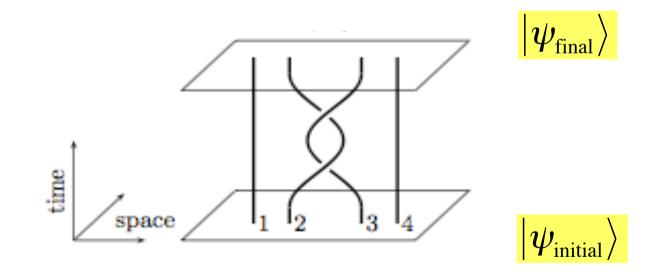


Kareljan Schoutens Institute for Theoretical Physics University of Amsterdam

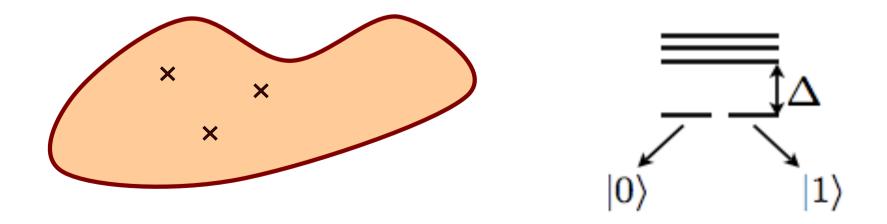
Benasque February 16, 2017

Main themes of this talk


- simplified axiomatic approach to TQFT
- building a catalogue?
- simple-current constructions of anyon wavefunctions

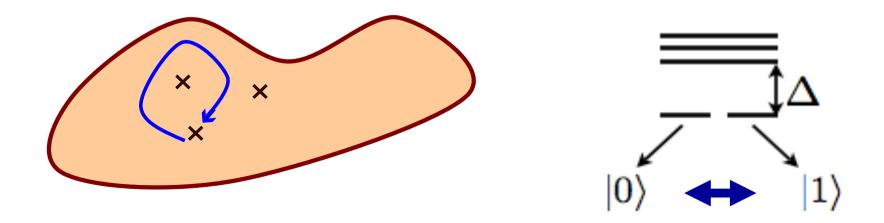
Wen 2015 KjS-Wen 2015

Topological phases

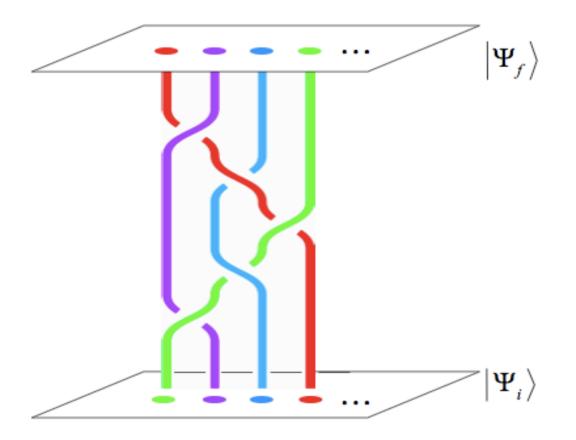

quantum phases where time-evolution of many-particle wavefunction is completely determined by the topology of the particle world-lines \rightarrow TQFT

