Small clusters modeled by continuous Hamiltonians

M.C. Gordillo

Universidad Pablo de Olavide
Sevilla, Spain

The number of atoms in an optical trap can be controled

F. Serwane et al. Science 332336 (201 I)

$N+I$

A. N.Wenz et al. Science 342457 (2013)

The potential does not have to be harmonic

Probability of finding a single particle in the right well
Probability of finding two particles in the right well
S. Murman et al. PRL, II4 080402 (2015)

You can have also optical lattice microtraps
(a) $3 \mu \mathrm{~m}$
(b) $2.5 \mu \mathrm{~m}$

(d) $1.8 \mu \mathrm{~m}$

(e) $1.2 \mu \mathrm{~m}$

(c) $2.1 \mu \mathrm{~m}$

(f) Line sums in (c)

4×4 2D optical lattices
B. Zimmerman et al NJP 13043007 (201I)

An optical lattice is created by the superposition of standing waves

Quasi-ID

3D
 Set of potential minima

I. Bloch Nat. Phys. 123 (2005)

A set of atoms loaded in an optical lattice is usually described by the Hubbard model

However, the Hubbard model is only a simplification \Rightarrow Sometimes it works, sometimes it does not

Full 3D continuous Hamiltonian

$$
\begin{gathered}
H=\sum_{i=1}^{N}\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ext }}\left(x_{i}, y_{i}, z_{i}\right)\right]+\sum_{i<j}^{\text {Interparticle potential }} V\left(r_{i j}\right), \\
\text { Optical lattice potential } \\
V_{\text {ext }}(x, y, z)=V_{x} \sin ^{2}\left(k_{x} x\right)+V_{y} \sin ^{2}\left(k_{y} y\right)+V_{z} \sin ^{2}\left(k_{z} z\right), \\
\mathrm{k}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}=\frac{2 \pi}{\lambda_{\mathrm{x}, \mathrm{y}, \mathrm{z}}}
\end{gathered}
$$

$$
V_{\mathrm{ext}}(x, y, z)=V_{x} \sin ^{2}\left(k_{x} x\right)+V_{y} \sin ^{2}\left(k_{y} y\right)+V_{z} \sin ^{2}\left(k_{z} z\right),
$$

When $V_{x}=V_{y} \gg V_{z}=V_{0} \Rightarrow k_{x}=k_{y} \neq k_{z}=k$

Quasi-ID system confined in the z direction

$$
V_{\mathrm{ext}}(x, y, z)=V_{0} \sin ^{2}(k z)+\frac{1}{2} m \omega_{\perp}^{2}\left(x^{2}+y^{2}\right),
$$

Harmonic confinement
in the perpendicular direction \Rightarrow we have a tube

It can be dropped in a pure ID system

Real wavefunction of the atoms

$$
\Phi\left(z_{1}, z_{2}, \ldots, z_{N}\right)=\prod_{i=1}^{N} \psi\left(z_{i}\right), \quad \ln \text { ID }
$$

Functions that depend on the position of the sites i

$$
\psi(z)=\sum_{i} w_{i}\left(z-z_{i}\right) b_{i}, \quad \begin{aligned}
& \text { Anihilation operator } \\
& \text { Warnier funcions }
\end{aligned}
$$

$$
J_{i j}=-\int d z w_{i}^{*}(z)\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}+V_{\mathrm{ext}}(z)\right] w_{j}(z)
$$

$$
U=-\int d z d z^{\prime} w_{i}^{*}(z) w_{j}^{*}\left(z^{\prime}\right) V_{\mathrm{ext}}\left(z-z^{\prime}\right) w_{k}(z) w_{l}(z)
$$

Stripes \Rightarrow ID Bose-Hubbard model, good for $V_{0} / E_{R}>3$
Symbols \Rightarrow continuous quasi-one dimensional model

For ID clusters

$$
\begin{aligned}
& H=\sum_{i=1}^{N_{\uparrow}+N_{\downarrow}}\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{1}{2} m \omega^{2} x_{i}^{2}+V_{\mathrm{ext}}\left(x_{i}\right)\right] \\
& +g_{1 \mathrm{D}} \sum_{i=1}^{N_{\uparrow}} \sum_{j=1}^{N_{\downarrow}} \delta\left(x_{i}-x_{j}\right), \\
& \text { Contact potential } \\
& g=\frac{2 \hbar^{2} a_{3 D}}{\mu a_{\perp}^{2}} \frac{1}{1-C a_{3 D} / a_{\perp}} \\
& a_{\perp}=\sqrt{\hbar / \mu \omega_{\perp}}=\sigma \\
& \mu \text {, reduced mass } \\
& C=1.46 \\
& \text { a, scattering length } \\
& \text { M. Olshanii. PRL 8I } 938 \text { (1998) }
\end{aligned}
$$

