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1. Introduction and Motivation
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Introduction and Motivation

An exquisite control over the external and internal
degrees of freedom of atoms developed over decades
lead to the realization of Bose-Einstein Condensation in
dilute alkali gases at nK temperatures.

Key tools available:
Laser and evaporative cooling
Magnetic, electric and optical dipole traps
Optical lattices and atom chips
Feshbach resonances (mag-opt-conf) for tuning of
interaction
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Introduction and Motivation
Enormous degree of control concerning preparation,
processing and detection of ultracold atoms !

Weak to strongly correlated many-body systems:

BEC nonlinear mean-field physics (solitons, vortices,
collective modes,...)
Strongly correlated many-body physics (quantum
phases, Kondo- and impurity physics, disorder,
Hubbard model physics, high Tc superconductors,...)

Few-body regime:

Novel mechanisms of transport and tunneling
Atomtronics (Switches, diodes, transistors, ....)
Quantum information processing
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Introduction: Some facts

Hamiltonian: H =
∑

i

(
p2
i

2mi
+ V (ri)

)
+ 1

2

∑
i,j,i ̸=j W (ri − rj)

V is the trap potential: harmonic, optical lattice, etc.

W describes interactions: contact gδ(ri − rj), dipolar, etc.

Dynamics is governed by TDSE: i!∂tΨ(r1, ..., rN , t) = HΨ(r1, ..., rN , t)

Ideal Bose-Einstein condensate: no interaction g = 0 ⇒ Macroscopic matter wave.

Φ(r1, ..., rN ) =
N∏

i=1

φ(ri)

Hartree product: bosonic exchange symmetry.

Interaction g ̸= 0: Mean-field description leads to Gross-Pitaevskii equation with cubic
nonlinearity, exact for N → ∞, g → 0.
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Introduction: Some facts

Finite, and in particular ’stronger’ interactions:
Correlations are ubiquitous

A multiconfigurational ansatz is necessary

Ψ(r1, ..., rN , t) =
∑

i

ciΦi(r1, ..., rN , t)

⇒ Ideal laboratory for exploring the dynamics of
correlations (beyond mean-field):

Preparation of correlated initial states
Spreading of localized/delocalized correlations ?
Time-dependent ’management’ and control of correlations ?
Is there universality in correlation dynamics ?
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Introduction and Motivation

Calls for a versatile tool to explore the (nonequilibrium)
quantum dynamics of ultracold bosons: Wish list

Take account of all correlations (numerically exact)
Applies to different dimensionality
Time-dependent Hamiltonian: Driving
Weak to strong interactions (short and long-range)
Few- to many-body systems
Mixed systems: different species, mixed
dimensionality
Efficient and fast
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Introduction and Motivation

Multi-Layer Multi-Configuration Time-Dependent Hartree
for Bosons (ML-MCTDHB) is a significant step in this
direction !

In the following: A brief account of the methodology and
then some selected diverse applications to ultracold
bosonic systems.
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2. Methodology: The ML-MCTDHB
Approach
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The ML-MCTDHB Method

aim: numerically exact solution of the time-dependent Schrödinger equation

for a quite general class of interacting many-body systems

history: [H-D Meyer.WIREs Comp. Mol. Sci. 2, 351 (2012).]

MCTDH (1990): few distinguishable DOFs, quantum molecular dynamics

ML-MCTDH (2003): more distinguishable DOFs, distinct subsystems

MCTDHF (2003): indistinguishable fermions

MCTDHB (2007): indistinguishable bosons

idea:
use a time-dependent, optimally moving basis in the many-body Hilbert space
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Hierarchy within ML-MCTDHB
We make an ansatz for the state of the total system |Ψt⟩ with time-dependencies on
different layers:

top layer |Ψt⟩ =
∑M1

i1=1 ...
∑MS

iS=1 Ai1,...,iS (t)
S⊗

σ=1
|ψ(σ)

iσ
(t)⟩

species layer |ψ(σ)
k (t)⟩ =

∑
n⃗|Nσ

Cσ
k;n⃗(t) |n⃗⟩(t)

particle layer |φ(σ)
k (t)⟩ =

∑nσ
i=1 B

σ
k;i(t)|ui⟩

.