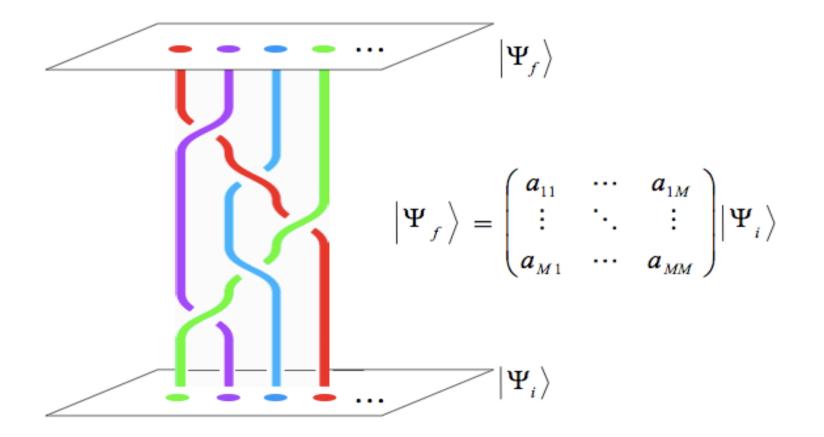
Non-Abelian topological phases

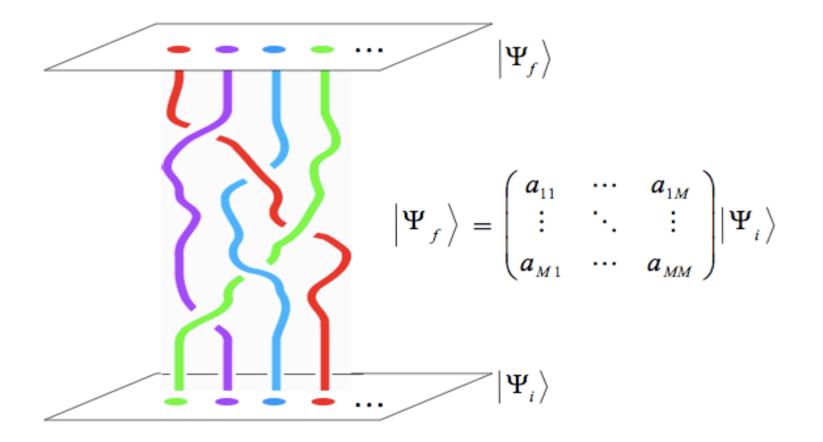
Topological quantum register

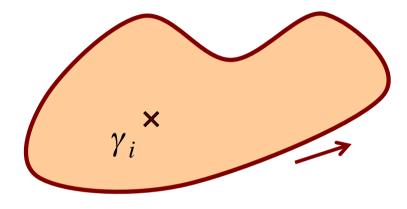

many-body quantum states where presence of bulk defects gives rise to degenerate groundstates, protected by gap Δ

Non-Abelian topological phases


Braiding - topological quantum gates


braiding one defect around another leads to a mixing of the degenerate groundstates




figures: Nick Bonesteel

iconic example: Ising anyons

defect in appropriate quantum liquid supports Majorana zero-mode γ_i

degeneracy from fusion

the presence of *n* Majorana zero-modes leads to a degeneracy $d_n = 2^{n/2-1}$

! n=4 Majorana zero-modes define a qubit !

Ising anyons

braiding

With n=4 Majoranas, denote states of the qubit as

 $|0_{12}0_{34}\rangle, |1_{12}1_{34}\rangle$

Then braiding 2 around 3 represented by 2x2 matrix

$$U_{2 \leftrightarrow 3} \propto \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

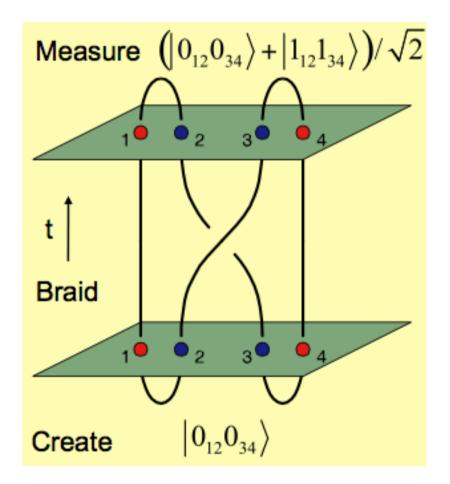


figure: C. Kane

Systematic analysis: TQFT

unitary modular braided fusion categories also known as **modular tensor categories (MTC)**

Q: can we go beyond Ising anyons?

Q: if so, can we be universal for TQC?

Q: can we make a full catalogue?

?

brute force solution of MTC axioms (ever since Verlinde) has led to table through N=4 particle types

Rowell-Stone-Wang 2009

Fractional quantum Hall states and simple-current constructions of MTCs

- fqH states provide many examples of nA anyons
- systematic understanding through fqH-CFT connection
- similarly, CFT connection allows for explicit constructions of MTCs [simple-current constructions]

recent progress

- renewed systematic search for *N>4* MTCs based on `simplified axioms',
 - $N = 5, \max[N_k^{ij}] < 4$ (10 solutions) $N = 6, \max[N_k^{ij}] < 3$ (50 solutions) $N = 7, \max[N_k^{ij}] < 2$ (24 solutions)

Wang 2010, Wen 2015

systematics of simple-current constructions;
 verification of all *N*=*5* - *N*=*7* solutions

FQH states and simple-current constructions of MTCs

(bosonic) quantum Hall wavefunction

$$\Psi_{\text{Laughlin}}(z_1,...,z_N;w_1,...,w_n) = \prod_{i$$

FQH – CFT correspondence

idea:

