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Machine learning for 
classification in cosmology



What is Machine Learning?

•Automatically building a (usually highly nonlinear) model 
that maps a given input to output.  

•Different algorithms use different prescriptions for building 
the model.



When to use Machine Learning?

ACTIVITY ON WIKIPEDIA (WIKIMEDIA COMMONS)

•When your data are too complex for traditional model 
development and fitting with statistics



This is not a tutorial 



Machine Learning terminology

IMAGE: MICHELLE LOCHNER



A typical ML classification workflow
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Decision Trees

•At each leaf node, find best feature that split the data (i.e., 
best separation between classes), and the best split value 
of that feature. 

IMAGE: WIKIMEDIA COMMONS



Ensemble methods

•Ensemble methods 
average weak classifiers 
to create robust classifier.

IMAGE: WIKIMEDIA COMMONS



Ensemble methods with decision trees

•Robust (low variance)  

•Allows mixed feature types  

•Robust to high dimensionality  

•Can rank feature importance  
  

•Random Forests: my 
classification algorithm of 
choice.

IMAGE: WIKIMEDIA COMMONS



LSST survey of 18,000 sq deg 
(half the sky)

• 4 billion galaxies (with photo-z)

• Time domain:
• 5 million asteroids
• 1 million supernovae
• 1 million gravitational lenses
• 100 million variable stars

+ new phenomena 

survey of 37 billion objects in space and time

30 trillion measurements



LSST 4 science missions

Adapted from Ian Shipsey

Dark matter-Dark energy Solar system inventory

“Movie of the Universe” Mapping the Milky Way

All missions conducted in parallel.

Multiple investigations 
into the nature of the 
dominant components of 
the Universe.

Find 90% of hazardous 
NEOs down to 140m 
over 10 years; test 
theories of Solar System 
formation. 

Discovering the 
transient and  
unknown over time 
scales days to years

Map the rich and 
complex structure of the 
Milky Way in 
unprecedented detail  
[test-beds for dark 
matter physics]  



LSST is a “datascope”. 

Due to its deep/wide imaging and high cadence, LSST enables unprecedented data-
driven astronomical discovery, including: 
• new classes of objects and processes; 
• new attributes of known classes; 
• rare events and objects; 
• novel temporal behaviour. 

Making discoveries using LSST’s 100 PB-petascale database (10000-D with 40-billion 
entries) requires classification, statistical inference, clustering, outlier-detection and 
multi-resolution algorithms.



Mario&Juric&<mjuric@cfa.harvard.edu>,&Tuesday,&August&3rd,&2010.&&
XV&IAGDUSP&Advanced&School&on&Astrophysics,&Campos&do&Jordão,&Brazil&Lecture&IV:&Working&With&Large&Surveys&and&Datasets&

From Zeljko Ivezic

 “Ask Not What Data You Need To Do Your Science, Ask What Science You Can Do With Your Data.” 

The era of surveys… 
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LSST From the User’s Perspective:  
A Data Stream, a Database, and a (small) Cloud

− A stream of ~10 million time-domain events per night, detected and 
transmitted to event distribution networks within 60 seconds of observation. 

− A catalog of orbits for ~6 million bodies in the Solar System. 

− A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion single-
epoch detections (“sources”), and ~30 trillion forced sources, produced 
annually, accessible through online databases. 

− Deep co-added images. 

− Services and computing resources at the Data Access Centers to enable user-
specified custom processing and analysis. 

− Software and APIs enabling development of analysis codes.

Level	  3
Level	  1

Level	  2

LSST Data Products: see http://ls.st/dpdd

Nightly Alert Stream

Community Services

Yearly Data Releases

htpp://ls.st/dpdd


Meredith Rawls • @merrdiff

Known Solar 
System Objects

Difference Detect Associate Object 
Record

Transmit Alert 
Brokers

Known 
Extrasolar Objects

• Position
• Flux, size, and shape
• History
• Variability 

characterization
• “Postage stamps”

0 seconds

Visit

Template

60 seconds

Level 1 Pipeline



Meredith Rawls • @merrdiff

Nightly LSST alert stream

Alert brokers

Find follow-up objects

Shields up, red alert!

