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What is Machine Learning?

* Automatically building a (usually highly nonlinear) model
that maps a given input to output.

* Different algorithms use different prescriptions for building
the model.



When to use Machine Learning?

* When your data are too complex for traditional model
development and fitting with statistics
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ACTIVITY ON WIKIPEDIA (WIKIMEDIA COMMONS)



This is not a tutorial

scikit-learn
algorithm cheat-sheet

classification

regression

dimensionality
reduction




Machine Learning terminology

e

|
Y

Feature extraction/

/[Featu,e se.eaioJ\

»
‘ Unlabeled \ { Labeled J
p

e N
Unsupervised Predicting Predicting
Learning Categories Quantities

Y Y
{ Classification J { Regression }

IMAGE: MICHELLE LOCHNER




A typical ML classification workflow

Data
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Decision Trees

* At each leaf node, find best feature that split the data (i.e.,
best separation between classes), and the best split value
of that feature.

IMAGE: WIKIMEDIA COMMONS



Ensemble methods

* Ensemble methods
average weak classifiers
to create robust classifier.

A

Combining prodlcﬁon{. individual ensemble
members to m ac ive decision '

A
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Ensemble methods with decision trees
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Combining predictions of individual ensemble
members to make a collective decision

* Robust (low variance)
* Allows mixed feature types
* Robust to high dimensionality

* Can rank feature importance

®* Random Forests: my
classification algorithm of
choice.
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LSST survey of 18,000 sq deg ISS7T

(half the Sky) Large Synoptic Survey Telescope

* 4 billion galaxies (with photo-z)

* Time domain:
* 5 million asteroids
| million supernovae
| million gravitational lenses
|00 million variable stars

+ new phenomena

survey of 37 billion objects in space and time

30 trillion measurements



LSST 4 science missions m

Large Synoptic Survey Telescope

Dark matter-Dark energy Solar system inventory

.. Multiple investigations
into the nature of the
dominant components of
the Universe.

Find 90% of hazardous
NEOs down to 140m
over |0 years; test
theories of Solar System
formation.

“Movie of the Universe” Mapping the Milky Way

Discovering the
transient and
unknown over time
scales days to years

Map the rich and
complex structure of the
Milky Way in
unprecedented detail
[test-beds for dark
matter physics]

All missions conducted in parallel.
Adapted from lan Shipsey



LSST is a “datascope”. m-

Large Synoptic Survey Telescope

Due to its deep/wide imaging and high cadence, LSST enables unprecedented data-
driven astronomical discovery, including:

* new classes of objects and processes;

* new attributes of known classes;

* rare events and objects;

* novel temporal behaviour.

Making discoveries using LSST’s 100 PB-petascale database (10000-D with 40-billion
entries) requires classification, statistical inference, clustering, outlier-detection and
multi-resolution algorithms.




From Zeljko Ivezic
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The era of surveys...
“Ask Not What Data You Need To Do Your Science, Ask What Science You Can Do With Your Data.”



LSST From the User’s Perspective: l,_gr
A Data Stream, a Database, and a (small) Cloud

Nightly Alert Stream

— A stream of ~10 million time-domain events per night, detected and
transmitted to event distribution networks within 60 seconds of observation.

— A catalog of orbits for ~6 million bodies in the Solar System.

Yearly Data Releases

— A catalog of ~37 billion objects (20B galaxies, 17B stars)> ~7 trillion single-
epoch detections (“sources”), and ~30 trillion forced sources, produced
annually, accessible through online databases.

— Deep co-added images.

Community Services

— Services and computing resources at the Data Access Centers to enable user-
specified custom processing and analysis.

— Software and APIs enabling development of analysis codes.

LSST Data Products: see http://Is.st/dpdd



htpp://ls.st/dpdd

Level | Pipeline

Template

0 seconds 60 seconds
Meredith Rawls * @merrdiff



Shields up, red alert!

Nightly LSST alert stream All of twitter
¥ \ 4
Alert brokers Filtered search by hashtag
4 \ 4
Find follow-up objects Find interesting content

® Alerts will include metadata, historical
observations, and an image “postage stamp”

® Hierarchy of access systems via brokers

® Broadcast in a stream; archived in a database

Meredith Rawls * @merrdiff




2019

First light
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Transient science m-

Large Synoptic Survey Telescope
Movie of the Universe
-24 '
. . SN2005ap
Discovering the .
. 2 .
transient and SN200Bes 20080y
unknown over time . y
scales days to years =
(@) I < SCPO6F6
g SNZOOTax.’ S_N20080
>' 18 * SN1987A
g SNagoana  ®SN199%eu
B 14 . y ® SN2001dc
b7 SNZ(XJB.S
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Unknown unknowns . BRiOT!  maMOTS Ahien
_6 X
LSST will extend time-space i o o
. P Timescale [day]
volume a thousand times . . .
FiG. 29.— The phase space of cosmic explosive and eruptive

OVer current surveys transients as represented by their absolute V band peak bright-

ness and the event timescale (adapted from Kulkarni et al. 2007).