xC yC zCxA xB

NA NB NC

MA MB

MC

mA mB mC

MA MB MC,x MC,y MC,z

Mc Lachlan variational principle: Propagate the ansatz |Ψt⟩ ≡ |Ψ({λit})⟩, λit ∈ C
according to i∂t|Ψt⟩ = |Θt⟩ with |Θt⟩ ∈ span{ ∂

∂λk
t
|Ψ({λit})⟩} minimizing the

error functional |||Θt⟩ − Ĥ|Ψt⟩||2

[AD McLachlan. Mol. Phys. 8, 39 (1963).]

In this sense, we obtain a variationally optimally moving basis!

Dynamical truncation of Hilbert space on all layers

Single species, single orbital on particle layer → Gross-Pitaevskii equation !
(Nonlinear excitations: Solitons, vortices,...)
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The ML-MCTDHB equations of motion

top layer EOM:

i∂tAi1,...,iS =
M1∑

j1=1

...

MS∑

jS=1

⟨ψ(1)
i1

...ψ(S)
iS

| Ĥ |ψ(1)
j1

...ψ(S)
jS

⟩Aj1,...,jS

with |ψ(1)
j1

...ψ
(S)
jS

⟩ ≡ |ψ(1)
j1

⟩ ⊗ ...⊗ |ψ(S)
jS

⟩

⇒ system of coupled linear ODEs with time-dependent coefficients due to the
time-dependence in |ψ(σ)

j (t)⟩ and |φ(σ)
j (t)⟩

⇒ reminiscent of the Schrödinger equation in matrix representation

species layer EOM:

i∂tC
σ
i;n⃗ = ⟨n⃗|(1− P̂ spec

σ )
Mσ∑

j,k=1

∑

m⃗|Nσ

[(ρspecσ )−1]ij⟨Ĥ⟩σ,specjk |m⃗⟩ Cσ
k;m⃗

⇒ system of coupled non-linear ODEs with time-dependent coefficients due to the
time-dependence of the |φ(σ)

j (t)⟩ and of the top layer coefficients
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The ML-MCTDHB equations of motion

particle layer EOM:

i∂t|φ(σ)
i ⟩ = (1− P̂ part

σ )
mσ∑

j,k=1

[(ρpartσ )−1]ij⟨Ĥ⟩σ,partjk |φ(σ)
k ⟩

⇒ system of coupled non-linear partial integro-differential equations
(ODEs, if projected on |u(σ)

k ⟩, respectively) with time-dependent
coefficients due to time-dependence of the Cσ

i;n⃗ and Ai1,...,iS

Lowest layer representations:

Discrete Variable Representation (DVR):

implemented DVRs: harmonic, sine (hardwall b.c.), exponential (periodic b.c.),
radial harmonic, Laguerre

Fast Fourier Transform

Stationary states via improved relaxation involving imaginary time propagation !
S Krönke, L Cao, O Vendrell, P S, New J. Phys. 15, 063018 (2013).

L Cao, S Krönke, O Vendrell, P S, J. Chem. Phys. 139, 134103 (2013).
L Cao, V Bolsinger, SI Mistakidis, GM Koutentakis, S Krönke, J Schurer

and P S, J. Chem. Phys. 147, 044106 (2017). Cold Atoms – p.15/70



3. Tunneling mechanisms in the
double and triple well
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Few-boson systems - Perspectives

Extensive experimental control of few-boson systems
possible: Loading, processing and detection
[I. Bloch et al, Nature 448, 1029 (2007)]

Bottom-up understanding of tunneling processes and
mechanisms
Atomtronics perspective providing us with
controllable atom transport on individual atom level:

Diodes, transistors, capacitors, sources and
drains

Double well, triple well, waveguides, etc.
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Few-boson systems: Double Well

No interactions: Rabi oscillations.
Weak interactions: Delayed tunneling.
Intermediate interactions:

Tunneling comes almost to a hold in spite of
repulsive interactions.
Pair tunneling takes over !

Very strong interactions: Fragmented pair tunneling.