All of twitter

Filtered search by hashtag

Find interesting content

~60 kB/alert
~60 GB/night

• Alerts will include metadata, historical 
observations, and an image “postage stamp”

• Hierarchy of access systems via brokers

• Broadcast in a stream; archived in a database



First light: 2019
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Transient science

Adapted from Zeljko Ivezic

Movie of the Universe

Known unknowns
Unknown unknowns

LSST will extend time-space 
volume a thousand times 
over current surveys 

Discovering the 
transient and  
unknown over time 
scales days to years

?



SNMachine:  
Photometric Supernovae Classification  

with Machine Learning

Jason McEwenMichelle Lochner

Lochner, McEwen, Peiris, Lahav, Winter (ApJ Suppl. 2016)

Robert Schuhmann

https://github.com/LSSTDESC/snmachine  
(will be publicly released)

https://github.com/LSSTDESC/snmachine


Why photometric classification?

•In the past spectroscopic followup for majority of sample 
possible to determine SN type. Not scalable.  

- JLA (Betoule et al 2014): 740 SNe
-DES: 1000s of SNe
- LSST: 100000s of SNe

Simulated DES type Ia supernova light curve at redshift 0.42, from 
 Supernova Photometric Classification Challenge (Kessler et al. 2010).



The goal

•Maximise use of photometric data (for cosmology / SN science)

•Classify SNe based on their multi-band light curves 

•Produce probability that SN is Ia, Ibc, etc 

•Inform LSST observing strategy using realistic simulations



Workflow: SNMachine
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SNmachine pipeline overview

IMAGE: LOCHNER



Feature Selection

Template Fitting 

SALT2 templates 
fitted with SNCosmo
+MultiNest

General 
parameterisations 
  
Karpenka et al (2014) 
Newling et al. (2010) 
fitted with MultiNest

Wavelets 

Gaussian Process fit to 
light curves; wavelet 
decomposition; PCA 

Model Independence



Wavelets

•Decompose light curve into wavelets, then apply PCA to select 
most important wavelet coefficients from training set 

Gaussian 
Process fit 

Wavelet 
decompositionPCA



Wavelets ROC curves

• Naive Bayes (NB)
• K-nearest neighbours (KNN) 
• Support vector machines (SVM) 
• Artificial neural networks (ANN) 
• Boosted decision trees (BDT) 

“AUC”
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Effect of non-representative training sets

All feature extraction methods / machine learning algorithms 
sensitive to non-representativeness in training set; investigate 
domain adaptation techniques (e.g. data augmentation) 



Non-representative data

SCHUHMANN ET AL (IN PREP)

Most training sets are non-representative in some way. Spectroscopic 
follow-up is always biased! 

Example: SDSS supernova survey (classification: spectro followup or pSNId)  



Class non-representativity

SCHUHMANN ET AL (IN PREP)

IA IBC II

Followup bias (TACs tend not to award spectro time to non-Ia followup)



Feature non-representativity

SCHUHMANN ET AL (IN PREP)

SDSS-II sne: representative?

total Ia

Ibc II

TOTAL IA

IBC II

Malmquist bias 



Application of SNmachine to SDSS

SCHUHMANN ET AL (IN PREP)

Photometric classification performance limited by the spectro set.
• class non-representativity: non-Ia fraction underrepresented in spectro 

set, cannot map their intrinsic variability 
• feature non-representativity: magnitude and z cutoff



Data augmentation

SCHUHMANN ET AL (IN PREP)

Standard technique in (supervised) machine-learning.
• avoid overfitting
• increase robustness of classifier to training data
• improve coverage of training data 



Example 1: Gaussian Process augmentation

SCHUHMANN ET AL (IN PREP)

Idea: bootstrap existing data to generate an augmented training dataset.
Resample directly from light curves. 
• fit GP to each band; draw samples with desired cadence 
• cure class non-representativity without assuming non-Ia model? 
• likely cannot solve feature non-representativity  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Example 2: Pure simulation augmentation

