

## Machine learning for classification in cosmology

### Hiranya V. Peiris UCL and Stockholm





European Research Council



### What is Machine Learning?

- Automatically building a (usually highly nonlinear) model that maps a given input to output.
- Different algorithms use different prescriptions for building the model.

### When to use Machine Learning?

• When your data are too complex for traditional model development and fitting with statistics



#### ACTIVITY ON WIKIPEDIA (WIKIMEDIA COMMONS)

### This is not a tutorial



### Machine Learning terminology



IMAGE: MICHELLE LOCHNER

### A typical ML classification workflow



### **Decision Trees**

• At each leaf node, find best feature that split the data (i.e., best separation between classes), and the best split value of that feature.



IMAGE: WIKIMEDIA COMMONS

### Ensemble methods



IMAGE: WIKIMEDIA COMMONS

### Ensemble methods with decision trees



- Robust (low variance)
- Allows mixed feature types
- Robust to high dimensionality
- Can rank feature importance
- Random Forests: my classification algorithm of choice.

## LSST survey of 18,000 sq deg (half the sky)





- 4 billion galaxies (with photo-z)
- Time domain:
  - 5 million asteroids
  - I million supernovae
  - I million gravitational lenses
  - 100 million variable stars
- + new phenomena

survey of 37 billion objects in space and time

30 trillion measurements

### LSST 4 science missions



#### **Dark matter-Dark energy**



Multiple investigations into the nature of the dominant components of the Universe.

### Solar system inventory



Find 90% of hazardous NEOs down to 140m over 10 years; test theories of Solar System formation.

#### "Movie of the Universe"



Discovering the transient and unknown over time scales days to years

### Mapping the Milky Way



Map the rich and complex structure of the Milky Way in unprecedented detail [test-beds for dark matter physics]

#### All missions conducted in parallel.

Adapted from Ian Shipsey

### LSST is a "datascope".



Due to its deep/wide imaging and high cadence, LSST enables unprecedented datadriven astronomical discovery, including:

- new classes of objects and processes;
- new attributes of known classes;
- rare events and objects;
- novel temporal behaviour.

Making discoveries using LSST's 100 PB-petascale database (10000-D with 40-billion entries) requires classification, statistical inference, clustering, outlier-detection and multi-resolution algorithms.



From Zeljko Ivezic



"Ask Not What Data You Need To Do Your Science, Ask What Science You Can Do With Your Data."

LSST From the User's Perspective: A Data Stream, a Database, and a (small) Cloud

### **Nightly Alert Stream**

- A stream of ~10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.

### **Yearly Data Releases**

- A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion singleepoch detections ("sources"), and ~30 trillion forced sources, produced annually, accessible through online databases.
- Deep co-added images.

### **Community Services**

- Services and computing resources at the Data Access Centers to enable userspecified custom processing and analysis.
- Software and APIs enabling development of analysis codes.

### LSST Data Products: see http://ls.st/dpdd



Level 3





Shields up, red alert!





Nightly LSST alert stream Alert brokers Find follow-up objects All of twitter Filtered search by hashtag Find interesting content



- Alerts will include metadata, historical observations, and an image "postage stamp"
- Hierarchy of access systems via brokers
- Broadcast in a stream; archived in a database

Meredith Rawls • @merrdiff



## First light: 2019

a been



### Transient science



#### **Movie of the Universe**



Discovering the transient and unknown over time scales days to years

### Known unknowns Unknown unknowns

LSST will extend time-space volume a thousand times over current surveys



FIG. 29.— The phase space of cosmic explosive and eruptive transients as represented by their absolute V band peak brightness and the event timescale (adapted from Kulkarni et al. 2007).

Adapted from Zeljko Ivezic

### SNMachine: Photometric Supernovae Classification with Machine Learning



Michelle Lochner



Jason McEwen



Robert Schuhmann

Lochner, McEwen, Peiris, Lahav, Winter (ApJ Suppl. 2016)

https://github.com/LSSTDESC/snmachine (will be publicly released)

### Why photometric classification?

- In the past spectroscopic followup for majority of sample possible to determine SN type. Not scalable.
- -JLA (Betoule et al 2014): 740 SNe
- DES: 1000s of SNe
- LSST: 100000s of SNe



Simulated DES type la supernova light curve at redshift 0.42, from Supernova Photometric Classification Challenge (Kessler et al. 2010).