◃ N = 2 atoms
K. Winkler et al., Nature 441, 853 (2006); S. Fölling et al., Nature 448, 1029 (2007)

S. ZÖLLNER, H.D. MEYER AND P.S., PRL 100, 040401 (2008); PRA 78, 013621 (2008)
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Interband Tunneling: Motivation

Here: Bottom-up approach of understanding the
tunneling mechanisms !

Triple well is minimal system analog of a
source-gate-drain junction for atomtronics
Triple well shows novel tunneling scenarios ⇔ Impact
on transport
Strong correlation effects beyond single band
approximation !
Beyond the well-known suppression of tunneling:
Multiple windows of enhanced tunneling i.e. revivals
of tunneling: Interband tunneling involving higher
bands !
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Interband Tunneling: Analysis Tool

Methodology: Multi-Layer Multi-Configuration
Time-Dependent Hartree for Bosons

Novel number-state representation including
interaction effects for analysis

Three bosons: Single, pair and triple modes.
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Interband Tunneling: Single boson tunneling
Three bosons initially in the left well: Ψ ≈ |3, 0, 0⟩0
(a) g = 0.1 and (b) g = 3.26

Single boson tunneling to middle and
right well via |3, 0, 0⟩0 ⇔ |2, 1, 0⟩1 ⇔
|2, 0, 1⟩1 i.e. via first-excited states !
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Interband Tunneling: Single boson tunneling
Three bosons initially in the middle well: Ψ ≈ |0, 3, 0⟩0
(a) g = 9.85

Single boson tunneling to left and right
well via |0, 3, 0⟩0 ⇔ |1, 2, 0⟩3 ⇔
|0, 2, 1⟩3 i.e. via second-excited states
!
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Interband Tunneling: Two boson tunneling
Three bosons initially in the middle well: Ψ ≈ |0, 3, 0⟩0
(a) g = 5.8

Two boson tunneling to the left and right
well via |0, 3, 0⟩0 ⇔ |1, 1, 1⟩6 i.e. two
first-excited states !

Cao et al, NJP 13, 033032 (2011)
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4. Multi-mode quench dynamics in
optical lattices
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Main features

Focus: Correlated non-equilibrium dynamics of in
one-dimensional finite lattices following a sudden
interaction quench from weak (SF) to strong interactions!

Phenomenology: Emergence of density-wave tunneling,
breathing and cradle-like processes.

Mechanisms: Interplay of intrawell and interwell dynamics
involving higher excited bands.

Resonance phenomena: Coupling of density-wave and
cradle modes leads to a corresponding beating
phenomenon !

⇒ Effective Hamiltonian description and tunability.
Incommensurate filling factor ν > 1(ν < 1)
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Post quench dynamics....

Fluctuations δρ(x, t) of the one-body density for weaker
(a) and stronger (b) quench: Spatiotemporal oscillations.
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Mode analysis

Density tunneling mode: Global ’envelope’ breathing
Identification of relevant tunneling branches
(number state analysis)
Fidelity analysis shows 3 relevant frequencies:
pair and triple mode processes
Transport of correlations and dynamical bunching
antibunching transitions

On-site breathing and craddle mode: Similar analysis
possible involving now higher excitations
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Craddle and tunneling mode interaction
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Fourier spectrum of the intrawell-asymmetry ∆ρL(ω):

Avoided crossing of tunneling and craddle mode !

⇒ Beating of the craddle mode - resonant enhancement.
S.I. Mistakidis, L. Cao and P. S., JPB 47, 225303 (2014), PRA 91, 033611 (2015)
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5. Many-body processes in black and
grey matter-wave solitons
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Setup and preparation

N weakly interacting bosons in a one-dimensional
box
Initial many-body state: Little depletion, density and
phase as close as possible to dark soliton in the
dominant natural orbital
Preparation: Robust phase and density engineering
scheme.
CARR ET AL, PRL 103, 140403 (2009); PRA 80, 053612
(2009); PRA 63, 051601 (2001); RUOSTEKOSKI ET AL, PRL
104, 194192 (2010)
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Density dynamics
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Evolution of contrast and depletion
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Natural orbital dynamics
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Localized two-body correlations
Two-body correlation function g2(x1, x2; t) for a black soliton
(first row) and a grey soliton β = 0.5 (second) at times
t = 0.0 (first column), t = 2.5τ (second) and t = 5τ (third).
S. Krönke and P.S., PRA 91, 053614 (2015)
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6. Correlated dynamics of a single
atom coupling to an ensemble
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Setup and preparation

Bipartite system: impurity atom plus ensemble of e.g. bosons of different
mF = ±1 trapped in optical dipole trap

Application of external magnetic field gradient separates species

Initialization in a displaced ground ie. coherent state via RF pulse to mF = 0 for
impurity atom.