Magnetic field

$$
g=\frac{2 \hbar^{2} a_{3 D}}{\mu a_{\perp}^{2}} \frac{1}{1-C a_{3 D} / a_{\perp}}
$$

${ }^{6} \mathrm{Li}$

G. Zürm et al PRL I08, 075303 (2012)

ID clusters of few fermions \Rightarrow FN-DMC

Approximate solution to the many-body Schrodinger equation

It needs an initial approximation \Rightarrow trial function

$$
\Phi\left(x_{1}, \ldots, x_{N}\right)=\underbrace{D^{\uparrow} D^{\downarrow}} \prod_{i}^{N_{\uparrow}} \prod_{j}^{N_{\downarrow}} \psi\left(x_{i j}\right)
$$

Slater determinants containing the solutions to the one-body Schrödinger equation defined by

$$
H=\sum_{i=1}^{N_{\uparrow}+N_{\downarrow}}\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{1}{2} m \omega^{2} x_{i}^{2}+V_{\mathrm{ext}}\left(x_{i}\right)\right]
$$

Numerical solutions to the non-interacting Schrödinger equation \square
Slater determinant
$\mathrm{V}_{0}=0$ (Harmonic oscillator)
$V_{0}=4 E_{R} \quad \lambda=\sigma$
$V_{0}=4 E_{R} \quad \lambda=2 \sigma$

Interparticle part of the trial function

$$
\begin{aligned}
& \begin{array}{c}
\text { distance between } \\
\text { two particles of } \\
\text { different spin }
\end{array} \\
& \psi\left(x_{i j}\right)= \begin{cases}\cos \left(k\left(x_{i j}-R_{m}\right)\right), & x_{i j}<R_{m}, \\
1, & x_{i j} \geqslant R_{m},\end{cases} \\
& k a_{1 \mathrm{D}} \tan \left(k R_{m}\right)=1 \quad g_{1 \mathrm{D}}=-2 \hbar^{2} / m a_{1 \mathrm{D}} \\
& \vdots \\
& \text { Variational parameter }_{\mathrm{R}_{\mathrm{m}}=6-10 \sigma}
\end{aligned}
$$

In ID systems the nodes are located only at $\mathrm{x}_{\mathrm{ij}}=0$
\Rightarrow No backflow corrections \Rightarrow FN-DMC gives us exact energies

Posible states (not phases) of few-fermion clusters

- Metal (superfluid) $\}$ Bosons
- Band insulator
- Antiferromagnetic
- Ferromagnetic

Number of particles : 3-20
Balanced $\left(N_{\uparrow}=N_{\downarrow}\right)$ and imbalanced $\left(N_{\uparrow} \neq N_{\downarrow}\right)$
$\mathrm{g}>0 \Rightarrow$ Repulsive interactions

Antiferromagnetism

The probability of finding the minority particle increases at the center of the cluster

BUT that does not exclude the presence of the mayority particles at the center

The ferromagnet is not "perfect"
L. Guan et al. PRL I02, I60402 (2009)

When the number of atoms increases the separation is less clear

C. Carbonell-Coronado et al. NJP 18025015 (2016)

Calculate the probability of different spin orderings

Figure 4. Probability of different spin orderings for a $4+4$ cluster. Squares, ferromagnetic (F) state; circles, antiferromagnetic (AF) ordering; triangles, mixed (M) configurations.

There is no "pure" antiferromagnet

Figure 5. Probability of different spin orderings for different clusters and g 's obtained from our simulations: open symbols, $g=0$; full ones, $g=50$. Lines indicate the probabilities of each phase if the orderings were purely random. For the $2+2$ cluster in the random limit all orderings have the same probability.

