(r, t) evolves in time and mean velocity field∇θ0
Small loss rate : adiabatic following and∇θ0 negligible
Local Density Approximation

µ(n0(r, t)) = µp(t)− V(r)

Evolution of fluctuations
Bogoliubov : Linearisation in δn(r) and ϕ(r) = θ − θ0
Hydrodynamic modes : long wavelengths

Hhdyn =
~2

2m

∫
ddr n0(∇ϕ)2 +

m
2

∫
ddr

c2

n0
δn2

mc2(r) = n0∂nµ|r
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Collective hydrodynamic modes

Diagonalisation of Hhdyn

At any time Hhdyn =
∑

ν Hν ,

Hν =
~ων

2
(x2
ν + p2

ν)

 xν =
m
~ων

∫
ddr

c2δn
n0

gν(r)

pν =
∫

ddrϕ(r)gν(r)

Time-depend mode function gν : ∇ ·
(
n0∇( c2

n0
gν)
)

= −ω2
νgν

Effect of losses
Evolution of 〈Hν〉 ' Tν ?
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Evolution of Tν

Small loss rate
Modification of n0(r) and gν(r) : keep invariant Aν = 〈Hν〉/(~ων)
Coupling between modes introduced by losses neglected
Equipartition at all time

Differential equation for yν = 〈Hν〉/(mc2
p)

d
dt

yν = κjnj−1
p [−(jA− C)yν + jB]

A,B, C : integrals involving n0(r) and gν(r).

A : reduction of density fluctuations due to loss process

C : time evolution of mc2
p/(~ων)

B : density fluctuations due to stocastic nature of losses

See I. Bouchoule et al., arXiv :1806.08759



Effect of uniform j-body losses on hydrodynamic collective modes Experimental evidence for 3-body losses cooling Non thermal states produced by losses Cooling to ground state using quantum feedback Conclusion

Application of formalism : Asymptotic temperature for 1D
gas in a harmonic potential

Functions gν : Legendre polynomials
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Large−ν limit : y∞ '
j
π

∫ π/2
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2j
π
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0 dα sin2j+1 α
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Experimental setup : trapping atoms with an atom-chip

Magnetic confinement of 87Rb atoms : V = µB|B|
Cu micro-wires deposited on an AlN substrate

15µm

ω⊥ = 0.1− 100kHz
AC currents

For longitudinal

1.5 mm
confinement

Chip design (wire edges shown)

Planarisation and insulation with resist, covered with Au miror

100 nm

Interferometric image

Fabrication : LPN, CNRS, help of S. Bouchoule
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Experimental setup : realising and imaging 1D gases

NA=0.4

Probe beam

CCD camera

Chip mount

light sheet w0 = 100µm

Nat = 3− 10× 103

ωz = 8− 15 Hz

ω⊥ = 1.5− 3 kHz

µ ' T = 50− 100 nK

lc/ξ ' 10 : deep into quasi-BEC

√
2h = 9.0µm

A typical in-situ absoprtion image
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Regimes of 1D Bose gas with repulsive contact interaction

Contact repulsive interaction : gδ(zi − zj)
Thermodynamic : Yang-Yang (60’)
Dimensionless parameters : t = ~kBT/(mg2), γ = mg/~2n
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small density fluctuations
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Phase fluctuations remain



Effect of uniform j-body losses on hydrodynamic collective modes Experimental evidence for 3-body losses cooling Non thermal states produced by losses Cooling to ground state using quantum feedback Conclusion

Decay of atom number under 3-body loss process

ωRF of radio-frequency field increased⇒ no 1-body losses

Losses dominated by 3-body process

dn
dt

= −K3n3

0 1 2 3 4
t [s]

30
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100

200

n
p

[µ
m
−

1
]

ω⊥/(2π) =1.6kHz

ω⊥/(2π) =2.3kHz

ω⊥/(2π) =3.1kHz

ω⊥/(2π) =4.7kHz

ω⊥/(2π) =9.3kHz
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Thermometry in qBEC regime via density ripples analysis

Trapping potential suddenly turned off
transverse expansion→ instantaneous switching off of interactions

8 ms time of flight→
phase fluctuation transform into density fluctuations⇒ density ripples

Single shot image

Statistical analysis on ' 50 images
⇒ extract power spectrum 〈|ρq|2〉
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Power spectrum of density ripples and thermometry

We fit the power spectrum to obtain the temperature.

Sensitive to phononic modes
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Evolution of temperature during the loss process

0 1 2 3
t [s]

0

25

50

75

100

125

T
[n

K
]

0 25 50 75 qR
0

40

<
|ρ

(q
)|2
>

n
p
R

Decrease of the temperature up to a factor 4.
⇒ Losses associated to cooling
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Ratio kBT/(mc2)

0 50 100 150 200 250
np [µm−1]

0.0

0.5

1.0

k
B
T
/(
m
c2 p

)

Quasi-1D : transverse swelling non negligible. mc2 non linear in n
Stationnary ratio attained as soon as the gas is deep into the

quasi-bec regime and reach the 1D regime.
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Zone explored in the phase diagram

We generalise the 1D paramaters to quasi-1D : t̃ = ~2kBTn2/(m3c4)
and γ̃ = m2c2/(~2n2)

10−4 10−3 10−2 10−1 100

γ̃

101

104

107

t̃ Y
Y

t̃Y Y γ̃ = 0.7

t̃Y Y γ̃
3/2 = 1

t̃Y Y γ̃
2 = 1

Tonks
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Beyond phonons. 1-body losses, homogeneous gases