IMAGE: SDSS

• Can use our extensive knowledge of supernovae to augment the 
training data purely with simulations (correct both class and 
feature bias)



Data augmentation with simulations

•Training set: pure simulations! interpolation and extrapolation of 

training sets. Control over: 

- relative cluster size

- absolute cluster size

- intrinsic variability of every class

- selection cuts 

•Accurate classifier training requires:  

- reliable simulations of Ia and non-Ia lightcurves 

- representative targeting of classes in spectroscopy (e.g. 4MOST 

in LSST era)



Non-Ia simulations

•Cadence simulations incl. accurate Core Collapse SNe templates

Collaborating with Rob Firth, Szymon Prajs, Mark Sullivan at 
Southampton  
 
https://github.com/UoS-SNe/CoCo (will be publicly released)

https://github.com/UoS-SNe/CoCo


Approach: CoCo

• Assemble sample of  SESNe – Spectra and Photometry

• Fit light curves SN-by-SN, filter-by-filter

• Mangle spectra (see eg. Hsiao et. al. 2007, Conley et. al. 2008)

• Spline order is Nfilters+2

• Correct for MW extinction

• Use adjusted spectra to generate spectrophotometry

• Fit this synthetic data with LC function to cover all epochs

• Preserve (normalised) z=0 template and mangling function

• Use Luminosity Function to generate LCs (currently Li et. al. 

2011)



Data sample

• 29 Stripped Envelope SNe, split into:

- 12 SNe Ib
- 9 SNe Ic
- 6 SNe IIb
- 2 SNe with intermediate classifications (Ib/c & II/Ib)

• 9 ≤ N(spectra) ≤ 59

• 17/29 use data from the CfA sample  
(Modjaz et. al. 2014, Bianco et. al. 2014)

• That’s all the data there is!



Example: SN1998bw 
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• BVRI Light curves
• Fit in flux-space 
• Fit using MultiNest
• Full propagation of 

uncertainty
• Each band fitted 

independently
• Very good spectral 

coverage
• Do not need all bands 

covered in all spectra
• Need at least 2 for 

mangle



Usage: Simulation 

• Can take SN1998bw to 
z≈1.0 in I-band



Usage: Simulation 

• Can only get to z≈0.1 
in B-band

• Need more Blue-
Optical and UV spectral 
data! 



Work in progress

•Do the simulated training sets represent the data well?

•What has higher impact - class bias or feature bias?

•How much non-Ia spectroscopy does GP augmentation need to 

eliminate class bias?

•Does our final strategy need GPs at all?

Solving non-representativity problem in training data will 

likely require strategy with multiple ingredients.
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The Survey

11

• Deep, Wide, Fast

• Starting 2022

• 18000+ deg2

• 10 years

• 30s exposure per visit

• ~825 visits per point

• r~24.5/visit; r~27.5 total

19

Fig. 18.— The distribution of the r band visits on the sky for a
simulated realization of the baseline cadence. The sky is shown in
the equal-area Mollweide projection in equatorial coordinates (the
vernal equinoctial point is in the center, and the right ascension is
increasing from right to left). The number of visits for a 10-year
survey, normalized to the SRD design value of 184, is color-coded
according to the legend. The two regions with smaller number of
visits than the main survey (“mini-surveys”) are the Galactic plane
(arc on the right) and the region around the South Celestial Pole
(bottom). The so-called “northern Ecliptic region” (upper left)
has received more visits than the main survey in this particular
simulation (in order to increase completeness for moving objects
by increasing the coverage of the Ecliptic plane). Deep drilling
fields, with a much higher number of visits than the main survey,
are also visible as small circles. The fields were dithered on sub-
field scales and pixels with angular resolution of ⇠30 arcmin were
used to evaluate and display the coverage.

the SRD.
The main deep-wide-fast survey will use about 90%

of the observing time. The remaining 10% of the ob-
serving time will be used to obtain improved coverage
of parameter space such as very deep (r ⇠ 26) obser-
vations, observations with very short revisit times (⇠1
minute), and observations of “special” regions such as
the Ecliptic, Galactic plane, and the Large and Small
Magellanic Clouds. We are also considering a third type
of survey, micro-surveys, that would use about 1% of the
time (which still represents 25 nights on a unique 8m-
class telescope).

