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Different j—body loss processes

: . dn __ .
Density decrease : 5=~k

@ 1-body process. background gas, spin-flip

@ 2-body process. e.g. dipolar collisions for atoms in the low-field
seeking state

@ 3-body process. Formation of a deeply bound dimer in 3-body
collision

o Higher order?

Usually consider as detrimental

Grisin et al., Rauer et al. 2016 : cooling via 1-body losses in 1D
homogeneous Bose gases in the quasi-condensate regime
Effect of j-body losses on BEC or quasi-BEC ? Role of confining

potential ? State produced by losses ?
I.B. et al. arXiv :1806.08759 (2018), M. Schemmer et al. arXiv :1806.09940 (2018),

A. Jonhson et al. Phys. Rev. A 96, 013623 (2017), M. Schemmer et al. Phys. Rev. A 95, 043641
(2017)



@ Effect of uniform j-body losses on hydrodynamic collective
modes

© Experimental evidence for 3-body losses cooling
© Non thermal states produced by losses
@ Cooling to ground state using quantum feedback

© Conclusion
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Effect of uniform j-body losses on hydrodynamic collective modes

Effect of losses : qualitative picture

@ Quasi-BEC or BEC : collective modes.
Long wave length : phonons govern by repulsive interactions

o Losses = decrease of density fluctuations

tHdt ey

= decrease of energy in each collective mode

@ Stocastic nature of losses : increase of density fluctuations

= heating

= Stationnary value of y = kzT/(mc?)




Effect of uniform j-bod

Discretisation of the problem

]
A

@ Effect of losses in each cell

BEC or quasi-condensate gases : small density fluctuations
Small volume A.

N = Ny + 6N Conjugate operator :

phase operator

Effect of losses on N and 6 ?




Effect of uniform j-bod hydrodynamic

Effect on atom-number distribution

Stocastic process :
Number of lost events during df : dN, = (dN,) + d&,, (d€2) = (dN,)
Modification of atom number :

Kj .

N Nidr

_jAJ

Effect on 6N : N = Ny + 0N, dNy = —/@j(Né/Af_l)dz
dON = —jrmy ' diSN + dé
Dissipative term Stocastic term

reduction of density fluctuations Increase of density fluctuations
reduction of interaction energy Increase of interaction energy



Effect of uniform j-bod:

Effect on phase dlstrlbutlon

Phase diffusion

If number of lost atoms (N;) recorded :
= increase of knowledge on N
= (6N?) decreases = (6?) increases

Bayes formula P(ON|N;) < P(N;|dN)
P(N)|6N) o ¢~ (NimriN'di/ A1)/ (207)
To lowest order in 6N : N/ = N{) + ]-N{)—l SN
P(NJ|SN) oc e~ (ON=3N)?/(2o3y)

n] 1
QP = L =Ty




Effect of uniform j-bod: d ective modes

Continuous limit and reduced dimensions

don = —j/-ijnf)_lén dt +dn
(dn(r)dn(x')) = jrjnyd(r — ')t

(df(r)do(r)) = %ﬁjné_zé(r —r')dt

Classical fiel limit : np — oo at fixed dn/ng
= Noise terms negligible

Reduced dimension : effective s

Loss rate < w : atoms stay in transverse ground state
Confinement on a transverse width > volume for j—body process
kj = K3° [dx 1 [ip(x1) ¥ (2D)

kj = k50 [dx [(xL)[¥ (1D)




Effect of uniform j-body losses on hydrodynamic

Case Homogeneous gas : intrinsic dynamic

Bogoliubov Hamiltonian

Linearisation in ¢z (r) and 0(r)
Collective modes : Fourier modes. H = ), Hy

H, = Ayon; + Bib7, By = h*k*ng/(2m)

Long wave-length modes (phonons) : A; = g/2

Effect of decrease of n : reduction of energy in each mode = cooling

nq(tl}\[\/\ /\[\[\ LA A P
TAARNAAAAA A

———————————————————— n,(t;)

n,(t,)




Effect of uniform j-body losses on hydrodynamic collective modes

Homogeneous gas : Evolution of energy in phonon modes

g5, 2  IPkng 2

o Small loss rate = Equipartition : §(0n}) = hzzl‘;”o (02) = (Hy)/2

o Effect of modlﬁcatlon of on :
d(on?) = 2]/-€Jn’ (6n7)dt +]/<;Jn’ dt

o Effect of modification of ¢ : d(0?) = Yjrml 2 de

Change of mode energy and of y = (Hy)/(gno) ~ Tx/(gno)

. 21,2
o)t = ™ (~(e)G+ 3) + oo+

/=" (<36 3)+)

‘Stationnary value : yoo = 1/(2 — 1/j) ‘




Effect of uniform j-body losses on hydrodynamic collective modes

Homogeneous gas : Evolution of energy in phonon modes

g5, 2  IPkng 2

o Small loss rate = Equipartition : §(0n}) =

80 (02) = (Hy) /2
o Effect of modlﬁcatlon of on :
d(on?) = 2]/-€Jn’ (6n7)dt +]/<;Jn’ dt

o Effect of modification of 0 : negligible for phonons

Change of mode energy and of y = (Hy)/(gno) ~ Tx/(gno)

d(H) fdr = (—<Hk>o +3)+ 75 +J>;§)