Bogoliubov Hamiltonian : Hk = Akδn2
k + Bkθ

2
k

Bk = ~2k2/(2mn0), Ak = g/2 + ~2k2/(8mn0)
Phonons : k� √mgn0/~, ωk ' k

√
gn0/m

Particles : k� √mgn0/~, ωk ' ~k2/(2m)

k

h̄
ω
k

3.532.521.510.50

14
12
10
8
6
4
2
0

Small loss rate : adiabatic invariant Ẽk = 〈Hk〉/(~ωk)

⇒ d
dt Ẽk = Γ

(
−Ẽk +

(√
~2k2/2m+2gn0

~2k2/2m +
√

~2k2/2m
~2k2/2m+2gn0

)
/4
)

Different modes acquiere different temperature

Phonons : kBTphonon '
t→∞

ρ0(t)g

Particles : kBTpart '
t→∞

~2k2

2m
1
Γt

Large t : Tpart � Tphonon
⇒ Generalised Gibbs ensemble
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Robustness versus non-linear couplings for 1D gases

Beyond Bogoliubov : truncated Wigner approximation
Wigner function evolves according to trajectories :

i~dψ =

(
− ~2

2m
∂2

∂z2ψ + g|ψ|2ψ − i
Γ

2
ψ

)
dt + dξ

〈dξ∗(z)dξ(z′)〉 = Γdtδ(z− z′)/2

1

10

102

0 0.5 1 1.5 2 2.5 3

k
B
T
k
/(
ρ
0
(t

)g
))

kh̄/
√
mρig

t = 0
t = 2.5/Γ
t = 5.3/Γ
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Long-lived non-thermal states and link with integrability

0

0.06

0.12

0.18

0 100 200 300 400 500 600

E
k
/(
k
B
T
i)

Γt

top curves :
k = 6.0

√
mgρi/~

bottom curbes :
k = 6.0

√
mgρi/~

g̃ = 0.4g ( m′/m = 3)
g̃ = 0

Breaking integrability
Two-1D Bose gases :

i~∂ψ/∂t = − ~2

2m
∂2ψ
∂z + (g̃|ϕ|2 + g|ψ|2)ψ,

i~∂ϕ/∂t = − ~2

2m′
∂2ϕ
∂z + (g|ϕ|2 + g̃|ψ|2)ϕ.

g̃ = 0⇒ 2-independant 1D Bose gases
g̃ 6= 0⇒ non-integrable system



Effect of uniform j-body losses on hydrodynamic collective modes Experimental evidence for 3-body losses cooling Non thermal states produced by losses Cooling to ground state using quantum feedback Conclusion

Outline

1 Effect of uniform j-body losses on hydrodynamic collective modes

2 Experimental evidence for 3-body losses cooling

3 Non thermal states produced by losses

4 Cooling to ground state using quantum feedback

5 Conclusion



Effect of uniform j-body losses on hydrodynamic collective modes Experimental evidence for 3-body losses cooling Non thermal states produced by losses Cooling to ground state using quantum feedback Conclusion

Learning from losses and quantum feedback cooling

Time and position-resolved detector : information on density
fluctuations present in the gas

Backaction condition on the recorded losses
⇒Cooling collective modes of the gas

Bose gas

detectorslost atoms

δx

M1 M2 MN
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Learning from losses and quantum feedback cooling

Time and position-resolved detector : information on density
fluctuations present in the gas

Backaction condition on the recorded losses
⇒Cooling collective modes of the gas

feedback - lattice amplitude

Bose gas

detectorslost atoms

δx

M1 M2 MN

V(x) lattice potential

x
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Quantum Monte Carlo wave-function analysis

Wave-function evolution during ∆t for a single “cell” of the gas

Fock state expansion : |ψ〉 =
∑

n cn|n〉
Monte-Carlo evolution :
M recorded lost atoms :
cn → fM(n)cn

⇒ (i) shift of center (depends on M)
⇒ (ii) narrowing of the distribution n

|cn|2

|fM(n)|2

For a given Bogoliubov mode of a homogeneous gas (wave-vector k)

Expansion in nk basis :
|ψk〉 =

∫
dnkc(nk)|nk〉

Monte-Carlo evolution :
Mk Fourier transform of the M’s :
c(nk)→ fMk(nk)c(nk)

Wigner function evolution

nk

θk
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Evolution of Wigner function for a single Bogoliubov mode
and for a given quantum trajectory

Hk = Akn2
k + Bkθ

2
k

Assume g(t) = g0eΓt

⇒ gn0 = cste
Loss rate : Γ = ωk/400

Evolution of center :
trajectory dependent

Width of the distribution :
goes to ground state width
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Quantum feedback : cooling to groud state

Feedback : periodic potential of amplitude V ⇒ Ĥfb = V(t)n̂k

V(t) = −~ν〈θk〉 : computed using the acquired losses information
and integrating equation of motion

Average over trajectories
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Conclusion and prospects

Conclusion
First observation of 3-body losses cooling

Extension of previous theoretical work

Non-thermal nature of the state resulting from losses

Proposal for quantum feedback to ground state

Prospects
Elucidating the effect of 1-body losses (stationnary ratio
kBT/(mc2) not observed experimentally)

Extend work on non-thermal states to the case of trapped
systems

Extend this work to strongly interacting regime of 1D
Bose gases

Take into account an eventual position-dependent loss
term : link with evaporative cooling
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