Number of configurations

$$
C=\frac{\left(N_{\uparrow}+N_{\downarrow}\right)!}{N_{\uparrow}!N_{\downarrow}!}
$$

$\mathrm{N}_{\uparrow}=\mathrm{N}_{\downarrow} \quad \mathrm{C}(\mathrm{AF})=2$
$\mathrm{N}_{\uparrow}=\mathrm{N}_{\downarrow}+1 \quad \mathrm{C}(\mathrm{AF})=1$
$C(F)=2$

Local antiferromagnetic correlations

Figure 6. Radial distribution functions for $3+3$ (left) and $4+3$ (right) clusters. Dots, same-spin distributions; full lines, differentspin probabilities. Upper panel, $g=0$; lower panel, $g=50$. The integral under those curves was set to 1 .

Optical lattice clusters

$$
\begin{aligned}
& H=-J \sum_{\langle i j\rangle} b_{i}^{\dagger} b_{j}+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)+ \sum_{i} \epsilon_{i} n_{i} \\
& \text { External potential } \\
& \text { different for each i site }
\end{aligned}
$$

Mott phase in homogeneous system $\Rightarrow \kappa=0$

$$
\kappa=\partial n / \partial \mu=0
$$

In a cluster, μ and κ depend on the site

$$
\kappa_{i}=\frac{\partial n_{i}}{\partial \mu_{i}}, \quad \mu_{i}=\mu-V_{c} r_{i}^{2}=\mu-\frac{1}{2} m \omega_{z}^{2} z_{i}^{2}, \quad \kappa_{i}=-\frac{1}{m \omega_{z}^{2} z} \frac{\partial n}{\partial z} .
$$

$$
\begin{gathered}
\kappa_{i}=-\frac{1}{m \omega_{z}^{2} z} \frac{\partial n}{\partial z}, \quad n_{i}=\int_{z_{i}-\lambda / 4}^{z_{i}+\lambda / 4} \rho(z) d z \\
\kappa_{\mathrm{i}}=0 \Rightarrow \quad \Delta_{i}=\left\langle n_{i}^{2}\right\rangle-\left\langle n_{i}\right\rangle^{2}=0, \quad \begin{array}{l}
\text { at several consecutive sites } \\
\text { with } \mathrm{n}_{\mathrm{i}}=I \Rightarrow \text { Mott domain }
\end{array}
\end{gathered}
$$

Bosons

$N=15$
$\omega_{z}=2 \pi \times 4 \mathrm{I} 5 \mathrm{~Hz}$
$\mathrm{V}_{0}=15.2 \mathrm{E}_{\mathrm{R}}$

We go from a superfluid to a Mott insulator by increasing V_{0}

$\mathrm{N}=3 \mathrm{l}$
$\omega_{z}=2 \pi \times 4 \mathrm{I} 5 \mathrm{~Hz}$
$V_{0}=6.3 E_{R}$

State III

State diagram

homogeneous system

Fermionization

When $g \rightarrow \infty M_{\uparrow}+N_{\downarrow}$ fermions behave as $(M+N)_{\uparrow}$

Girardeau's mapping
M. D. Girardeau, PRA 82, $011607(R)(2010)$.

$$
\begin{aligned}
& H= \underbrace{}_{\sum_{i=1}^{\sum_{\uparrow}+N_{\downarrow}}\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{1}{2} m \omega^{2} x_{i}^{2}+V_{\mathrm{ext}}\left(x_{i}\right)\right]} \\
&+g_{1 \mathrm{D}} \sum_{i=1}^{N_{\uparrow}} \sum_{j=1}^{N_{\downarrow}} \delta\left(x_{i}-x_{j}\right), \quad \mathbf{N}_{\downarrow}=0
\end{aligned}
$$

Non-interacting Hamiltonian

The energies and the density profiles can be calculated exactly

$$
\Phi\left(x_{1}, \ldots, x_{N}\right)=D^{\uparrow}
$$

Slater determinant containing the solutions to the non-interacting Hamiltonian
$2+1$ cluster
E_{∞} is reached for smaller values of g than for the harmonic oscillator ${ }^{4^{8}}$

$$
\lambda=2 \sigma
$$

E_{∞} is reached for smaller values of g than for $\lambda=\sigma$

The system behaves effectively as if g were much larger

$$
V_{0}=4 E_{\sigma} \quad \lambda=2 \sigma \quad g=h \omega \sigma / 2 \pi
$$

$g=5 h \omega \sigma / 2 \pi \Rightarrow$ Fermionization limit \Rightarrow Mott insulator

Density profile
 at the fermionization
 limit ($g \rightarrow \infty$)

Profile for non-interacting cluster of $(M+N)_{\uparrow}$

Metal (unequal populations)

