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The number of atoms in an optical trap can be controled

F. Serwane et al. Science 332 336 (2011)

6Li
fermions

1D



N+1

A. N. Wenz et al. Science 342 457 (2013)



The potential does not have to be harmonic

Probability of finding a single particle in the right well

Initial
configuration

Probability of finding two particles in the right well

S. Murman et al. PRL, 114 080402 (2015)



You can have also optical lattice microtraps

B. Zimmerman et al NJP 13 043007 (2011) 

4 x 4 2D optical lattices



I. Bloch Nat. Phys. 1 23 (2005) 

An optical lattice is created by the superposition of standing waves

Quasi-1D

3D

Set of potential
minima



A set of atoms loaded in an optical lattice is

usually described by the Hubbard model

Creation and 
anhililation operators

Number of atoms
at site i

i i +1

Potential
minima

sites

Bosons or fermions



However, the Hubbard model is only a simplification 

Sometimes it works, sometimes it does not

Full 3D continuous Hamiltonian

Optical lattice potential

kx,y,z =
2

x,y,z
laser wavelength

Interparticle potential



When Vx =  Vy >> Vz = V0  kx = ky ≠ kz = k

Quasi-1D system confined in the z direction

Harmonic confinement
in the perpendicular direction
 we have a tube

It can be dropped in a pure 1D
system



Real wavefunction of the atoms

Functions that depend
on the position of the sites i

In 1D

Wannier funcions

Anihilation operator
for site i



Stripes  1D Bose-Hubbard model, good forV0 /ER > 3 

 = 200 a

 = 50 a

 = 100 a

Symbols  continuous quasi-one dimensional model

ER = 
h2

2m2

Bosons

PRA 87, 063631
(2013) Hard spheres

PRA 93, 021605(R) 
(2016) 1D



For 1D clusters

Contact potential

Harmonic potential

Optical lattice
potential
(It can be zero)

, reduced mass

C = 1.46

M. Olshanii. PRL 81 938 (1998)

a, scattering length
= 



CIR

Magnetic field

g can change sign

G. Zürm et al PRL 108, 075303 (2012)

6Li



1D clusters of few fermions  FN-DMC

Approximate solution to the many-body Schrodinger
equation

It needs an initial approximation  trial function

Slater determinants containing the solutions to the one-body Schrödinger 
equation defined by



Numerical solutions
to the non-interacting
Schrödinger equation

V0 = 0 (Harmonic oscillator)

V0 = 4 ER  = 

V0 = 4 ER  = 2

Slater determinant



Interparticle part of the trial function

In 1D systems the nodes are located only at xij = 0

No backflow corrections  FN-DMC gives us

exact energies

distance between
two particles of
different spin

Variational parameter
Rm = 6-10 



Posible states (not phases) of few-fermion clusters

• Metal (superfluid)

• Mott insulator

• Band insulator

• Antiferromagnetic

• Ferromagnetic

Bosons

Number of particles : 3-20

Balanced (N = N) and imbalanced (N ≠ N)

g > 0   Repulsive interactions



Antiferromagnetism

L. Guan et al. PRL 102, 160402 (2009)

N = 2 N = 1  2+1

g = 15 h  

The probability of finding
the minority particle increases
at the center of the cluster

BUT that does not exclude
the presence of the mayority
particles at the center

The ferromagnet is
not “perfect”



When the number of atoms increases the separation
is less clear

4+4 5+4

C. Carbonell-Coronado et al. NJP 18 025015 (2016)

g = 0

g =10 h /2

g =50 h/2



Calculate the probability of different spin orderings





There is no “pure” antiferromagnet

Mixed



Number of configurations

C = 
(N + N)!

N! N!

N = N C(AF) = 2

N = N + 1 C(AF) = 1

C(F) = 2 



Local antiferromagnetic correlations

g =50 h/2

g = 0

Pauli’s exclusion



Optical lattice clusters

Mott phase in homogeneous system   = 0

External potential
different for each i site

In a cluster,  and  depend on the site



i = 0  at several consecutive sites
with ni = 1  Mott domain

Bosons

N = 15
z = 2  x 415 Hz
V0 = 7.6 ER

No Mott domain
 superfluid

C. Carbonell-Coronado et al. PRA 90, 013630 (2014) 



N = 15
z = 2  x 415 Hz
V0 = 15.2 ER

Mott domain

We go from a superfluid
to a Mott insulator by
increasingV0

Superfluid
wings



N = 31
z = 2  x 415 Hz
V0 = 6.3 ER

Mott domainsSuperfluid
domain

Mott insulator

Superfluid

State diagram

homogeneous system

State III



Fermionization

When g →  M +  N fermions behave as (M+N)

