

A Tunable Quantum Anomaly with Ultracold Atoms

Small and Medium Sized Cold Atom Systems - Centro de Ciencias Benasque, Spain

Ryan Plestid, Cliff Burgess, D.H.J. O'Dell August 1st 2018

McMaster University (Hamilton, ON, CA) Perimeter Institute (Waterloo, ON, CA)

- 1. Cold atoms & and a charged wire
- 2. Quantum anomalies
- 3. Observable consequences
- 4. Experimental proposal
- 5. Conclusions

Cold atoms & and a charged wire

Effective centrifugal barrier

$$V_{\ell}(r) = \frac{\ell^2 - 2mg}{2mr^2} \quad (d = 2)$$
$$V_{\ell}(r) := \frac{\ell_{\text{eff}}^2}{2mr^2}$$

- Introduces effective angular momentum $\ell_{\rm eff}$
- If $\ell_{eff}^2 < 0$ then particle falls to the centre
- A critical impact parameter b_c separates scattering from absorption.

$$b = \frac{\ell_c}{2mg}$$

Classical "Fall to the centre"

Neutral atoms & charged wire

- Thin charged wire
- $\mathbf{E} = \frac{\lambda}{2\pi r} \mathbf{\hat{r}}$
- Electric field induces dipole moment $\mathbf{d} = \alpha \mathbf{E}$
- This induces an attractive inverse square potential.
- Atoms will be absorbed by the wire.

Denschlag, Umshaus, & Schmiedmayer PRL 1998

$$V = -\frac{1}{2}\mathbf{d} \cdot \mathbf{E} = -\frac{\alpha\lambda^2}{2(2\pi)^2} \frac{1}{r^2} := -\frac{g}{r^2}$$

Experimental protocol

- Tune voltage to induce charge on wire,
- Bring atoms into contact with the wire.
- Measure fluoresence.
- Find rate of absorption.
- Extract $\sigma_{\rm abs}$ from kinetic theory.

$$\sigma_{\sf abs}^{(cl)} = \sqrt{rac{8g}{mv^2}} \quad ({
m good agreement})$$

Qua

$$\ell_{\text{eff}}^2 > 0$$

- $\psi_{\pm} \propto r^{\pm \ell_{\rm eff}}$ at small r
- One solution grows & the other decays

Super-critical coupling

- $\ell_{eff}^2 < 0$
- $\psi_{\pm} \propto r^{\pm \mathrm{i} |\ell_{\mathrm{eff}}|} = \exp[\pm \mathrm{i} |\ell_{\mathrm{eff}}| \ln r]$ at small r
- Both solutions oscillatory

Quantum "fall to the centre"

- $\psi_{\pm}(t) \propto \exp[\mathrm{i}(\pm |\ell_{\mathsf{eff}}| \ln r \omega t)]$
- Infalling and outgoing waves in logarithmic coordinates

General features of $1/r^2$

- If $2mg > \ell^2$ a particle (or partial wave) "falls to the centre".
- Choosing $C_+/C_- = 0$ implies that all waves "fall in".

Laboratory realization

- Schmiedmayer & Denschlag saw only classical physics.
- The wire acts as a sink of atoms and was a "perfect absorber".

Quantum anomalies

What are they?

Quantum effects can break classical symmetries...

Particle physics

- QED breaks axial symmetry $\partial^{\mu}J^{5}_{\mu} \neq 0$
- This leads to rapid neutral pion decay $\pi^{\rm 0} \to \gamma \gamma$

Condensed matter

- Dirac quasi-particles with Coulomb potential
- "Efimov tower" of bound states seen in graphene (Ovdat 2017)

Ultra-cold atoms

- Trapped gas in d = 2 has a hidden SO(2,1) symmetry (Pitaevskii and Rosch 1997)
- Anomaly for d = 2 (Olshanii 2010) recently observed! (Holten 2018)

Quantum mechanics

- $1/r^2$ potential is scale invariant.
- Short-distance "quantum fluctuations" can destroy scale invariance.