Adapted from Zeljko Ivezic



SNMachine:
Photometric Supernovae Classification
with Machine Learning

! A

Michelle Lochner Jason McEwen Robert Schuhmann

Lochner, McEwen, Peiris, Lahav,Winter (Ap) Suppl. 2016)

https://github.com/LSSTDESC/snmachine
(will be publicly released)



https://github.com/LSSTDESC/snmachine

Why photometric classification?

* In the past spectroscopic followup for majority of sample
possible to determine SN type. Not scalable.

- JLA (Betoule et al 2014): 740 SNe
- DES: 1000s of SNe
- LSST: 100000s of SNe
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Simulated DES type la supernova light curve at redshift 0.42, from
Supernova Photometric Classification Challenge (Kessler et al. 2010).



The goal

* Maximise use of photometric data (for cosmology / SN science)
*Classify SNe based on their multi-band light curves
* Produce probability that SN is la, Ibc, etc

* Inform LSST observing strategy using realistic simulations
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peak i-band mag -

(Kessler et al. 2010).
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Workflow: SNMachine

Data

Supernova Photometric
Classification Challenge
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redshift
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NB

SNmachine pipeline overview

Data
P Y A
SALT?2 Parametric models Wavelets
KNN SVM ANN

A A Y » P
Classified SNe

BDT

IMAGE: LOCHNER
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Feature Selection

DES SN002166, z-band
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SALT?2 templates
fitted with SNCosmo Karpenka et al (2014)
+MultiNest Newling et al. (2010)

fitted with MultiNest

Woavelets

Gaussian Process fit to
light curves; wavelet
decomposition; PCA

Model Independence




Wavelets

* Decompose light curve into wavelets, then apply PCA to select
most important wavelet coefficients from training set

Obpect: DES SN365743.DAT, 2:1.01, Type:2

Gaussian
Process fit

PCA

S0

<

30

20

10

0

-10

-20
0

0 40 €0 80 10 120 140 160 180
Tene (doys)

l

Woavelet
decomposition




COMPLETENESS

True positive rate

Wavelets ROC curves

(‘AUC”
1.0 .
0.8
0.6 ( \
— NB (0.509)
0.4 | — KNN (0.912) |-
— ANN (0.929)
0.2 SVM (0.954) |
— BDT (0.969)
0.0 - - _— - :
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
CONTAMINATION

* Naive Bayes (NB)

* K-nearest neighbours (KNN)

* Support vector machines (SVM)
* Artificial neural networks (ANN)
* Boosted decision trees (BDT)



Effect of non-representative training sets

1.0

0.9+

0.8 -

0.7 -

AUC

0.6 r - — SALT2
— Model 1
0.5 Representative Model 2 |-
— — - Non-representative — Wavelets
0.4 L 1 L 1 1
NB KNN ANN SVM BDT

Algorithm

All feature extraction methods / machine learning algorithms
sensitive to non-representativeness in training set; investigate
domain adaptation techniques (e.g. data augmentation)



Non-representative data

band filter: sdssr

22
type | # in spectro fraction | # in photo fraction

S 0 la 500 85.9% 1625 40.4%
= II 62 10.7% 2311 57.5%
> Ibe 20 3.4% 86 2.1%
£ 18 total 582 100% 4022 100%

16 —+

000 025 050 0.75

redshift

Most training sets are non-representative in some way. Spectroscopic
follow-up is always biased!