/=" (<36 3)+)

‘Stationnary value : yoo = 1/(2 — 1/j) ‘




Effect of uniform j-body losses on hydrodynamic collective modes

General case : gas intrinsic dynamcis

Evolution of mean profile under losses

no(r, t) evolves in time and mean velocity field V6,
o Small loss rate : adiabatic following and V0, negligible
@ Local Density Approximation

p(no(r, 1)) = pp(t) — V(r)

Evolution of fluctuations

| \

Bogoliubov : Linearisation in dn(r) and ¢(r) = 6 — 6y
Hydrodynamic modes : long wavelengths

2

h m 2
Hhdyn = o /ddrno(Vgo)2 + ) /ddrnoén2

mc?(r) = noOppir




Effect of uniform j-body losses on hydrodynamic

Collective hydrodynamic modes

Diagonalisation of Hjgy,

At any time Hyayn = Y, H, ,

hw,
2

H, = (Xi +P%)

25
x, = hz,, / ddl‘cnongu(l')

pv = [ d'rp(r)g,(r)
Time-depend mode function g,, : V - (nOV(%g,,)) = —wlg,

Effect of losses
Evolution of (H,) ~ T, ?




Effect of uniform j-body losses on hydrodynamic collective modes

Evolution of 7,

Small loss rate

@ Modification of ny(r) and g, (r) : keep invariant A, = (H,)/(hw,)
@ Coupling between modes introduced by losses neglected

@ Equipartition at all time

Differential equation for y, = (H,)/ (mclz,)

d - . .
2y = Ky [=(A = C)y, +j8]

A, B, C : integrals involving no(r) and g, (r).

@ A : reduction of density fluctuations due to loss process
@ C : time evolution of mcIZ7 /(hwy)

@ /3 : density fluctuations due to stocastic nature of losses

See I. Bouchoule et al., arXiv :1806.08759



Effect of uniform j-body losses on hydrodynamic collective modes

Application of formalism : Asymptotic temperature for 1D

gas in a harmonic potential

Functions g, : Legendre polynomials
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Experimental evidence for

ody losses cooling

Experimental setup : trapping atoms with an atom-chip

o Magnetic confinement of 8’Rb atoms : V = up|B|

@ Cu micro-wires deposited on an AIN substrate

Chip design (wire edges shown)

confinement |

15/m . |
AC currents
w; = 0.1 — 100kHz

@ Planarisation and insulation with resist, covered with Au miror
Interferometric image

For lonﬁitudinal W

23 : /
N —

- z \ e

- - ~{ - yal 100 nm
. . /] .

Fabrication : LPN, CNRS, help of S. Bouchoule



Experimental evidence for 3-body losses cooling

Experimental setup : realising and imaging 1D gases

Chip mount

CCD camera

Probe beam
light sheet wy = 100pm

Ny =3—10x 103

o A typical in-situ absoprtion image
o w,=8—-15Hz : ‘

o w; =15-3kHz hi9,0/,zm¢'.% T

e u~T=>50-100nK ;

@ [./€ ~ 10 : deep into quasi-BEC



Experimental evi 3-body losses cooling

Regimes of 1D Bose gas with repulsive contact interaction

Contact repulsive interaction : gd(z; — zj)
Thermodynamic : Yang-Yang (60’)
Dimensionless parameters : ¢ = hkT/(mg?), v = mg/h*n

1e+08 <
lesos (o mearly ideal gas g?(0) ~ 2 1 Quasi-bec regime :
[N . .
oo b By clasica 1 small density fluctuations
quasi- ondens on < no
roiof - 1 : .
10 201 Phase fluctuations remain
e 90 51 _
§frnqgly interacting
0.01 g(z)(oj \<<! g
0.0001 L L . S
0.0001 0.001 0.01 0.1 1 10 100



Experimental evidence for 3-body losses cooling

Decay of atom number under 3-body loss process

@ wrr of radio-frequency field increased = no 1-body losses

A
e

@ Losses dominated by 3-body process
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Experimental evidence sses cooling

Thermometry in gBEC regime via density ripples analysis

o Trapping potential suddenly turned off

transverse expansion — instantaneous switching off of interactions

@ 8 ms time of flight —

phase fluctuation transform into density fluctuations = density ripples

Mean profile
300

200 -

100 -

T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220

z/A

Single shot image

Statistical analysis on ~ 50 images
= extract power spectrum (|py|?)




Experimental evidence for 3-body losses cooling

Power spectrum of density ripples and thermometry

We fit the power spectrum to obtain the temperature.

Density ripples power spectrum

204 —— fit :T=55nK,0 = 3.0um
data

o ZI] 4‘0 6‘0 82} 1(;0 12‘0 140
kRrp
Sensitive to phononic modes



Experimental evidence for 3-body losses cooling

Evolution of temperature during the loss process

Decrease of the temperature up to a factor 4.
= Losses associated to cooling



0.0= - - . . .
0 o0 100 150 200 250

Tp [pm ]

@ Quasi-1D : transverse swelling non negligible. mc? non linear in n

@ Stationnary ratio attained as soon as the gas is deep into the
quasi-bec regime and reach the 1D regime.