3.1.1. The Main Deep-Wide-Fast Survey

The observing strategy for the main survey will be opti-
mized for the homogeneity of depth and number of visits.
In times of good seeing and at low airmass, preference is
given to r-band and i-band observations. As often as
possible, each field will be observed twice, with visits
separated by 15-60 minutes. This strategy will provide
motion vectors to link detections of moving objects in
the Solar System, and fine-time sampling for measuring
short-period variability. The ranking criteria also ensure
that the visits to each field are widely distributed in po-
sition angle on the sky and rotation angle of the camera
in order to minimize systematic e↵ects in galaxy shape
determination.
The universal cadence provides most of LSST’s power

for detecting Near Earth Objects (NEO) and naturally
incorporates the southern half of the ecliptic within its
18,000 square degrees (the northern half lies above the
desired airmass limits, X . 1.5). NEO sample complete-
ness for the smallest bodies (⇠140m in diameter, per the
Congressional NEO mandate) is greatly enhanced, how-
ever, by the addition of a crescent on the sky within 10

degrees of the northern ecliptic (see Fig. 18). Thus, we
plan to extend the universal cadence to this region using
the r and i filters only, along with more relaxed limits
on airmass and seeing. Relaxed limits on airmass and
seeing are also adopted for ⇠700 deg2 around the South
Celestial Pole, allowing coverage of the Large and Small
Magellanic Clouds.
Finally, the universal cadence proposal excludes obser-

vations in a region of 1,000 square degrees around the
Galactic Center, where the high stellar density leads to a
confusion limit at much brighter magnitudes than those
attained in the rest of the survey. Within this region,
the Galactic Center proposal provides 30 observations in
each of the six filters, distributed roughly logarithmically
in time (it may not be necessary to use the u and g filters
for this heavily extincted region).
The resulting sky coverage for the LSST baseline ca-

dence, based on detailed operations simulations, is shown
for the r band in Fig. 18. The anticipated total number
of visits for a ten-year LSST survey is about 2.8 million
(⇠5.6 million 15-second long exposures). The per-band
allocation of these visits is shown in Table 1.

3.1.2. Mini-surveys

Although the uniform treatment of the sky provided by
the universal cadence proposal can satisfy the majority
of LSST scientific goals, roughly 10% of the time will be
allocated to other strategies that significantly enhance
the scientific return. These surveys aim to extend the
parameter space accessible to the main survey by going
deeper or by employing di↵erent time/filter sampling.
As an example of a mini-survey, consider a program

that uses one hour of observing time per night to observe
a relatively small region of sky to substantially greater
depth in individual visits. Accounting for read-out time
and filter changes, it could obtain about 50 consecutive
15-second exposures in each of four filters in an hour.
If a field is visited every two days over four months,
about 600 deg2 can be observed with this cadence over
10 years. Taking weather into account, the selected fields
would each have on average about 40 hour-long sequences
of 200 exposures each. Each observation in a sequence
would have an equivalent 5-� depth of r ⇠ 24.5, and each
filter subsequence when coadded would be 2 magnitudes
deeper than the main survey visits (r ⇠ 26.5). When
all 40 sequences and the main survey visits are coadded,
they would extend the depth to r ⇠ 28.
This data set would be excellent for a wide variety of

science programs. The individual sequences would be
sensitive to 1% variability on hourly time scales, allow-
ing discovery of planetary eclipses. If these fields were
selected at Galactic latitudes of |b| ⇠ 30 deg, they would
include about 10 million stars with r < 21 observed with
signal-to-noise ratio above 100 in each visit. When sub-
sequences from a given night were coadded, they would
provide dense time sampling to a faint limit of r ⇠ 26.5
(assuming observations in 4 bands, every 2 days over 120
days, and accounting for weather losses), and thus en-
able deep searches for SN, trans-Neptunian objects, and
other faint transient, moving and variable sources. For
example, the SN sample would be extended to redshifts of
z ⇠ 1.2, with more densely sampled light curves than ob-
tained from the universal cadence. Such sequences would
also serve as excellent tests of our photometric calibra-

Figures: Ivezic et al, arXiv:0805.2366  

About 
0.00000000000000008 

times the brightness of 
the full moon.