Example: SDSS supernova survey (classification: spectro followup or pSNId)

SCHUHMANN ET AL (IN PREP)



Class non-representativity

2500
I full set

BN spectro set

2000
1500

1000
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o l 1
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Followup bias (TACs tend not to award spectro time to non-la followup)

C Il

SCHUHMANN ET AL (IN PREP)



Feature non-representativity

band filter: sdssr

M
M
L
1..'
®

% 20 L °°.‘r“'" e
+— [

= | Subset
o . ful

£ 18 °

e -‘. ° e e*spectro

.o TOTAL
0.00 025 050 0.75
redshift
band filter: sdssr
e o0 ¢
22 ... o9 .. :o..:o
*, o 3.
- g. o o
L2l apm 4.3: ‘
= .‘"
220 ‘8¢ ® subset
< . o full, Ibc
£19 s spectro, Ibc
18 ¢
¢ IBC
0.0 0.2 04 0.6

redshift

band filter: sdssr

22 i
~ L ]
Q L]
S 20
‘é‘ o,  Subset
=2 s o fullla
c 18 R .
e »  spectro, la
16 .o IA
0.00 025 050 0.75
redshift

band filter: sdssr

22 I

[<B]

O

= Bset

— L ] Su

c 20 P

& 3 o full, Il

£ :‘ ¢ »  spectro, Il
18 %

1
0.00 0.25 0.50 0.75
redshift

Malmquist bias

SCHUHMANN ET AL (IN PREP)



Application of SNmachine to SDSS

o
A

=
w

o
(o]

o
[N

nb {0.531
boost ot (0.630)
knn (0.692

o
(N
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True positive rate (completeness)

o
o

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (contamination)
Photometric classification performance limited by the spectro set.
* class non-representativity: non-la fraction underrepresented in spectro
set, cannot map their intrinsic variability
* feature non-representativity: magnitude and z cutoff

SCHUHMANN ET AL (IN PREP)



Data augmentation

Standard technique in (supervised) machine-learning.
* avoid overfitting

* increase robustness of classifier to training data

* improve coverage of training data
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SCHUHMANN ET AL (IN PREP)



FLUX

Example I: Gaussian Process augmentation

Idea: bootstrap existing data to generate an augmented training dataset.
Resample directly from light curves.

* fit GP to each band; draw samples with desired cadence

* cure class non-representativity without assuming non-la model?

* likely cannot solve feature non-representativity

Supernova SMP_019323.dat (type 3)

100

TIME (DAYS) | |  TIME (DAYS)
SCHUHMANN ET AL (IN PREP)



Example 2: Pure simulation augmentation

* Can use our extensive knowledge of supernovae to augment the
training data purely with simulations (correct both class and
feature bias)

IMAGE: SDSS



Data augmentation with simulations

* Training set: pure simulations! interpolation and extrapolation of

training sets. Control over:

- relative cluster size

- absolute cluster size

- intrinsic variability of every class
- selection cuts

* Accurate classifier training requires:

- reliable simulations of la and non-la lightcurves

- representative targeting of classes in spectroscopy (e.g. 4MOST

in LSST era)



Non-la simulations

* Cadence simulations incl. accurate Core Collapse SNe templates

Collaborating with Rob Firth, Szymon Prajs, Mark Sullivan at
Southampton

https://github.com/UoS-SNe/CoCo (will be publicly released)


https://github.com/UoS-SNe/CoCo

Approach: CoCo

* Assemble sample of SESNe — Spectra and Photometry

* Fit light curves SN-by-SN, filter-by-filter

* Mangle spectra (see eg. Hsiao et.al. 2007, Conley et. al. 2008)
* Spline order is Nfilters+2

* Correct for MW extinction

* Use adjusted spectra to generate spectrophotometry

* Fit this synthetic data with LC function to cover all epochs

* Preserve (normalised) z=0 template and mangling function

* Use Luminosity Function to generate LCs (currently Li et. al.

201 1)



Data sample

* 29 Stripped Envelope SNe, split into:

- 12 SNe Ib

- 9 SNe Ic

- 6 SNe lIb

- 2 SNe with intermediate classifications (Ib/c & Il/Ib)
* 9 < N(spectra) < 59

* |7/29 use data from the CfA sample
(Modjaz et. al. 2014, Bianco et.al. 2014)

* That’s all the data there is!
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Example: SN1998bw
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Fit in flux-space

Fit using MultiNest
Full propagation of
uncertainty

Each band fitted
independently

Very good spectral
coverage

Do not need all bands
covered in all spectra
Need at least 2 for
mangle



Usage: Simulation
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Usage: Simulation
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Work in progress

* Do the simulated training sets represent the data well?

* What has higher impact - class bias or feature bias?

* How much non-la spectroscopy does GP augmentation need to
eliminate class bias?

* Does our final strategy need GPs at all?

Solving non-representativity problem in training data will

likely require strategy with multiple ingredients.



The Survey

* Deep, Wide, Fast
« Starting 2022
« 18000+ deg?
« 10 years
» 30s exposure per visit
« ~825 visits per point
o r~24.5/visit; r~27.5 total

About
0.00000000000000008

times the brightness of
the full moon.