...when a regulator does not respect the classical symmetries

Pre-Denschlag & Schmiedmayer

- Jackiw (1991) [on delta-functions not $1/r^2$]
- Gupta, Rajeev (1993)

Post Denschlag & Schmiedmayer

- Camblong, Epel, et. al. (2000)
- Camblong, Ordonez (2000)
- Coon, Holstein (2002)
- Goldberger, Wise (2002)
- Bawin, Coon (2003)
- Mueller, Ho (2004)
- Braaten, Philips (2004)
- Long, van Kolck (2008)
- Hammer, Higa (2009)
- Kaplan et. al. (2009)

Scale anomaly and the inverse square potential

The radial Schrödinger equation for $k^2 = 2mE$ in d = 2 is $\left[-\frac{\mathrm{d}^2}{\mathrm{d}r^2} - \frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r} + \frac{\ell^2 - 2mg}{r^2}\right]\psi_\ell = k^2\psi_\ell \quad \text{invariant under} \quad \mathbf{r} \to s\mathbf{r}$ $\psi_\ell = C_{\ell-}\psi_{\ell-} + C_{\ell+}\psi_{\ell+}$

Typical Story (d = 3)

With inverse square potential

- $\psi_{\ell+} \propto r^{\ell}$ and $\psi_{\ell-} \propto r^{-(\ell+1)}$.
- Therefore $C_{\ell-} = 0$

Typical Story (d = 2)

- $\psi_{\ell+} \propto r^\ell$ and $\psi_{\ell-} \propto r^{-\ell}$
- $\psi_{\ell-}$ is singular as r
 ightarrow 0 therefore

- $\ell \to \ell_{\text{eff}}$ and ℓ_{eff} can be imaginary.
- $\psi_{\pm \ell} \propto \exp[i|\ell_{eff}|\ln r]$
- What determines $C_{\ell-}/C_{\ell+}$?

Regularization, renormalization and RG flow

How is this related to regulators?

- "Zero-range" regulator (i.e. $\delta^{(2)}(r)|\psi|^2$)?.
- Delta-function provides boundary condition at *r* = 0.
- $\psi_{\ell\pm}$ ill-defined at origin!
- "Cut-off" (i.e. delta-shell) regulator $h(\epsilon)\delta(r-\epsilon)|\psi_{\ell}|^2$.
- Cut-off ϵ is arbitrary so physics cannot depend on ϵ
- This implies an RG-flow of $h(\epsilon)$.

RG-Flow

Fall to the centre

- Mode functions $\psi_{\pm \ell} \sim \exp[\pm |\ell_{\rm eff}| \log r]$
- Oscillatory instead of monotonic.

RG-Flow

- Physically-equivalent families $\{h(\epsilon)\}$.
- Label these by "RG-invariants" $(\epsilon_{\star}, y_{\star})$.
- Periodic flow implies an infinite tower of $\{\epsilon_{\star}^{(n)}\}$.

 $\textbf{RG limit cycle} \implies \textbf{discrete scale invariance}$

Quantum anomalies

- The inverse square potential has a quantum anomaly.
- For "fall to the centre" a continuous scaling symmetry is broken to a discrete one.

RG-Flow

- Regulator leads to RG-flow and introduces. RG-invariant scales
- Scale invariance is restored if you live at a fixed point.

Observable consequences

From RG flows to the lab

- Before we discussed RG-flow w.r.t. ϵ .
- We really care about ratios of scales.
- E.g. ke for scattering.
- Tuning k with e fixed is the same as tuning e with k fixed.
- Therefore RG-flow behaviour is inherited by laboratory observables

 $\textbf{RG limit cycle} \implies \textbf{discrete scale invariance}$

 $\sigma_{\mathsf{abs}}^{(\ell)}$

Absorptive cross section

- Vanishes for y_{*} = 0 (Hermitian source).
- Scale invariant for y_{*} = -1 (perfect absorber).

1.8 1.77 ق

1.74

0.24

0.22

sqa 0.23

Elastic cross section displays the same behaviour, but does not vanish for $y_* \rightarrow 0$ (i.e. unitary physics at r = 0).

1.2

13

Quick Recap

Signatures of the quantum anomaly

- Discrete scaling symmetry of cross-section under k → e^{-π/|ℓ_{eff}|}. Discrete scaling symmetry of cross-section under k → e^{-π/|ℓ_{eff}|}.
- Need $k_{\max}/k_{\min} > \exp[\pi/|\ell_{eff}|]$ to observe discrete scale invariance.

