

Andrea Richaud

How does a binary mixture separate in a three-well potential?

A two-step mechanism

The model

$$
\begin{gathered}
\hat{H}=-T_{a} \sum_{j=1}^{3}\left(A_{j+1}^{\dagger} A_{j}+A_{j}^{\dagger} A_{j+1}\right)+\frac{U_{a}}{2} \sum_{j=1}^{3} N_{j}\left(N_{j}-1\right) \\
-T_{b} \sum_{j=1}^{3}\left(B_{j+1}^{\dagger} B_{j}+B_{j}^{\dagger} B_{j+1}\right)+\frac{U_{b}}{2} \sum_{j=1}^{3} M_{j}\left(M_{j}-1\right) \\
+W \sum_{j=1}^{3} N_{j} M_{j}
\end{gathered}
$$

Conserved quantities: $\sum_{j=1}^{3} N_{j}=N$

$$
\sum_{j=1}^{3} M_{j}=M
$$

The target

Determine the ground state of Hamiltonian \widehat{H} according to model parameters T_{a}, T_{b}, U_{a}, U_{b} and W.

Especially: the degree of miscibility.

$$
\begin{aligned}
\hat{H} & =-T_{a} \sum_{j=1}^{3}\left(A_{j+1}^{\dagger} A_{j}+A_{j}^{\dagger} A_{j+1}\right)+\frac{U_{a}}{2} \sum_{j=1}^{3} N_{j}\left(N_{j}-1\right) \\
& -T_{b} \sum_{j=1}^{3}\left(B_{j+1}^{\dagger} B_{j}+B_{j}^{\dagger} B_{j+1}\right)+\frac{U_{b}}{2} \sum_{j=1}^{3} M_{j}\left(M_{j}-1\right)
\end{aligned}
$$

$$
+W \sum_{j=1}^{3} N_{j} M_{j}
$$

The Continuous Variable Picture

Ground state of Hamiltonian $\widehat{H} \rightarrow$ Minimum of effective potential V_{*}

$$
\begin{aligned}
& V_{*}=-2 N T\left(\sqrt{x_{1} x_{2}}+\sqrt{x_{2} x_{3}}+\sqrt{x_{3} x_{1}}+\sqrt{y_{1} y_{2}}+\sqrt{y_{2} y_{3}}+\sqrt{y_{3} y_{1}}\right)+ \\
& \frac{U N^{2}}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)+W N^{2}\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)
\end{aligned}
$$

Where $x_{i}, y_{i} \in[0,1]$ are normalized boson populations.

$$
x_{i}=\frac{N_{i}}{N} ; \quad y_{i}=\frac{M_{i}}{N}
$$

A technique already successfully used in e.g.:

- F. Lingua and V. Penna, PRE 95, 062142 (2017);
- R. W. Spekkens and J. E. Sipe, PRA 59, 3868 (1999);

Search for the global minimum of V_{*}

A simpler example: a cubic domain

To find the global minimum of a function $f(x, y, z)$ defined on a cubic domain, one has to look:

- Inside the cube: $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=\overrightarrow{0}$
- - On each of the 6 faces, e.g. $\left(\frac{\partial f_{z=0}}{\partial x}, \frac{\partial f_{z=0}}{\partial y}\right)=\overrightarrow{0}$
- - On each of the 12 edges, e.g. $\frac{\mathrm{d} f_{y=z=0}}{\mathrm{~d} x}=0$
- - On each of the 8 vertices, e.g. $f(0,0,0)$

$$
\min \{f\}=\min \{\ldots, \ldots, \ldots\}
$$

Search for the global minimum of V_{*}

Result for $\mathrm{T}=0$

Site 1

Site 2

Site 3

Result for $\mathrm{T}=0$

$$
\frac{W}{U}<1 \rightarrow \text { Uniform and completely mixed phase }
$$

Result for $\mathrm{T}=0$

$$
\frac{W}{U} \in(1,2) \quad \rightarrow \quad \text { Partially mixed phase }
$$

