
A Tunable Quantum Anomaly with Ultracold Atoms

Small and Medium Sized Cold Atom Systems – Centro de Ciencias Benasque, Spain

Ryan Plestid, Cliff Burgess, D.H.J. O’Dell

August 1st 2018

McMaster University (Hamilton, ON, CA)

Perimeter Institute (Waterloo, ON, CA)



Table of contents

1. Cold atoms & and a charged wire

2. Quantum anomalies

3. Observable consequences

4. Experimental proposal

5. Conclusions



Cold atoms & and a charged wire



Fall to the centre and the inverse square potential

Effective centrifugal barrier

V`(r) =
`2 − 2mg

2mr2
(d = 2)

V`(r) :=
`2

eff

2mr2

• Introduces effective angular

momentum `eff

• If `2
eff < 0 then particle falls to the

centre

• A critical impact parameter bc

separates scattering from absorption.

bc =
`c
mv

=⇒ bc =

√
2mg

mv

bc =

√
2mg

mv
=⇒

Classical “Fall to the centre”
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Motivating experiment

Neutral atoms & charged wire

• Thin charged wire

• E = λ
2πr r̂

• Electric field induces dipole moment

d = αE

• This induces an attractive inverse

square potential.

• Atoms will be absorbed by the wire.
Denschlag, Umshaus, & Schmiedmayer

PRL 1998

V = −1

2
d · E = − αλ2

2(2π)2

1

r2
:= − g

r2

2



Motivating experiment

Experimental protocol

• Tune voltage to induce charge on wire,

• Bring atoms into contact with the

wire.

• Measure fluoresence.

• Find rate of absorption.

• Extract σabs from kinetic theory.

σ
(cl)
abs =

√
8g

mv2
(good agreement) Denschlag, Umshaus, & Schmiedmayer

PRL 1998
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Quantum mechanical description

[
− d2

dr2
− 1

r

d

dr
+

`2
eff︷ ︸︸ ︷

`2 − 2mg

r2

]
ψ` = k2ψ` ψ` = C`−ψ`− + C`+ψ`+

Sub-critical coupling

• `2
eff > 0

• ψ± ∝ r±`eff at small r

• One solution grows & the other decays

Super-critical coupling

• `2
eff < 0

• ψ± ∝ r±i|`eff| = exp[±i|`eff| ln r ] at

small r

• Both solutions oscillatory

Quantum “fall to the centre”

• ψ±(t) ∝ exp[i(±|`eff| ln r − ωt)]

• Infalling and outgoing waves in

logarithmic coordinates

• C+/C− = 0 is a “perfect absorber”

(all waves fall in)
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Quick Recap

General features of 1/r2

• If 2mg > `2 a particle (or partial wave) “falls to the centre”.

• Choosing C+/C− = 0 implies that all waves “fall in”.

Laboratory realization

• Schmiedmayer & Denschlag saw only classical physics.

• The wire acts as a sink of atoms and was a “perfect absorber”.
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Quantum anomalies



What are they?

Quantum effects can break classical symmetries...

Particle physics
• QED breaks axial symmetry

∂µJ5
µ 6= 0

• This leads to rapid neutral pion

decay π0 → γγ

Condensed matter
• Dirac quasi-particles with

Coulomb potential

• “Efimov tower” of bound states

seen in graphene (Ovdat 2017)

Ultra-cold atoms

• Trapped gas in d = 2 has a hidden SO(2,1)

symmetry (Pitaevskii and Rosch 1997)

• Anomaly for d = 2 (Olshanii 2010) recently

observed! (Holten 2018)

Quantum mechanics

• 1/r2 potential is scale invariant.

• Short-distance “quantum fluctuations” can

destroy scale invariance.

...when a regulator does not respect the classical symmetries
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Quantum anomaly of the 1/r 2 potential

Pre-Denschlag & Schmiedmayer

• Jackiw (1991) [on delta-functions not

1/r2]

• Gupta, Rajeev (1993)

Post Denschlag & Schmiedmayer

• Camblong, Epel, et. al. (2000)

• Camblong, Ordonez (2000)

• Coon, Holstein (2002)

• Goldberger, Wise (2002)

• Bawin, Coon (2003)

• Mueller, Ho (2004)

• Braaten, Philips (2004)

• Long, van Kolck (2008)

• Hammer, Higa (2009)

• Kaplan et. al. (2009)

• Moroz, Schmidt (2010)

• Bouaziz, Bawin (2014)
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Scale anomaly and the inverse square potential

The radial Schrödinger equation for k2 = 2mE in d = 2 is[
− d2

dr2
− 1

r

d

dr
+
`2 − 2mg

r2

]
ψ` = k2ψ` invariant under r→ sr

ψ` = C`−ψ`− + C`+ψ`+

Typical Story (d = 3)

• ψ`+ ∝ r ` and ψ`− ∝ r−(`+1).

• Therefore C`− = 0

Typical Story (d = 2)

• ψ`+ ∝ r ` and ψ`− ∝ r−`

• ψ`− is singular as r → 0 therefore

C`− = 0

With inverse square potential

• `→ `eff and `eff can be imaginary.

• ψ±` ∝ exp[i|`eff| ln r]
• What determines C`−/C`+?

We must impose a boundary condition at r = 0 to determine C`−/C`+

The boundary condition breaks scale invariance!
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Regularization, renormalization and RG flow

How is this related to regulators?

• “Zero-range” regulator

(i.e. δ(2)(r)|ψ|2)?.

• Delta-function provides boundary

condition at r = 0.

• ψ`± ill-defined at origin!