⇒ Single atom collisionally coupled to an atomic reservoir: Energy and correlation
transfer - entanglement evolution.

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)
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Energy transfer

Spatiotemporally localized inter-species coupling:
Focus on long-time behaviour over many cycles.
Energy transfer cycles with varying particle number
of the ensemble
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One-body densities

Time-evolution of densities for the two species (ensemble-top, impurity-bottom) for
first eight impurity oscillations.

Impurity atom initiates oscillatory density modulations in ensemble atoms.

Backaction on impurity atom.
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Coherence analysis

Time-evolution of normalized excess energy ∆B
t with

Husimi distribution QB
t (z, z

∗) = 1
π ⟨z|ρ̂Bt |z⟩ , z ∈ C of

reduced density ρ̂Bt at certain time instants.
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Coherence measure

Distance (operator norm) to closest coherent state,
as a function of time for different atom numbers in
the ensemble.

Cold Atoms – p.40/70



Correlation analysis

(a) Short-time evolution of the von Neumann entanglement entropy SvN(t) and
inter-species interaction energy EAB

int (t) = ⟨ĤAB⟩t.

(b) Long-time evolution of S̄vN(t). for NA = 2 (blue solid line), NA = 4 (red,
dashed) and NA = 10 (black, dotted).

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)
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Other projects...

Correlation effects in the quench-induced phase separation
dynamics of a two species ultracold quantum gas
S.I. Mistakidis, G.C. Katsimiga, P.G. Kevrekidis and P. S., New J. Phys. 20, 043052

(2018)

Correlation induced localization of lattice trapped bosons coupled
to a Bose-Einstein condensate
K. Keiler, S. Krönke and P. S., New J. Phys. 20, 033030 (2018)

Spectral properties and breathing dynamics of a few-body
Bose-Bose mixture in a 1D harmonic trap
M. Pyzh, S. Krönke, C. Weitenberg and P.S., New J. Phys. 20, 015006 (2018)

Dark-bright soliton dynamics beyond the mean-field approximation
G. C. Katsimiga, G.M. Koutentakis, S.I. Mistakidis, P. G. Kevrekidis and P.S., New

J. Phys. 19, 073004 (2017)
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Other projects...

Probing Ferromagnetic Order in Few-Fermion Correlated Spin-Flip
Dynamics G. M. Koutentakis, S. I. Mistakidis, P. S., arxiv 1804.07199

Repulsive Fermi Polarons and Their Induced Interactions S.I.

Mistakidis, G.C. Katsimiga, G.M. Koutentakis and P.S., in preparation

Quantum point spread function for imaging trapped few-body
systems with a quantum gas microscope S. Krönke, M. Pyzh, C.

Weitenberg, P.S., arxiv 1806.08982
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7. Structure of mesoscopic molecular
ions
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Motivation

Focusing on the physics of ions in a gas of trapped
ultracold atoms: Hybrid atom-ion systems.

Controlled state-dependent atom-ion scattering
Ultracold chemical reactions and charge transport
Novel tunneling and state-dependent transport
processes
Spin-dependent interactions
Emulate condensed matter systems on a finite scale,
including dynamics: polarons, charge-phonon
coupling, ... PRL 111, 080501 (2013)