ML in LSST survey strategy design

Baseline Wide-Fast-Deep Uniform cadence:  

With ∼ 800 visits spaced approximately uniformly over 10 years 
(distributed among 6 filters), not clear that LSST can offer 
sufficiently dense time sampling for study of transients with typical 
durations less than or ≃ 1week. Particularly a concern for key 
science requiring well-sampled SNIa light curves.

WFD Rolling cadence:  

Enhanced sampling over selected sky area, rotating selected area in 
to exercise enhanced sampling over all the survey area part of the 
time, returning to balance at end of survey. 



WFD Rolling Cadence proposal

Sampling rate about three times higher than uniform sampling implemented in 
baseline cadence (revisit time scale of about one day), and lasting 3-4 months, is 
suggested by SNe. 

MOVIES: ROB FIRTH

WFD baseline strategy A rolling WFD proposal



Machine learning for EM 
counterparts of GW sources

•Large sky localisation means many potential electromagnetic 
counterparts, esp. in LSST / SKA era (known unknowns).  

•Uncertainty in what kind of counterparts to expect (unknown 
unknowns).  

•Need to trigger follow-up based purely on photometry. 

•Machine learning: work on SNe classification directly transferable 
to both scenarios.



Sky localisation and followup for GW150914 

ABBOTT ET AL (2017) APJL

•  90% credible region 630 sq. 
deg.  

•105 galaxies > 0.1L* within the 
comoving volume of 10−2 Gpc3 
within this region + 90% CL 
source distance.  

•aLIGO+VIRGO would have given 
localisation to 10s of sq.deg.

•VIRGO joined “observation run 
2” (O2) on 1 Aug 2017!  



GW150914: needle in a haystack

•127676 candidates in subtraction images
•78951 do NOT have a quiescent stellar source
•15624 are detected twice and NOT asteroids
•5803 pass machine learning threshold
•1007 are coincident with a nearby galaxy
•13 were vetted by human scanners
•8 were scheduled for follow-up spectroscopic observations
•0 were associated with the gravitational wave

KASLIWAL ET AL (2016)



Fast Blue + Slow Red

KASLIWAL ET AL (2017)

Models:  Wollaeger+ (2017), Metzger+ (2015),  Barnes+ (2016), Rosswog+ (2016)



Classification and anomaly detection using ML

FIGURE: SCIKIT-LEARN

•The methods developed for SNmachine can be used for general transient 
classification, relying on wavelet decomposition.

•Once you have a good description of your data (i.e. features), you can use 
machine learning for rapid anomaly detection.

• Both classification and anomaly detection critical for GW EM counterpart 
searches.



General transient classification 

• t-SNE plot for different types of variable stars, decomposed using Gaussian 
processes, using SNmachine as classifier (Tayeb Zaidi & Gautham Narayan, 
private communication) 



G.R.E.A.T. @ Stockholm  
Gravitational Radiation and Electromagnetic Astrophysical Transients

•6 year programme. 
• Create end-to-end simulations of EM signals from compact object mergers. 
•Use to optimize search strategies and perform searches for electromagnetic 

counterparts of GW events in ZTF and LSST. 
• Join us! https://www.great.cosmoparticle.com

HIRANYA PEIRIS, JESPER SOLLERMAN, STEPHAN ROSSWOG, AND ARIEL GOOBAR

https://www.great.cosmoparticle.com


COSMOPARTICLE, WWW.PENELOPEROSECOWLEY.COM

http://www.peneloperosecowley.com


Effect of redshift information

When using BDT, SALT2 and wavelet features able to classify 
equally well with or without redshift.