(Mott) insulator
(equal populations, $\mathrm{n}_{\mathrm{i}}=\mathrm{I}$)
Calculated from the non-interacting Hamiltonian

We can predict if a cluster is going to be a Mott insulator or not from the solutions of the non-interacting Hamiltonian

Clusters with N_{\uparrow}

There is no way
a cluster of 20 atoms is a Mott insulator for $V_{0}<3 E_{R}$ irrespectively of its internal composition

Paramagnetism in $\mathrm{N}=4$ clusters

The 3+I cluster has smaller energy than the $2+2$ cluster

Non-interacting energies

The relative stability of the clusters depends on Δ and g
$\Delta \approx 0 \mathrm{~g}>0 \Rightarrow$ cluster $3+\mathrm{I}$ more stable \Rightarrow paramagnetic
$\Delta>0 \Rightarrow$ cluster $2+2$ more stable \Rightarrow diamagnetic
Dia- and paramagnetic degenerate Metal (mixed)

$$
\begin{aligned}
& V_{0}=3 E_{\sigma} \\
& g=2.5 \mathrm{~h} \omega \sigma / 2 \pi
\end{aligned}
$$

$$
3+1 \quad 2+2
$$

Metal

$$
\begin{aligned}
& (3+I) V_{0}=3 E_{\sigma} g=h \omega \sigma / 2 \pi \\
& (2+2) V_{0}=E_{\sigma} g=2.5 h \omega \sigma / 2 \pi \\
& (3+I) V_{0}=3 E_{\sigma} g=8 h \omega \sigma / 2 \pi
\end{aligned}
$$

Mott insulator

Phase diagrams for a $\mathrm{N}=4$ cluster
$\lambda=\sigma$

Band insulators

$$
\kappa_{\mathrm{i}}=0 \Rightarrow \quad \Delta_{i}=\left\langle n_{i}^{2}\right\rangle-\left\langle n_{i}\right\rangle^{2}=0,
$$

$5+5 \quad \lambda=\sigma$

$$
\begin{gathered}
n_{i}=\int_{z_{i}-\lambda / 4}^{z_{i}+\lambda / 4} \rho(z) d z, \\
\mathrm{~V}_{0}=10 \mathrm{E}_{\sigma} g=10 \mathrm{~h} \omega \sigma / 2 \pi \\
\mathrm{~V}_{0}=4 \mathrm{E}_{\sigma} g=4 \mathrm{~h} \omega \sigma / 2 \pi \\
\mathrm{~V}_{0}=14 \mathrm{E}_{\sigma} \mathrm{g}=0 \\
\text { Band insulator }
\end{gathered}
$$

Filled circles (metal)
$V_{0}=6 E_{\sigma} g=0$
Open circles (metal)
$V_{0}=6 E_{\sigma} g=4 h \omega \sigma / 2 \pi$
Open squares (Mott)
$V_{0}=6 E_{\sigma} g=20 h \omega \sigma / 2 \pi$

Filled squares (state II)
$V_{0}=14 E_{\sigma} g=0$
Open squares (state I)
$V_{0}=10 E_{\sigma} g=0$

State diagrams

Only three states

15+5

State I
 Mott insulator + metal

State II

Mott insulator + Band insulator

For a $n+m$ cluster ($\mathrm{n} \geq \mathrm{m}$) to be a band insulator for $g \rightarrow 0$ both m and n clusters have to be insulators

Predicted by the non-interacting solutions of the Hamiltonian

Conclusions

- For harmonic clusters there is no pure antiferromagnetic state
- Small fermion clusters loaded in optical lattices have a wide variety of behaviours

Mott insulator Metal

Band insulator

Diagmanetic
Paramagnetic

- Some of those behaviours can be predicted from the non-interacting solutions of the Hamiltonian

In the $g \rightarrow \infty$ limit a $M_{\uparrow}+N_{\downarrow}$ cluster is a Mott insulator only if a $(\mathrm{M}+\mathrm{N})_{\uparrow}$ cluster is a Mott insulator

The potential depth needed to have a Mott insulator decreases with the size of the cluster

- Some of those behaviours can be predicted from the non-interacting solutions of the Hamiltonian

In the $g \rightarrow 0$ limit a $\mathrm{M}_{\uparrow}+\mathrm{N}_{\downarrow}$ cluster is a band insulator only if the M_{\uparrow} and N_{\uparrow} clusters are band insulators

When $M \neq N$ we can have additional states that are mixtures of metals, Mott insulators and band insulators