- FQH state is condensate of constituent bosons or electrons – represent these by CFT operators $\psi_{e}(z_{i})$
- $\psi_{e}(z_{i})$ should be **bosonic simple currents** [only single fusion channel with any other field]
- quasi-hole operators selected by [no branch cuts]

$$\phi_{\rm qh}(w)\psi_{\rm e}(z_1) = (z-w)^{\rm integer} [\phi_2(w) + ...]$$

FQH – CFT correspondence

ground state wave function

$$\Psi_{GS}(z_1,..,z_N) \cong \left\langle \psi_e(z_1) \dots \psi_e(z_N) \psi_{background}(z_\infty) \right\rangle_{CFT}$$

electron (boson)
condensate operator neutralizing
background charge

excited state wave function:

$$\Psi_{qh}(w_1, w_2, \dots; z_1, z_2, \dots) \cong \left\langle \phi_{qh}(w_1) \phi_{qh}(w_2) \dots \psi_{e}(z_1) \psi_{e}(z_2) \dots \right\rangle_{CFT}$$

FQH – CFT correspondence

Laughlin wavefunction

CFT: free boson, *c*=1

$$\psi_e(z) = e^{i\sqrt{2\varphi}}(z)$$
$$\phi_{qh}(w) = e^{\frac{i}{\sqrt{2}\varphi}}(z)$$

Moore-Read wavefunction

CFT: boson times Ising, c=3/2

$$\psi_e(z) = \psi e^{i\varphi}(z)$$
$$\phi_{qh}(w) = \sigma e^{\frac{i}{2}\varphi}(z)$$

$$\Psi_{\mathrm{MR}}(z_1,\ldots,z_N) = \mathrm{Pf}\left(\frac{1}{z_i - z_j}\right) \prod_{i < j} (z_i - z_j)$$

Moore-Read 1990

FQH/MTC – CFT correspondence – general

• CFT data:

rational CFT **plus collection of simple currents**

simple-current correlators define ground state wavefunctions → vacuum for the TQFT

simple-current primaries

represent excitations over the ground state→ particle types of the TQFT

MTCs from simple-current algebra

basic building blocks are WZW models based on

$$(X_l, k)$$
 [X_l Lie algebra, k level]

• further constructions through

conjugation:
$$N_{c}^{B} \rightarrow \left[N_{c}^{B}\right]^{*} = N_{-c}^{B}$$

stacking: $N_{c}^{B}, N_{c'}^{\prime B} \rightarrow \left[NN'\right]_{c+c'}^{B} = N_{c}^{B} \otimes N_{c'}^{\prime B}$

simple-current reductions: $N_c^B \rightarrow N_c'^B$ with N' < N

MTCs from simple-current algebra

Example: constructing an MTC with two particle types and Fibonacci fusion rules

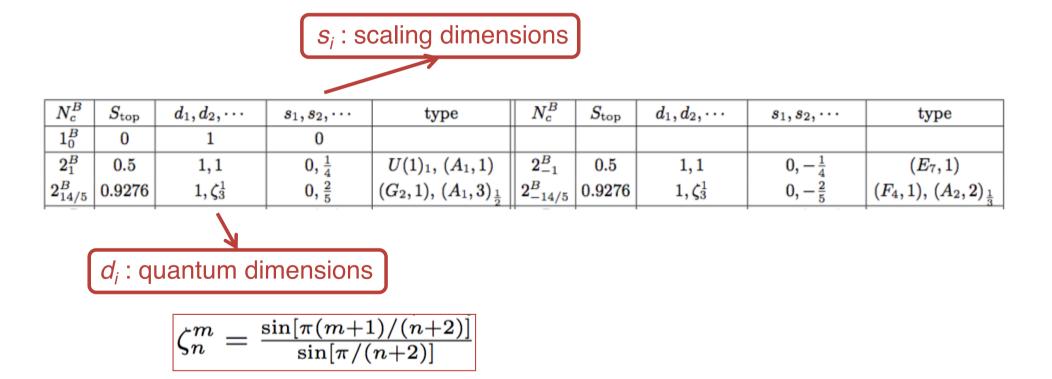
Start from $(A_1, k=3)$, times a U(1) factor. 4 x 2 primaries:

$$[\Phi_l \quad l = 0,...,3 \quad s_l = 0, \frac{3}{20}, \frac{2}{5}, \frac{3}{4}] \quad \text{times} \quad [1, e^{\frac{i}{\sqrt{2}}\varphi} \quad s = 0, \frac{1}{4}]$$