Experimental e

Zone explored in the phase diagram

We generalise the 1D paramaters to quasi-1D : 7 = h2kgTn? /(m3c*)
and 7 = m*c?/(h*n?)




Non thermal states produce
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© Non thermal states produced by losses



Non thermal s

Beyond phonons. 1-body losses, homogeneous gases

Bogoliubov Hamiltonian : Hy = Akén,% + BkG,% ii I

By = W22/ (2mny), Ay = g/2 + h2k*/ (8mny) ER

Phonons : k < \/mgngy/h, wy ~ kv/gno/m Sl ) e
0 _—,

Particles : k > /mgng/h, wi ~ hk*/(2m)

005 1 15 2 25 3 35
k

o Small loss rate : adiabatic invariant E; = (Hy) /(Fwwy)

. h2k2 /2m+2gn, h2k2 /2m
= EE]‘ =T (_Ek + (\/ h2k2/2m *+ \/h2k2/2m+2gn0) 4)

Different modes acquiere different temperature

Phonons : kBTphonon t—%J PO( )g
. . ~ P21
Particles : kpTpart o om T

Large 7 : Tpart > Tphonon
= Generalised Gibbs ensemble




Non thernr

Robustness versus non-linear couplings for 1D gases

Wigner function evolves according to trajectories :

Beyond Bogoliubov : truncated Wigner approximation

2 92
ihdy = (—h—a—w + glv[*p — ngp) dt + d§

2m 072

(d€*(2)d¢(2)) = Tdté(z — ) /2

kpTi/(po(t)9))

0 05 1 15 2 25 3

kh/\/mpig

t=0
t=25/T
t=53/T



Ey/(kpT;)
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top curves :

k = 6.0,/mgpi/h
bottom curbes :

k = 6.0\/mgpi/h
g=04g (m'/m=73)
g=0

Breaking integrability

Two-1D Bose gases :

ihonp /Ot = zh,ffa;" + @lel* + gl )y,
ihdp/0t = — 1552 + (g + gy ).

g = 0 = 2-independant 1D Bose gases
g # 0 = non-integrable system




@ Cooling to ground state using quantum feedback



Learning from losses and quantum feedback cooling

e Time and position-resolved detector : information on density
fluctuations present in the gas
@ Backaction condition on the recorded losses

=Cooling collective modes of the gas

Bose gas ox
IIEIHIHIEIII 11 1

Ve |OSt atoms etectors

YYYYYYYYYYY j

M; M,




Learning from losses and quantum feedback cooling

e Time and position-resolved detector : information on density
fluctuations present in the gas
@ Backaction condition on the recorded losses

=Cooling collective modes of the gas

V(x) lattice potential
-
X
Bose gas ox

' lost atoms etectors

TYYTTYYYYYYETYY
feedback - lattice amplitude —————




Quantum Monte Carlo wave-function analysis

Wave-function evolution during At for a single “cell” of the gas

Fock state expansion : [¢)) = > c,|n)

Monte-Carlo evolution : |eal?
M recorded lost atoms :
cn — fu(n)cy [fua ()

= (i) shift of center (depends on M)
=> (ii) narrowing of the distribution

For a given Bogoliubov mode of a homogeneous gas (wave-vector k)

Wigner function evolution
Expansion in 7 basis :

Ok
W) = [ dnge(ni) i)
Monte-Carlo evolution :

M, Fourier transform of the M’s : v\/ -

c(ne) = fu (i) e (i)




Evolution of Wigner function for a single Bogoliubov mode

and for a given quantum trajectory

30 t=8§/T

| ---- single trajectory

20

Hk = Akn,% + Bke,%

Assume g(t) = goe'’ 10
= ghp = cste
Loss rate : I' = wy /400 s

VB8

Evolution of center :
trajectory dependent

Width of the distribution :
goes to ground state width

—10

—20

-30

—40 . . . . .
-20 —10 0 10 20 30 40

vV Ak N




Quantum feedback : cooling to groud state

Feedback : periodic potential of amplitude V = Hy, = V/(¢)ii
V(t) = —hv(6) : computed using the acquired losses information
and integrating equation of motion

Average over trajectories

12 T T T T T

— v/T=0

e v/T=1

e v/T =10 []

v v y/T =400
s - - hw/2
9p/2

B/(hw)




© Conclusion



Conclusion and prospects

Conclusion

o First observation of 3-body losses cooling
e Extension of previous theoretical work
@ Non-thermal nature of the state resulting from losses

@ Proposal for quantum feedback to ground state

o Elucidating the effect of 1-body losses (stationnary ratio
kgT /(mc?) not observed experimentally)

o Extend work on non-thermal states to the case of trapped
systems

e Extend this work to strongly interacting regime of 1D
Bose gases

e Take into account an eventual position-dependent loss
term : link with evaporative cooling
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