0.6 0.7 0.8 0.9 1 i [ | 1.2 1.3 1.4 1.5
NVisitsRatio (Number of Visits/Benchmark (184))

Figures: Ivezic et al, arXiv:0805.2366




ML in LSST survey strategy design lST

Baseline Wide-Fast-Deep Uniform cadence:

With ~ 800 visits spaced approximately uniformly over 10 years

(distributed among 6 filters), not clear that LSST can offer
sufficiently dense time sampling for study of transients with typical
durations less than or = | week. Particularly a concern for key

science requiring well-sampled SNla light curves.

WFD Rolling cadence:

Enhanced sampling over selected sky area, rotating selected area in
to exercise enhanced sampling over all the survey area part of the
time, returning to balance at end of survey.



WFD Rolling Cadence proposal m

Large Synoptic Survey Telescope

Sampling rate about three times higher than uniform sampling implemented in
baseline cadence (revisit time scale of about one day), and lasting 3-4 months, is
suggested by SNe.

Number of Visits Number of Visits

WFD baseline strategy A rolling WFD proposal

MOVIES: ROB FIRTH



Machine learning for EM
counterparts of GW sources

* Large sky localisation means many potential electromagnetic
counterparts, esp. in LSST | SKA era (known unknowns).

* Uncertainty in what kind of counterparts to expect (unknown
unknowns).

* Need to trigger follow-up based purely on photometry.

* Machine learning: work on SNe classification directly transferable
to both scenarios.




Sky localisation and followup for GW 150914

* 90% credible region 630 sq.
deg.

12h

* | 0° galaxies > 0. L+ within the
comoving volume of 107% Gpc®
within this region + 90% CL
source distance.

-30°

* aLIGO+VIRGO would have given
localisation to |0s of sq.deg.

16h _?'_{

- * VIRGO joined “observation run
optcanh 27(02) on | Aug 2017!

3ah oy
20h ray (all-sky)

ABBOTT ET AL (2017) APJL



GWI150914: needle in a haystack
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* | 27676 candidates in subtraction images i
* /8951 do NOT have a quiescent stellar source

* [ 5624 are detected twice and NOT asteroids

* 5803 pass machine learning threshold

* | 007 are coincident with a nearby galaxy

* | 3 were vetted by human scanners

* 8 were scheduled for follow-up spectroscopic observations

* 0 were associated with the gravitational wave

KASLIWAL ET AL (2016)



Absolute Magnitude (AB)

-16

Fast Blue + Slow Red
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GRB160821B __
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2 4 6 8
Time since Merger (Days)

Models: Wollaeger+ (2017), Metzger+ (2015), Barnes+ (2016), Rosswog+ (2016)

KASLIWAL ET AL (2017)



Classification and anomaly detection using ML

3. Robust covariance (errors: 14)

2. One-Class SVM (errors: 14)

1. Isolation Forest (errors: 6)

- |earned decision function

Z 000 true inliers
eee true outliers

- - |earned decision function

000 true inliers
ee e true outhiers

- |earned decision function

000 true inlers
eee true outliers

0 2 4 6 -6

-2 0 2 4 6

-4 -2 0 2 4 6 -6 -4

-6 -4 =2
* The methods developed for SNmachine can be used for general transient
classification, relying on wavelet decomposition.

* Once you have a good description of your data (i.e. features), you can use
machine learning for rapid anomaly detection.

* Both classification and anomaly detection critical for GW EM counterpart

searches.
FIGURE: SCIKIT-LEARN



General transient classification

0

101

STUE

* t-SNE plot for different types of variable stars, decomposed using Gaussian
processes, using SNmachine as classifier (Tayeb Zaidi & Gautham Narayan,
brivate communication)



G.R.E.A.T. @ Stockholm

Gravitational Radiation and Electromagnetic Astrophysical Transients

* 6 year programme.

* Create end-to-end simulations of EM signals from compact object mergers.

* Use to optimize search strategies and perform searches for electromagnetic
counterparts of GW events in ZTF and LSST.

® Join us! https://www.great.cosmoparticle.com

HIRANYA PEIRIS, JESPER SOLLERMAN, STEPHAN ROSSWOG, AND ARIEL GOOBAR


https://www.great.cosmoparticle.com
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http://www.peneloperosecowley.com
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Algorithm

Effect of redshift information

When using BDT, SALT2 and wavelet features able to classify

equally well with or without redshift.