Simple-current algebra extended with $\Phi_3 e^{\frac{i}{\sqrt{2}}\varphi}$
has single primary $\Phi_1 e^{\frac{i}{\sqrt{2}}\varphi}$ of scaling dimension $s = \frac{2}{5}$

$$2_{14/5}^{\text{B}}$$
: $(A_1, 3)_{1/2} = [(A_1, 3) \otimes U(1)_1]_{1/4}$

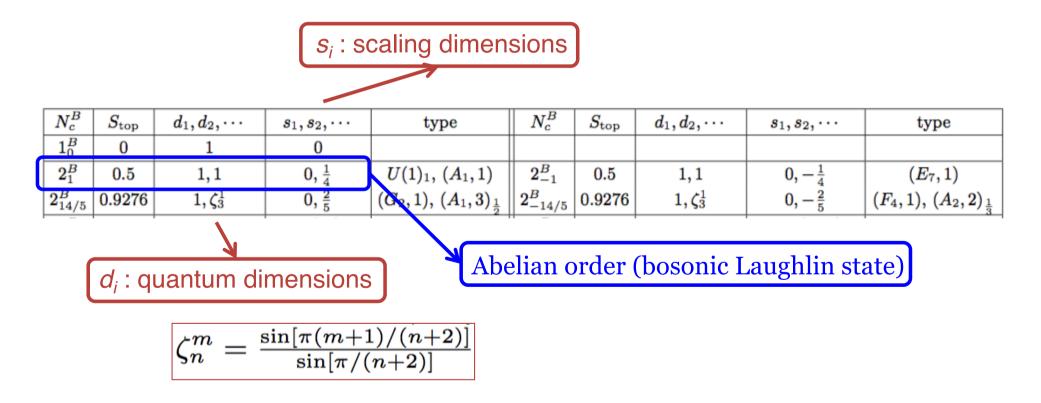
Catalogue of bosonic MTCs, I


Brute force search up to N=4 particle types gives 35 bosonic MTCs

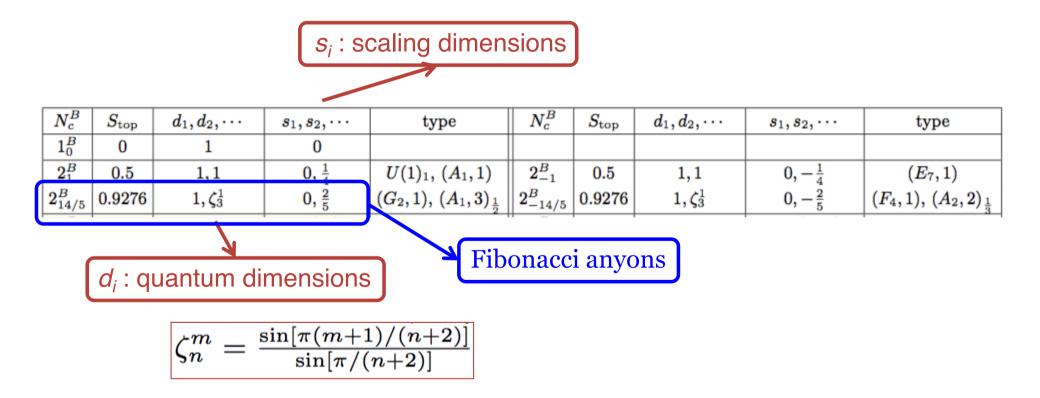
We label them as N^{B}_{c} and list

- quantum dimensions d_i , i=1, ..., N
- scaling dimensions s_i , i=1, ..., N
- type from simple-current construction