## The goal

- Maximise use of photometric data (for cosmology / SN science)
- Classify SNe based on their multi-band light curves
- Produce probability that SN is Ia, Ibc, etc
- Inform LSST observing strategy using realistic simulations



### Workflow: SNMachine



### SNmachine pipeline overview



**IMAGE: LOCHNER** 

### **Feature Selection**







### **Template Fitting**

SALT2 templates fitted with SNCosmo +MultiNest

## General parameterisations

Karpenka et al (2014) Newling et al. (2010) fitted with MultiNest

### Wavelets

Gaussian Process fit to light curves; wavelet decomposition; PCA

Model Independence

### Wavelets

## • Decompose light curve into wavelets, then apply PCA to select most important wavelet coefficients from training set



### Wavelets ROC curves



- Naive Bayes (NB)
- K-nearest neighbours (KNN)
- Support vector machines (SVM)
- Artificial neural networks (ANN)
- Boosted decision trees (BDT)

## Effect of non-representative training sets



All feature extraction methods / machine learning algorithms sensitive to non-representativeness in training set; investigate domain adaptation techniques (e.g. data augmentation)

## Non-representative data



Most training sets are non-representative in some way. Spectroscopic follow-up is always biased!

Example: SDSS supernova survey (classification: spectro followup or pSNId)

SCHUHMANN ET AL (IN PREP)

### Class non-representativity



Followup bias (TACs tend not to award spectro time to non-la followup)

SCHUHMANN ET AL (IN PREP)

### Feature non-representativity



Malmquist bias

SCHUHMANN ET AL (IN PREP)

## Application of SNmachine to SDSS



Photometric classification performance limited by the spectro set.

- class non-representativity: non-la fraction underrepresented in spectro set, cannot map their intrinsic variability
- feature non-representativity: magnitude and z cutoff

### Data augmentation

Standard technique in (supervised) machine-learning.

- avoid overfitting
- increase robustness of classifier to training data
- improve coverage of training data



## Example I: Gaussian Process augmentation

**Idea:** bootstrap existing data to generate an augmented training dataset. Resample directly from light curves.

- fit GP to each band; draw samples with desired cadence
- cure class non-representativity without assuming non-la model?
- likely cannot solve feature non-representativity



## **Example 2: Pure simulation augmentation**

• Can use our extensive knowledge of supernovae to augment the training data purely with simulations (correct both class and feature bias)



## Data augmentation with simulations

- Training set: pure simulations! interpolation and extrapolation of training sets. Control over:
  - relative cluster size
  - absolute cluster size
  - intrinsic variability of every class
  - selection cuts
- Accurate classifier training requires:
  - reliable simulations of la and non-la lightcurves
  - representative targeting of classes in spectroscopy (e.g. 4MOST in LSST era)

### Non-la simulations

• Cadence simulations incl. accurate Core Collapse SNe templates

Collaborating with Rob Firth, Szymon Prajs, Mark Sullivan at Southampton

<u>https://github.com/UoS-SNe/CoCo</u> (will be publicly released)

## Approach: CoCo

- Assemble sample of SESNe Spectra and Photometry
- Fit light curves SN-by-SN, filter-by-filter
- Mangle spectra (see eg. Hsiao et. al. 2007, Conley et. al. 2008)
- Spline order is Nfilters+2
- Correct for MW extinction
- Use adjusted spectra to generate spectrophotometry
- Fit this synthetic data with LC function to cover all epochs
- Preserve (normalised) z=0 template and mangling function
- Use Luminosity Function to generate LCs (currently Li et. al. 2011)

## Data sample

- 29 Stripped Envelope SNe, split into:
  - 12 SNe lb
  - 9 SNe Ic
  - 6 SNe IIb
  - 2 SNe with intermediate classifications (lb/c & ll/lb)
- 9  $\leq$  N(spectra)  $\leq$  59
- 17/29 use data from the CfA sample

(Modjaz et. al. 2014, Bianco et. al. 2014)

• That's all the data there is!