• “Cut-off” (i.e. delta-shell) regulator

h(ε)δ(r − ε)|ψ`|2.

• Cut-off ε is arbitrary so

physics cannot depend on ε

• This implies an RG-flow of h(ε).

RG-Flow

• There are physically-equivalent families {h(ε)}.
• Label these by “RG-invariants” (ε?, y?).

• λ(ε?) = iy?: y? controls absorption,

ε? ∼ scattering length.
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Discrete scale-invariance

Fall to the centre

• Mode functions ψ±` ∼ exp[±|`eff| log r ]

• Oscillatory instead of monotonic.

RG-Flow

• Physically-equivalent families {h(ε)}.
• Label these by “RG-invariants” (ε?, y?).

• Periodic flow implies an infinite tower of {ε(n)
? }.

RG limit cycle =⇒ discrete scale invariance
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Quick Recap

Quantum anomalies

• The inverse square potential has a quantum anomaly.

• For “fall to the centre” a continuous scaling symmetry is broken to a discrete one.

RG-Flow

• Regulator leads to RG-flow and introduces. RG-invariant scales

• Scale invariance is restored if you live at a fixed point.
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Observable consequences



Discrete scale-invariance

From RG flows to the lab

• Before we discussed RG-flow w.r.t. ε.

• We really care about ratios of scales.

• E.g. kε for scattering.

• Tuning k with ε fixed is the same

as tuning ε with k fixed.

• Therefore RG-flow behaviour is inherited by

laboratory observables

RG limit cycle =⇒ discrete scale invariance
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Scattering observables

Absorptive cross section

• Vanishes for y? = 0

(Hermitian source).

• Scale invariant for y? = −1

(perfect absorber).

σ
(`)
abs =

1

k

[
2(R2

? − 1) sinh(π|`|eff)

e−π|`eff| + 2R? cos a` + eπ|`eff|R2
?

]

a` = 1
2 |`eff| ln(kε?) + ∆φ
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k
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e
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R? =
1− y?
1 + y?

y? = −0.0625 and |`eff| = 1.2

Elastic cross section displays the same

behaviour, but does not vanish for y? → 0

(i.e. unitary physics at r = 0). 13



Quick Recap

Signatures of the quantum anomaly

• Discrete scaling symmetry of cross-section under k → e−π/|`eff|. Discrete scaling

symmetry of cross-section under k → e−π/|`eff|.

• Need kmax/kmin > exp[π/|`eff|] to observe discrete scale invariance.

Cross section signatures

• If |`eff| is small need many decades of k to tune through.

• If |`eff| is large quantum effects are mostly lost

• No quantum effects if y? = −2`eff i.e. if the system is a perfect absorber.
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Experimental proposal



Conceptually simple scattering experiment

Necessary ingredients

1. Inverse square potential.

2. Ability to prevent “perfect absorber”.

3. High precision scale resolution.
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Inverse square potential

Earlier we considered |`eff| ∼ O(1). In dimensionful units this is 2mg ∼ O
(
~2
)
.

Is this achievable with a charged wire?

V
(~)
w ≈

(
0.25 Volts

)
ln

(
Rc

Rw

)√(
a3

0

α

)(mLi

m

)

Answer: Yes!
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Inhibiting absorption

What is needed to limit absorption at the origin?

Semi-classical argument

A particle will “fall to the centre” and gain kinetic energy g/r2. We take mg ∼ ~〈
p2

2m

〉
≈ kB×(20 nK)×

(mLi

m

)
V (r) = Ũ0×

(
(~/[1 µm])2

2mLi

)
exp
[
−1

2 r
2/(1 µm)2

]
Can be achieved with 200− 400 nm laser with 10−2 mW

ξ=3
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High precision scale resolution

• For a “zero-range” treatment of the wire we need k < 1/(Rw ) ≈ 1/(1 µm).

• Momentum spread of wave-packet will limit the lowest values of k achievable.

• Delta-kicked cooling can reach ∆k ∼ 1/(40 µm) (arXiv:1407.6995)

• Recall that discrete scaling symmetry k → eπ/|`eff|k .

• Need ∆kRw ≈ 40 < e−π/|`eff|.

Blue-detuned gaussian

Coherent 
atom beam
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Alternative methods

Inverse square potential

1. “Painted” inverse square potential

with time averaged laser intensity.

2. Beam of electrons.

3. Charged nano-fiber

Tunable atom-wire interactions

1. Evenescent wave around nano-fiber.

2. Donut mode laser.

3. Rapid laser transport.
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Quick Recap

Laboratory parameters (orders of magnitude)

• 2mg ∼ O
(
~2
)

corresponds to voltage on wire of Vw ∼ Volts.

• Absorption can be inhibited with a weak (10−2 mW) laser (Vbarrier ∼ 20 nK).

• Rw ∼ 1 µm and ∆k & 1/(40 µm).

Observing the anomaly

• Large |`eff| suppresses the amplitude of variations in σ(k).

• Small |`eff| requires large range of k to see anomaly.

• Effective temperature of atom beam and size of wire set the natural range of k .
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Conclusions



Take home messages

Quantum anomaly

• 1/r2 potential exhibits quantum anomaly with single atom physics.

• Signature includes discrete invariance in scattering cross sections.

Observing the anomaly

• Some ambitious (but demonstrated) experimental techniques are required.

• ∆kRw � 1 is necessary to observe anomaly.
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Thank you for listening!
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Extra points

• More details at arXiv:1804.10324.

• Other observables (e.g. bound states).

• Feedback welcome.

• plestird@mcmaster.ca.
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