4 distinct topological orders $N_c^{\ B}$


- B: Bosonic
- c: central charge mod 8

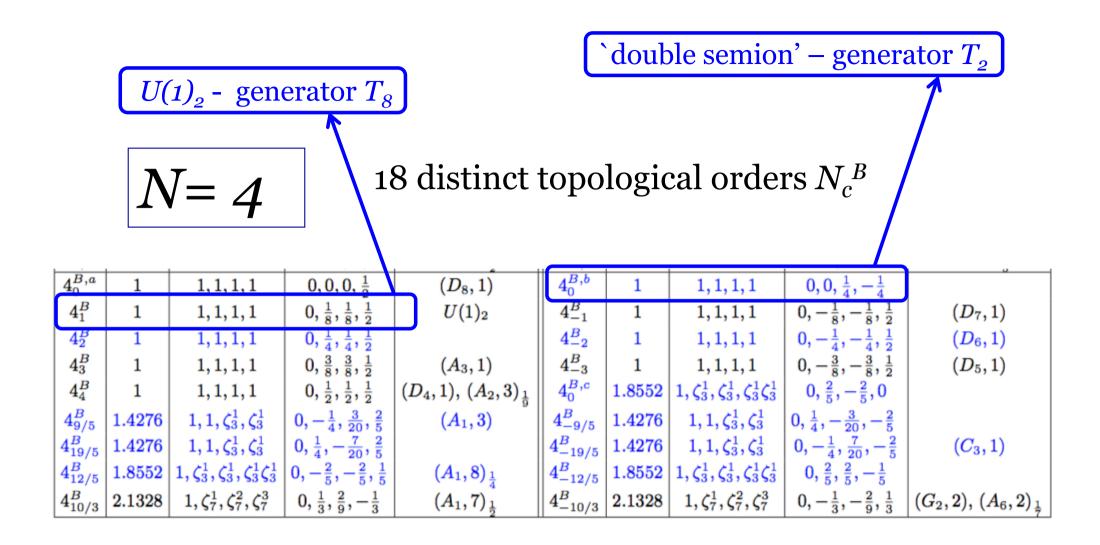
$$N=2$$


4 distinct topological orders $N_c^{\ B}$

- B: Bosonic
- c: central charge mod 8

4 distinct topological orders $N_c^{\ B}$

- B: Bosonic
- c: central charge mod 8


	N=3		12 distinct topological orders $N_c^{\ B}$							
					Ising a	nyons				
	3_2^B	0.7924	1,1,1	$0, \frac{1}{2}, \frac{1}{2}$	$(A_2,1), (A_1,4)_{\frac{1}{4}}$	3^{B}_{-2}	0.7924	1, 1, 1	$0, -\frac{1}{3}, -\frac{1}{3}$	$(E_6, 1)$
	$3^{B}_{1/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{1}{16}$	$(B_8,1)^{-4}$	$3^{B}_{-1/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{1}{16}$	$(B_7,1), (E_8,2)$
	$3^{B}_{3/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{3}{16}$	$(A_1, 2)$	$3^{B}_{-3/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{3}{16}$	$(B_{6}, 1)$
	$3^{\dot{B}}_{5/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{5}{16}$	$(B_2, 1)$	$3^{B}_{-5/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{5}{16}$	$(B_5, 1)$
	$3^{\dot{B}}_{5/2}\ 3^{B}_{7/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{7}{16}$	$(B_3, 1)$	$3^{B}_{-7/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{7}{16}$	$(B_4, 1)$
	$3^{B}_{8/7}$	1.6082	$1, \zeta_5^1, \zeta_5^2$	$0,-rac{1}{7},rac{2}{7}$	$(A_1,5)_{rac{1}{2}}$	$3^{B}_{-8/7}$	1.6082	$1,\zeta_5^1,\zeta_5^2$	$0,rac{1}{7},-rac{2}{7}$	$(A_4,2)_{rac{1}{5}}$

12 distinct topological orders N_c^{B}

3_2^B	0.7924	1, 1, 1	$0, \frac{1}{2}, \frac{1}{2}$	$(A_2, 1), (A_1, 4)_1$	3^{B}_{-2}	0.7924	1, 1, 1	$0, -\frac{1}{2}, -\frac{1}{2}$	$(E_6, 1)$
$3^{B}_{1/2}$	1	$1,1,oldsymbol{\zeta}_2^1$	$0, \frac{1}{2}, \frac{1}{16}$	$(B_8, 1)^4$	$3^{B}_{-1/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{1}{16}$	$(B_7,1),(E_8,2)$
$3^{\dot{B}}_{3/2}$	1	$1,1,oldsymbol{\zeta}_2^1$	$0, \frac{1}{2}, \frac{3}{16}$	$(A_1,2)$	$3^{B}_{-3/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{3}{16}$	$(B_6,1)$
$3^{B}_{5/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{5}{16}$	$(B_2, 1)$	$3^{B}_{-5/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{5}{16}$	$(B_5,1)$
$3^{\dot{B}}_{7/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{7}{16}$	$(B_3, 1)$	$3^{B}_{-7/2}$	1	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{7}{16}$	$(B_4,1)$
$3^{B}_{8/7}$	1.6082	$1,\zeta_5^1,\zeta_5^2$	$0, -\frac{1}{7}, \frac{2}{7}$	$\left(A_{1},5 ight)_{rac{1}{2}}$	$3^{B}_{-8/7}$	1.6082	$1, \zeta_5^1, \zeta_5^2$	$0, \frac{1}{7}, -\frac{2}{7}$	$(A_4,2)_{1\over 5}$