M. D. Girardeau, PRA 82, 011607(R) (2010).

Same energy Same density profile

Girardeau’s mapping

N = 0

Non-interacting Hamiltonian



The energies and the density profiles can be calculated exactly

Slater determinant containing the solutions to the non-interacting Hamiltonian

2+1 cluster

Fermionization
limit

E = 
h2

2m2

 = 

E is reached for

smaller values of 

g than for the

harmonic oscillator

PRA 96, 013614 (2017)



g = 4 h/2
 = 

V0 = 10 E

V0 = 4 E

Fermionization limit

Fermionization limit

The populations in the potential
minima are different  metals



 = 2

E is reached for

smaller values of 

g than for  = 

The system behaves

effectively as if g were

much larger



V0 = 4 E  = 2 g = h/2

g = 5 h/2  Fermionization limit  Mott insulator



Density profile
at the fermionization
limit (g →)

Profile for non-interacting
cluster of (M+N)

Metal (unequal populations)

(Mott) insulator
(equal populations, ni = 1)

Calculated from the
non-interacting Hamiltonian

We can predict if a cluster is going to be a Mott insulator

or not from the solutions of the non-interacting Hamiltonian



 = 

There is no way

a cluster of 20 atoms

is a Mott insulator

forV0 < 3 ER

irrespectively of its

internal composition

Clusters with N



Paramagnetism in N = 4 clusters

 = 2

The 3+1 cluster has
smaller energy than
the 2+2 cluster

degenerate



Non-interacting energies

 = 2

 = 

The n and n+1 
(n1) states
become degenerate
for deep enoughV0

E0

E0

E1

E2

E1 E2





The relative stability of the clusters depends on  and g

  0  g > 0  cluster 3+1 more stable  paramagnetic

 > 0  cluster 2+2 more stable  diamagnetic

Dia- and paramagnetic degenerate
Metal (mixed)

Mott insulator



V0 = 3 E

g = 2.5 h/2

(3+1) V0 = 3 E g = h/2

(2+2) V0 = E g = 2.5 h/2

(3+1) V0 = 3E g = 8 h/2

3+1 2+2

Mott insulator

Metal 

 = 2



 = 2

 = 

Phase diagrams for a N = 4 cluster

Paramagnetic



Band insulators

i = 0  at several consecutive sites
with ni = 2  band insulator

5+5  = 

V0 = 10 E g = 10 h/2

V0 = 4 E g = 4 h/2

V0 = 14 E g = 0 

Band insulator

M.C. Gordillo PRA 96, 033630 (2017)



15+5 Filled circles (metal) 

V0 = 6 E g = 0 

Open circles (metal)

V0 = 6 E g = 4h/2

Open squares (Mott)

V0 = 6 E g = 20h/2

Filled squares (state II)

V0 = 14 E g = 0

Open squares (state I)

V0 = 10 E g = 0 



State diagrams

5+5 

10+5

Only three states



15+5

State I 
Mott insulator + metal

State II
Mott insulator +
Band insulator



For a n+m
cluster (n≥m)
to be a band
insulator for
g→ 0 both
m and n clusters
have to be 
insulators

Predicted by the
non-interacting
solutions of the
Hamiltonian



Conclusions

• Small fermion clusters loaded in optical lattices have a 

wide variety of behaviours

MetalMott insulator Band insulator

Diagmanetic Paramagnetic

• For harmonic clusters there is no pure antiferromagnetic
state



• Some of those behaviours can be predicted from the

non-interacting solutions of the Hamiltonian

In the g→  limit
a M +  N cluster is a 
Mott insulator only
if a (M+N) cluster is
a Mott insulator

The potential depth
needed to have a Mott
insulator decreases with
the size of the cluster



• Some of those behaviours can be predicted from the

non-interacting solutions of the Hamiltonian

In the g→ 0 limit
a M +  N cluster is a 
band insulator only
if the M and N clusters 
are  band insulators

When M ≠ N we
can have additional
states that are mixtures
of metals, Mott insulators
and band insulators