Mesoscopic molecular ions and ion-induced density
bubbles - PRL 89, 093001 (2002); PRA 81, 041601 (2010)
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Setup and Methodology
Atom-ion interaction introduces an additional length

scale R∗ =
√

2C4µ
!2 which has to be resolved

Modelling of ultracold atom-ion collisions
QD-theory links defect parameters to asymptotic
scattering properties
Model potential: V (z) = V0e−γz2 − 1

z4+ 1
ω

’Molecular’ bound states: Only the weakest bound
states are of relevance. Maximum is at positions of
order R∗.
Methodology: Multi-Layer Multi-Configuration
Time-Dependent Hartree for Bosons (Fermions)

S. Krönke, L. Cao, O. Vendrell, P.S., New J. Phys. 15, 063018 (2013)

L. Cao, S. Krönke, O. Vendrell, P.S., J. Chem. Phys. 139, 134103 (2013)
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Overview of possible structures
Challenges:

Include Motion of Ion
Many-Body Bound States

Main Observations:
Formation of Ionic Molecule:
Massive quantum object
Phase diagram of compound system
Stabilization by shell-structure
formation
Dynamical response
Dissociation
Strong self-localization of ion
Formation of Thomas-Fermi bath

J. SCHURER, A. NEGRETTI AND P.S., PRL 119, 063001 (2017)
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Phase diagram

Two distinct phases:
µ < 0: Mesoscopic charged
molecule
µ > 0: Unbound, but trapped,
atomic fraction
Dissociation around µ = 0

Nc for bound atoms
Energetic considerations:
gc ≈ (ω − ϵ1)/(Nc − 1)

Near linear decrease of E(N)
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Nature of the many-body mesoscopic ion state
Possible Ansatzes

Mean-field: ΨMF(zI, z1, · · · , zN ) = ϕ(zI)
∏N

i=1 χ(zi)

Product form in ion frame (Gross): ZI = zI, Zi = zi − zI
ΨG(ZI, Z1, · · · , ZN ) = ϕ(ZI)

∏N
i=1 χ(Zi)

Fully correlated ML-MCTDHB approach: Imaginary time-propagation
(relaxation).

E
E∗ as a function of N
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Molecular structure: Densities and correlations

Inspect the atomic and ionic density profiles ρI(A)(z) = ⟨Ψ̂†
I(A)(z)Ψ̂I(A)(z)⟩

Localization of ion for larger N
Density wings of atoms around ion:
Atom-ion induced density hole
TF asymptotics masks strong
correlations
Atom-ion correlation function
g2(z) =

⟨Ψ̂†
I (z)Ψ̂

†
A(−z)Ψ̂A(−z)Ψ̂I(z)⟩

NρI(z)ρA(−z)

Bunching and binding distance
d for N < Nc

MF yields no binding
Broadening with increasing
N < Nc

Unbound fraction for N > Nc
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Molecular structure: Densities and correlations

Inspect the atomic and ionic density profiles ρI(A)(z) = ⟨Ψ̂†
I(A)(z)Ψ̂I(A)(z)⟩

Population of bound states
fj = ⟨â†j âj⟩
Population of second bound
state stabilizes molecule
Increased Nc in correlated ML-
MCTDHB approach ⇔ 1D ana-
logue of shell structure forma-
tion
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Self-localization
Atomic and ionic variance
σ2
A = ⟨ 1

N

∑N
i=1 z

2
i ⟩, σ2

I = ⟨z2I ⟩
g = 0: N + 1-body cluster: Self
localization by increase of total
mass and localization of CM
Under- (MF) and overestimation
(Gross) of variance
g > 0: σA exhibits a minimum:
increases already for N < Nc

due to spatial widening and
population of second bound
state
Molecule under pressure:
Bound state scale reaches trap
length
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Dynamical response of the strongly correlated molecular ion

Effective single particle picture
m∗,ω∗

Gross ansatz: m and ω
√
1 +N

Effective force via many-body
wave function: Partial trace of
FI = −[∂ZI , H]

N < Nc: Effective mass increases linearly with N , ω∗ varies little
Approaching Nc: m∗ becomes sublinear
For N > Nc m∗ approaches M and ω∗ decreases strongly: slow
response
⇒ Single particle picture breaks down
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Future:
Explore further properties of molecular ions:
excited molecular states
Moving ions: Energy and correlation transfer
Multiple ions: Crystals in a sea of atoms
....