family of eight related orders of type $3^{B}_{l+1/2} \rightarrow$ symmetry T_{8}

$$T_8: \quad N_c^B \longrightarrow \left[N_c^B \otimes 4_1^B \right]_{1/4}$$

in **blue**: orders obtained by **stacking** two *N*= *2* orders

Catalogue of bosonic MTCs, II

simplified axioms Wang 2010, Wen 2015

- given in terms terms of $(N_k{}^{ij}, s_i, c)$
- no explicit mention of *F*-tensor ; no pentagon/hexagon identities
- no a priori guarantee that the axioms are strong enough to guarantee a bona fide MTC
- but: all solutions found (through N=7) confirmed through explicit simple-current construction

1. N_k^{ij} are non-negative integers that satisfy

$$N_k^{ij} = N_k^{ji}, \ \ N_j^{1i} = \delta_{ij}, \ \ \sum_{k=1}^N N_1^{ik} N_1^{kj} = \delta_{ij},$$

$$\sum_{m=1}^{n} N_m^{ij} N_l^{mk} = \sum_{n=1}^{n} N_l^{in} N_n^{jk} \text{ or } N_k N_i = N_i N_k \quad (21)$$

where $i, j, \dots = 1, 2, \dots, n$, and the matrix N_i is given by $(N_i)_{kj} = N_k^{ij}$. In fact N_1^{ij} defines a charge conjugation $i \to \overline{i}$:

$$N_1^{ij} = \delta_{\bar{i}j}.\tag{22}$$

We also refer n as the rank of the corresponding topological order.

2. N_k^{ij} and s_i satisfy⁹⁷

$$\sum_{r} V_{ijkl}^{r} s_{r} = 0 \mod 1 \tag{23}$$

where

$$V_{ijkl}^{r} = N_{r}^{ij} N_{\bar{r}}^{kl} + N_{r}^{il} N_{\bar{r}}^{jk} + N_{r}^{ik} N_{\bar{r}}^{jl} - (\delta_{ir} + \delta_{jr} + \delta_{kr} + \delta_{lr}) \sum_{m} N_{m}^{ij} N_{\bar{m}}^{kl} \quad (24)$$

They also satisfy (see Theorem 3.1.19 in Ref. 98)

$$e^{2\pi i \sum_{j} s_{j} M_{ij}} = e^{2\pi i s_{i} \frac{4}{3} \sum_{j} M_{ij}}$$

where $M_{ij} = 2N_{j}^{i\bar{i}} N_{i}^{ij} + N_{j}^{ii} N_{i}^{j\bar{i}}$. (25)

3. Let d_i be the largest eigenvalue of the matrix N_i . Let

$$S_{ij} = \frac{1}{\sqrt{\sum_i d_i^2}} \sum_k N_k^{ij} e^{2\pi i (s_i + s_j - s_k)} d_k.$$
(27)

Then, S is unitary and satisfies 92

$$S_{11} > 0, \quad N_k^{ij} = \sum_l \frac{S_{li} S_{lj} (S_{lk})^*}{S_{1l}}.$$
 (28)

4. Let

$$T_{ij} = e^{2\pi i s_i} e^{-2\pi i \frac{c}{24}} \delta_{ij}.$$
 (29)

Then

$$(ST)^3 = S^2 = C, \quad C^2 = 1.$$
 (30)

In fact $C_{ij} = N_1^{ij}$.

5. Let

$$\nu_i = \frac{1}{D^2} \sum_{jk} N_i^{jk} d_j d_k e^{4\pi i (s_j - s_k)}.$$
 (31)

Then^{94,95} $\nu_i = 0$ if $i \neq \overline{i}$, and $\nu_i = \pm 1$ if $i = \overline{i}$.