## Example: SN1998bw



- BVRI Light curves
- Fit in flux-space
- Fit using MultiNest
- Full propagation of uncertainty
- Each band fitted independently
- Very good spectral coverage
- Do not need all bands covered in all spectra
- Need at least 2 for mangle

### **Usage: Simulation**



 Can take SN1998bw to z≈1.0 in I-band

### **Usage: Simulation**



- Can only get to z≈0.1 in B-band
- Need more Blue-Optical and UV spectral data!

## Work in progress

- Do the simulated training sets represent the data well?
- What has higher impact class bias or feature bias?
- How much non-la spectroscopy does GP augmentation need to eliminate class bias?
- Does our final strategy need GPs at all?

Solving non-representativity problem in training data will likely require strategy with multiple ingredients.

## The Survey

- Deep, Wide, Fast
  - Starting 2022
  - 18000+ deg<sup>2</sup>
  - 10 years
  - 30s exposure per visit
  - ~825 visits per point
  - r~24.5/visit; r~27.5 total



Figures: Ivezic et al, arXiv:0805.2366





### **Baseline Wide-Fast-Deep Uniform cadence:**

With ~ 800 visits spaced approximately uniformly over 10 years (distributed among 6 filters), not clear that LSST can offer sufficiently dense time sampling for study of transients with typical durations less than or  $\approx$  1 week. Particularly a concern for key science requiring well-sampled SNIa light curves.

### WFD Rolling cadence:

Enhanced sampling over selected sky area, rotating selected area in to exercise enhanced sampling over all the survey area part of the time, returning to balance at end of survey.

## WFD Rolling Cadence proposal



Sampling rate about three times higher than uniform sampling implemented in baseline cadence (revisit time scale of about one day), and lasting 3-4 months, is suggested by SNe.



WFD baseline strategy

### A rolling WFD proposal

MOVIES: ROB FIRTH

# Machine learning for EM counterparts of GW sources

- Large sky localisation means many potential electromagnetic counterparts, esp. in LSST / SKA era (known unknowns).
- Uncertainty in what kind of counterparts to expect (unknown unknowns).
- Need to trigger follow-up based purely on photometry.
- Machine learning: work on SNe classification directly transferable to both scenarios.



## Sky localisation and followup for GW150914



- 90% credible region 630 sq. deg.
- 10<sup>5</sup> galaxies > 0.1L\* within the comoving volume of 10<sup>-2</sup> Gpc<sup>3</sup> within this region + 90% CL source distance.
- aLIGO+VIRGO would have given localisation to 10s of sq.deg.
- VIRGO joined "observation run 2" (O2) on 1 Aug 2017!

ABBOTT ET AL (2017) APJL

### GWI 50914: needle in a haystack



- 127676 candidates in subtraction images
- 78951 do NOT have a quiescent stellar source
- 15624 are detected twice and NOT asteroids
- 5803 pass machine learning threshold
- 1007 are coincident with a nearby galaxy
- 13 were vetted by human scanners
- 8 were scheduled for follow-up spectroscopic observations
- 0 were associated with the gravitational wave

### Fast Blue + Slow Red



Models: Wollaeger+ (2017), Metzger+ (2015), Barnes+ (2016), Rosswog+ (2016)

KASLIWAL ET AL (2017)

## Classification and anomaly detection using ML



- The methods developed for SNmachine can be used for general transient classification, relying on wavelet decomposition.
- Once you have a good description of your data (i.e. features), you can use machine learning for rapid anomaly detection.
- Both classification and anomaly detection critical for GW EM counterpart searches.

### General transient classification



 t-SNE plot for different types of variable stars, decomposed using Gaussian processes, using SNmachine as classifier (Tayeb Zaidi & Gautham Narayan, private communication)

## G.R.E.A.T. @ Stockholm

Gravitational Radiation and Electromagnetic Astrophysical Transients





- 6 year programme.
- Create end-to-end simulations of EM signals from compact object mergers.
- Use to optimize search strategies and perform searches for electromagnetic counterparts of GW events in ZTF and LSST.
- Join us! <u>https://www.great.cosmoparticle.com</u>

HIRANYA PEIRIS, JESPER SOLLERMAN, STEPHAN ROSSWOG, AND ARIEL GOOBAR

COSMOPARTICLE, WWW.PENELOPEROSECOWLEY.COM

### Effect of redshift information

![](_page_54_Figure_1.jpeg)

When using BDT, SALT2 and wavelet features able to classify equally well with or without redshift.