Cold Atoms – p.54/70



8. Entanglement induced interactions
in binary mixtures
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Background and Motivation

Exchange of bosonic (quasi-)particles provided by one species leads
to induced interactions in the other species:

Electrons in a solid acquire an attractive interaction by exchange of
phonons → Fröhlich Hamiltonian (system-bath regime)

Ultracold atomic systems: ideal platform for the investigation of atomic
mixtures

Beside the efforts on macroscopic ensembles: recent experiments
focus on few-body physics
A. WENZ et al, SCIENCE 342, 457 (2013); G. ZÜRN et al, PRL 111, 175302 (2013); S. MURMANN et al,

PRL 114, 080402 (2015); F. SERWANE et al, SCIENCE 332, 336 (2011); G. ZÜRN et al, PRL 108,

075303 (2012).

including fermionic pairing via effective interactions.

Cold Atoms – p.56/70



Entanglement based framework

Conceptual framework for identification and characterization of
induced interactions in binary mixtures

Reveal intricate relation of entanglement an induced interactions

Deduce an effective single-species description based on weak
entanglement

Incorporates few-body character and trap (beyond bosonic
bath-type approach)

Applications to ultracold Bose-Fermi mixture: induced Bose-Bose
and Fermi-Fermi interactions

J. CHEN, J. SCHURER AND P.S., PRL 121, 043401 (2018)
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Theoretical approach....

Hamiltonian for binary mixture Ĥ = ĤA + ĤB + ĤAB

Employing Schmidt decomposition of exact eigenstate of the mixture

|Ψ⟩ =
∞∑

i=1

√
λi |ψA

i ⟩|ψB
i ⟩,

λi real positive Schmidt numbers λ1 > λ2 > · · · ↔ strength of the
interspecies entanglement

λ1 = 1 and λi ̸=1 = 0 mixture is non-entangled

Species mean-field (SMF) approximation: product form
|Ψ⟩ = |ψA

SMF⟩|ψB
SMF⟩ → mutual impact of the species is merely an

additional potential

Note: Large intraspecies correlations can still be present.

Cold Atoms – p.58/70



Theoretical approach....

Projecting onto the q-th Schmidt state ⟨ψσ̄
q |

∞∑

i=1

√
λq

√
λi⟨ψσ̄

q |Ĥ|ψσ̄
i ⟩|ψσ

i ⟩ = µq|ψσ
q ⟩,

with µq = λqE, E: eigenenergy of |Ψ⟩.
Some algebra yields:

λ1Hσ̄
11|ψσ

1 ⟩+
∑

i ̸=1

∑

j ̸=i

√
λ1λi

√
λjHσ̄

1iMiHσ̄
ij |ψσ

j ⟩ = µ1|ψσ
1 ⟩

with Hσ̄
ij = ⟨ψσ̄

i |Ĥ|ψσ̄
j ⟩ Mq =

[
µq − λqHσ̄

qq

]−1

So far general. Now: species are weakly entangled
√
λ1 ≈ 1 and

√
λi ̸=1 ≪ 1,

⇒ First Schmidt state carries the dominant weight.
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Theoretical approach....

Side remarks:
Validity of the weak-entanglement regime extends far beyond the
perturbative regime

It is also permissible to mitigate the interspecies entanglement by
using a unitary transformation of the Hamiltonian, such as the
Fröhlich-Nakajima transformation or the Lee-Low-Pines
transformation for polarons

Next: Taylor expansion:
√
λi ̸=1 are of order δ ≪ 1

Effective Hamiltonian for species σ

Ĥσ
eff = Hσ̄

11 +
∑

i ̸=1

√
λiHσ̄

1iH
σ̄
i1

t1i
tqj = ⟨ψσ

q |⟨ψσ̄
q |Ĥ|ψσ̄

j ⟩|ψσ
j ⟩

with the associated effective Schrödinger equation

Ĥσ
eff|ψσ

eff⟩ = Eσ
eff|ψσ

eff⟩
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Discussion of effective Hamiltonian

Ĥσ
eff = Hσ̄

11 +
∑

i ̸=1

√
λiHσ̄

1iH
σ̄
i1

t1i
Ĥσ

eff|ψσ
eff⟩ = Eσ

eff|ψσ
eff⟩

Effective state |ψσ
eff⟩ is eigenstate of Ĥσ

eff whose eigenvalue is
closest to Eσ

1 = ⟨ψσ
1 |Ĥσ

eff|ψσ
1 ⟩ Approximation to |ψσ

1 ⟩ which
contains the dominant physics.