Cross section signatures

- If $|\ell_{\text{eff}}|$ is small need many decades of k to tune through.
- If $|\ell_{eff}|$ is large quantum effects are mostly lost
- No quantum effects if $y_{\star} = -2\ell_{\text{eff}}$ i.e. if the system is a perfect absorber.

Experimental proposal

Conceptually simple scattering experiment

Necessary ingredients

- 1. Inverse square potential.
- 2. Ability to prevent "perfect absorber".
- 3. High precision scale resolution.

Inverse square potential

Earlier we considered $|\ell_{eff}| \sim O(1)$. In dimensionful units this is $2mg \sim O(\hbar^2)$. Is this achievable with a charged wire?

$$V_w^{(\hbar)} pprox \left(0.25 \text{ Volts}
ight) \ln \left(rac{R_c}{R_w}
ight) \sqrt{\left(rac{a_0^3}{lpha}
ight) \left(rac{m_{\mathsf{Li}}}{m}
ight)}$$

Inhibiting absorption

What is needed to limit absorption at the origin?

Semi-classical argument

A particle will "fall to the centre" and gain kinetic energy $g/r^2.$ We take $mg\sim\hbar$

$$\left\langle \frac{p^2}{2m} \right
angle pprox k_B imes (20 \text{ nK}) imes \left(\frac{m_{\text{Li}}}{m}
ight) \qquad V(r) = \tilde{U}_0 imes \left(\frac{(\hbar/[1 \ \mu\text{m}])^2}{2m_{\text{Li}}}
ight) \exp\left[-\frac{1}{2}r^2/(1 \ \mu\text{m})^2
ight]$$

Can be achieved with 200 - 400 nm laser with $10^{-2}\ \text{mW}$

High precision scale resolution

- For a "zero-range" treatment of the wire we need $k < 1/(R_w) \approx 1/(1 \ \mu m)$.
- Momentum spread of wave-packet will limit the lowest values of k achievable.
- Delta-kicked cooling can reach $\Delta k \sim 1/(40~\mu{
 m m})$ (arXiv:1407.6995)
- Recall that discrete scaling symmetry $k
 ightarrow \mathrm{e}^{\pi/|\ell_{\mathrm{eff}}|}k.$
- Need $\Delta k R_w \approx 40 < \mathrm{e}^{-\pi/|\ell_{\mathrm{eff}}|}$.

Alternative methods

Inverse square potential

- "Painted" inverse square potential with time averaged laser intensity.
- 2. Beam of electrons.
- 3. Charged nano-fiber

Tunable atom-wire interactions

- 1. Evenescent wave around nano-fiber.
- 2. Donut mode laser.
- 3. Rapid laser transport.

Quick Recap

Laboratory parameters (orders of magnitude)

- $2mg \sim \mathcal{O}(\hbar^2)$ corresponds to voltage on wire of $V_w \sim$ Volts.
- Absorption can be inhibited with a weak (10⁻² mW) laser ($V_{\text{barrier}} \sim 20$ nK).
- $R_{
 m w} \sim 1~\mu{
 m m}$ and $\Delta k \gtrsim 1/(40~\mu{
 m m}).$

Observing the anomaly

- Large $|\ell_{eff}|$ suppresses the amplitude of variations in $\sigma(k)$.
- Small $|\ell_{\text{eff}}|$ requires large range of k to see anomaly.
- Effective temperature of atom beam and size of wire set the natural range of k.

Conclusions

Quantum anomaly

- $1/r^2$ potential exhibits quantum anomaly with single atom physics.
- Signature includes discrete invariance in scattering cross sections.

Observing the anomaly

- Some ambitious (but demonstrated) experimental techniques are required.
- $\Delta k R_w \gg 1$ is necessary to observe anomaly.

Thank you for listening!

Acknowledgements

- Mavin Holten.
- Ramon Ramos.
- Joseph Thywissen.
- Ben Olsen.

Extra points

- More details at arXiv:1804.10324.
- Other observables (e.g. bound states).
- Feedback welcome.
- plestird@mcmaster.ca.