Result for $\mathrm{T}=0$

$\frac{W}{U}>2 \rightarrow$ Completely demixed phase

Result for $\mathrm{T}>0$

Let's switch on the tunnelling processes:

Comparison

- Analytical expression;
- Both transitions are abrupt;
- Transitions exactly @ $\mathrm{W} / \mathrm{U}=1$ and $\mathrm{W} / \mathrm{U}=2$;

- Not fully analytic (just first border!);
- First transitions is continuous, second abrupt;
- Transitions @ W/U $\gtrsim 1$ and $\mathrm{W} / \mathrm{U} \gtrsim 2$;

A new mechanism

Previous investigations have shown that in the dimer there is only one mixing-demixing phase transition.

Phase diagram

- - - No known analytical expression

Phase diagram: thermodynamic limit

Energetic fingerprint

Exact diagonalization, with $\mathrm{N}=\mathrm{M}=15$

Energetic fingerprint

Increasing T / U :

- Transition gets smoother;
- Critical points move rightward;

The expression of the characteristic frequencies in the uniform phase has been obtained within the Bogoliubov approximation scheme followed by the Dynamical Algebra method (see V. Penna, A. Richaud, PRA 96, 053631 (2017)).

$$
\begin{aligned}
& \omega_{1}=\sqrt{T(9 T+2 U N+2 W N)} \\
& \omega_{2}=\sqrt{T(9 T+2 U N-2 W N)} \quad \longrightarrow \quad \frac{W}{U}<1+\frac{9 T}{2 U N}
\end{aligned}
$$

Collapse of Bogoliubov frequencies herald mixingdemixing phase transition!

Ground-state energy

$$
E_{0}=\left\langle\psi_{0}\right| \hat{H}\left|\psi_{0}\right\rangle
$$

$\mathrm{T} / \mathrm{U}=0.8$

$\mathrm{T} / \mathrm{U}=0.4$

$T / U \rightarrow 0$

Entanglement between the species

$$
\left.\begin{array}{cc}
\hat{\rho}_{0}= & \left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| \\
\downarrow & \begin{array}{c}
\leftarrow \text { Density matrix of } \\
\text { the ground state }
\end{array} \\
\hat{\rho}_{0, a}= & \operatorname{Tr}_{b}\left(\hat{\rho}_{0}\right) \\
& \downarrow \\
E E=- & \text { meduced density } \\
\text { matrix }
\end{array} \hat{\operatorname{Tr}}_{0, a} \log _{2} \hat{\rho}_{0, a}\right)=-\sum_{j=0} \lambda_{j} \log _{2} \lambda_{j} .
$$

Entanglement between the species

Observations:

- Peaks where transitions occur;
- Increasing T/U, transitions get smoother and shift rightward;
- For $\mathrm{W} / \mathrm{U}=0$, the species are decoupled, so $\mathrm{EE}=0$;
- For $\mathrm{W} / \mathrm{U} \gg 3, \mathrm{EE} \rightarrow \underset{\log _{2}(6) \text {; }}{ }$

What's the meaning of this number?

A Schrodinger cat with 6 faces

A Schrodinger cat with 6 faces

A Schrodinger cat with 6 faces

$$
\left|\Psi_{0}\right\rangle=\frac{1}{\sqrt{6}}(|*\rangle+|*\rangle+|*\rangle+|*\rangle+|*\rangle+|*\rangle)
$$

Recap

We have evidenced two different kinds of mixing-demixing phase transitions.

Recap

The three phases have a different energetic fingerprint:

The first mixing-demixing phase transitions is announced by the collapse of Bogoliubov frequencies (see V. Penna, A. Richaud, PRA 96, 053631 (2017))

Recap

Phase diagram:

Recap

Entanglement entropy:

Future work

Explore the phase separation mechanism in more complex lattice geometries. E.g.: the tetramer:

- How many intermediate phases?

- Structure of each of them?

Thanks for your attention!

QUESTIONS ?

Full article: Scientific Reports 8, 10242 (2018)
Info: andrea.richaud@polito.it

