EXACT TENSOR NETWORK STATES FOR THE KITAEV HONEYCOMB MODEL

ENTANGLEMENT IN STRONGLY CORRELATED SYSTEMS BENASQUE. 17. FEBRUARY 2017

PHILIPP SCHMOLL & ROMÁN ORÚS JOHANNES GUTENBERG UNIVERSITY MAINZ

TENSOR NETWORKS & QUANTUM MANY-BODY ENTANGLEMENT

Quantum state of many-body system with N particles

$$\psi\rangle = \sum_{i_1, i_2, \dots, i_N} c_{i_1, i_2, \dots, i_N} |i_1, i_2, \dots, i_N\rangle$$

Decompose wave function using the entanglement structure

Kitaev honeycomb model obeys area-law in all phases

Orús, Annals of Physics 349 (2014) Yao & Qi, PRL 105 080501 (2010)

FERMIONIC TENSOR NETWORKS

Fundamental difference

SpinsFermions $c_i c_j = + c_j c_i$ $c_i c_j = - c_j c_i$

Fermionization rules for tensor networks

Corboz, Orús, Bauer, Vidal, Phys. Rev. B 81, 165104 (2010)

THE KITAEV HONEYCOMB MODEL

Model of spin-1/2 on the sites of a 2d honeycomb lattice

Fully anisotropic coupling along x, y and z bonds

Kitaev, Annals of Physics 321 (2006)

THE SOLUTION

- Mapping to a free fermion model in various steps
 - Jordan-Wigner transformation
 - Introduction of Majorana fermions
 - Recombination of Majorana fermions
 - Fourier transformation
 - Bogoliubov transformation

Feng, Zhang & Xiang, Phys. Rev. Lett. 98, 087204 (2007) Chen & Nussinov, Journal of Physics A 41 075001 (2008)

PHASE DIAGRAM

Phase diagram from dispersion relations

Gapless B phase for

 $\begin{aligned} |J_{x}| &\leq |J_{y}| + |J_{z}| \\ |J_{y}| &\leq |J_{z}| + |J_{x}| \\ |J_{z}| &\leq |J_{x}| + |J_{y}| \end{aligned}$

Kitaev, Annals of Physics 321 (2006)

GENERAL PROCEDURE

- Start with eigenstates of diagonal
 Hamiltonian
- Ground state is $|\psi\rangle = |0\rangle^{\otimes N}$, Bogoliubov vacuum
- Procedure to build TN
 - Reverse steps in the solution of the model
 - Find respective tensor network representation
 - Transform quantum state step-by-step

INTERMEDIATE TENSOR NETWORK

- Bogoliubov + Fourier transformation
- Fourier transformation as 2d Spectral TN plus additional twiddle factors

- Eigenstates of translational invariant
 Hamiltonian in real space
- Model on the 2d square lattice

Ferris, PRL 113 010401 (2014)

MAJORANA FERMIONS

- Reintroduce conserved quantities
- Recombine Majorana fermions from FT and CQ
 - Need to be treated as non-Abelian anyons
 - Exchange leads to braiding of anyons
- No occupation number for Majorana fermions
- How to treat them in the language of TNs?

MAJORANA FERMIONS

Majorana transformation — action on the Fock space

• Define (anti-)clockwise swap operators to braid anyons $B_{ij} = 1/\sqrt{2} (1 + \gamma_i \gamma_j)$ $\overline{B}_{ij} = 1/\sqrt{2} (1 - \gamma_i \gamma_j)$ $\stackrel{\text{FT}}{\longrightarrow} \stackrel{\text{CQ}}{\longrightarrow}$ $\overline{B}_{ij} = 1/\sqrt{2} (1 - \gamma_i \gamma_j)$

Leijnse & Flensberg, Semicond. Sci. Technol. 27, 124003 (2012)

OVERALL TENSOR NETWORK CONSTRUCTION

- Some remarks
 - Fermionic tensor network
 - Numerical checks up to 32 spins
 - Modification of boundary terms necessary
 - All excited states in the vortex-free sector possible
 - Reliable scaling to the thermodynamic limit

- Ground state fidelity defined as $F(\tilde{J}_z, J_z) = |\langle \psi(\tilde{J}_z) | \psi(J_z) \rangle|^2$
- Reduces to a simple form

- Ground state fidelity defined as $F(\tilde{J}_z, J_z) = |\langle \psi(\tilde{J}_z) | \psi(J_z) \rangle|^2$
- Reduces to a simple form $\langle \psi (\tilde{J}_z) | \psi (J_z) \rangle = \prod_{k} \bigvee_{\substack{|0\rangle \\ |B_k| \\ |B_k| \\ |G| \\ |G| \\ |G|}} \equiv \prod_{k} \bigvee_{\substack{|0\rangle \\ |B_k| \\ |G| \\ |G|$

• Ground state fidelity defined as $F(\tilde{J}_z, J_z) = |\langle \psi(\tilde{J}_z) | \psi(J_z) \rangle|^2$

G. Baskaran, S. Mandal, R. Shankar, Phys. Rev. Lett. 98, 247201 (2007)

 $\left\langle \sigma_{i}^{\alpha} \sigma_{j}^{\beta} \right\rangle = \begin{cases} 0 & \text{if i, j not nearest neighbours} \\ g_{\alpha} \cdot \delta_{\alpha\beta} & \text{if i, j are nearest neighbours} \\ g_{\alpha} \neq 0 \text{ only for an } \alpha\text{-type link} \end{cases}$

G. Baskaran, S. Mandal, R. Shankar, Phys. Rev. Lett. 98, 247201 (2007)

G. Baskaran, S. Mandal, R. Shankar, Phys. Rev. Lett. 98, 247201 (2007)

G. Baskaran, S. Mandal, R. Shankar, Phys. Rev. Lett. 98, 247201 (2007)

 \mathbf{Z}

У

Х

Ζ

7

CONCLUSION

- Exact tensor network for the eigenstates in vortex-free sector
- Scaling to larger systems for all steps possible
- Structure reveals access to physical properties
- Tensor network as quantum circuit to generate many-body wave function
- TN should provide good initial wave function for numerical simulations
- Unclear if contractible to a PEPS with finite bond dimension

THANK YOU FOR THE ATTENTION!

PHILIPP SCHMOLL & ROMÁN ORÚS JOHANNES GUTENBERG UNIVERSITY MAINZ

BENASQUE, 17. FEBRUARY 2017

ENTANGLEMENT IN STRONGLY CORRELATED SYSTEMS