Effective Hamiltonian Ĥσ
eff depends on the many-body state of the

mixture

Applicable for ground and excited states of the mixture.

Excellent starting-point for: Gaining deep insights and extract
relevant mechanisms in coupled binary mixtures

Analytical and interpretational power
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Discussion of effective Hamiltonian

Ĥσ
eff = Hσ̄

11 +
∑

i ̸=1

√
λiHσ̄

1iH
σ̄
i1

t1i
Ĥσ

eff|ψσ
eff⟩ = Eσ

eff|ψσ
eff⟩

Mixture nonentangled: SMF case. Effective Hamiltonian becomes
Ĥσ

eff = Ĥσ + V̂ σ
SMF with V̂ σ

SMF being an additional SMF induced
potential: Partial trace with respect to the species σ̄ over the
interspecies interaction ĤAB.

Weak-entanglement regime i.e. beyond SMF approximation:
√
λi ≪ 1; i > 1 Hσ̄

11 is dominant; Second term
∑

i ̸=1

√
λiHσ̄

1iHσ̄
i1

t1i
solely originates from interspecies entanglement: contains
additional potential term and induced interaction [∝ (H σ̄

1i)
2].
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Discussion of effective Hamiltonian

Ĥσ
eff = Hσ̄

11 +
∑

i ̸=1

√
λiHσ̄

1iH
σ̄
i1

t1i
Ĥσ

eff|ψσ
eff⟩ = Eσ

eff|ψσ
eff⟩

Series with monotonously decreasing pre-factors
√
λi

Nσ ≫ Nσ̄, system-bath regime, the induced interaction in the
bath-species σ becomes negligible. Induced interaction in the σ̄

species becomes increasingly important.
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Application: Bose-Fermi mixture
Induced interactions and induced potentials for a few-body ensemble
of 1D ultracold Bose-Fermi mixture (gbf = 1, Nf = Nb = 2).

Obtained from ML-MCTDHX simulations (Cao et al, JCP 147, 044106
(2017)).

Effective potentials and reduced one-body density. Fermionic (a) and
bosonic (b) species. NI (green solid), SMF (blue dashed), Vσ

1 (x)] (red solid),

beyond SMF (black solid). Reduced one-body densities fermionic (a) and bosonic (b)

species (brown dashed).
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Application: Bose-Fermi mixture

Induced interactions and pair-
correlation functions. Upper
panels: pair-correlation func-
tions gσ2 (x1, x2) for fermionic (a)
and bosonic (d) species. Middle
and lower panels: induced in-
teractions among fermions (b,c)
and bosons (e,f) together with
its diagonals [red dashed lines,
x1 = x2 and R = (x1 +

x2)/2] and off-diagonals (blue
solid lines, x1 = −x2 and r =

x1 − x2).
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Application: Bose-Fermi mixture

Comparisons of pair-correlation
functions. gσ2 (x1, x2) via ef-
fective Hamiltonian for fermionic
(a,c) and bosonic (b,d) species.
Off-diagonals (blue dashed) and
diagonals (brown dashed). Off-
diagonal of gf2 for SMF (green
dash-dot) and ML-MCTDHX re-
sults (solid).
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Effective entanglement based theory accounts for
induced potentials
induced interactions
interpretative power and gain of insights
manipulation of induced interactions: pairing, etc.
....
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9. Concluding remarks
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Conclusions

ML-MCTDHB is a versatile efficient tool for the
nonequilibrium dynamics of ultracold bosons.
Few- to many-body systems can be covered: Shown
here for the emergence of collective behaviour.
Tunneling mechanisms
Many-mode correlation dynamics: From quench to
driving.
Beyond mean-field effects in nonlinear excitations.
Open systems dynamics, impurity and polaron
dynamics, etc.
Mixtures !
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Thank you for your attention !
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