N=5

10 distinct topological orders $N_c^{\ B}$ with max $[N_k^{\ ij}] < 4$

N_c^B	$S_{ m top}$	d_1, d_2, \cdots	s_1, s_2, \cdots	type
5_0^B	1.1609	1, 1, 1, 1, 1, 1	$0, rac{1}{5}, rac{1}{5}, -rac{1}{5}, -rac{1}{5}$	
5_4^B	1.1609	1, 1, 1, 1, 1	$0, rac{2}{5}, rac{2}{5}, -rac{2}{5}, -rac{2}{5}$	$(A_4, 1)$
$5^{B,a}_2$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,rac{1}{8},-rac{3}{8},rac{1}{3}$	$(A_1,4), (U(1)_3/\mathbb{Z}_2)_{\frac{1}{2}}$
$5^{B,b}_2$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,-rac{1}{8},rac{3}{8},rac{1}{3}$	$[5^{B,a}_2 \otimes 4^{B,b}_0]_{rac{1}{4}}$
$5^{B,a}_{-2}$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,-rac{1}{8},rac{3}{8},-rac{1}{3}$	$(C_4,1), (A_3,2)_{rac{1}{2}}$
$5^{B,b}_{-2}$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,rac{1}{8},-rac{3}{8},-rac{1}{3}$	$[5^{B,a}_{-2}\otimes 4^{B,b}_0]_{rac{1}{4}}$
$5^B_{16/11}$	2.5573	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, -rac{2}{11}, rac{2}{11}, rac{1}{11}, -rac{5}{11}$	$(F_4,2),(A_1,9)_{rac{1}{2}}$
$5^{B}_{-16/11}$	2.5573	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, rac{2}{11}, -rac{2}{11}, -rac{1}{11}, rac{5}{11}$	$(E_8,3), (A_8,2)_{\frac{1}{9}}$
$5^B_{18/7}$	2.5716	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0,-rac{1}{7},-rac{1}{7},rac{1}{7},rac{3}{7}$	$(A_1, 12)_{\frac{1}{4}}, (A_2, 4)_{\frac{1}{3}}$
$5^{B}_{-18/7}$	2.5716	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0, rac{1}{7}, rac{1}{7}, -rac{1}{7}, -rac{3}{7}$	$(A_3,3)_{rac{1}{4}}$

N=5

10 distinct topological orders $N_c^{\ B}$ with max $[N_k^{\ ij}] < 4$

N_c^B	$S_{ m top}$	d_1, d_2, \cdots	s_1, s_2, \cdots	type
5_0^B	1.1609	1, 1, 1, 1, 1	$0, rac{1}{5}, rac{1}{5}, -rac{1}{5}, -rac{1}{5}$	
5_4^B	1.1609	1, 1, 1, 1, 1	$0, rac{2}{5}, rac{2}{5}, -rac{2}{5}, -rac{2}{5}$	$(A_4, 1)$
$5^{B,a}_2$	1.7924	¹ this order c	orresponds to	$(A_1,4), (U(1)_3/\mathbb{Z}_2)_{\frac{1}{2}}$
$5^{B,b}_2$	1.7924	1 the affine L	ie algebra 🖌	$[5_2^{B,a}\otimes 4_0^{B,b}]_{rac{1}{4}}$
$5^{B,a}_{-2}$	1.7924	$1 A_4 = SU(5)$	at level <i>k=1</i>	$(C_4,1), (A_3,2)_{\frac{1}{2}}$
$5^{B,b}_{-2}$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,rac{1}{8},-rac{3}{8},-rac{1}{3}$	$[5^{B,a}_{-2}\otimes 4^{B,b}_0]_{rac{1}{4}}$
$5^B_{16/11}$	2.5573	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, -rac{2}{11}, rac{2}{11}, rac{1}{11}, -rac{5}{11}$	$(F_4,2),(A_1,9)_{rac{1}{2}}$
$5^{B}_{-16/11}$	2.5573	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, rac{2}{11}, -rac{2}{11}, -rac{1}{11}, rac{5}{11}$	$(E_8,3), (A_8,2)_{\frac{1}{9}}$
$5^B_{18/7}$	2.5716	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0,-rac{1}{7},-rac{1}{7},rac{1}{7},rac{3}{7}$	$(A_1, 12)_{\frac{1}{4}}, (A_2, 4)_{\frac{1}{3}}$
$5^{B}_{-18/7}$	2.5716	$1,\zeta_5^2,\zeta_5^2,\zeta_{12}^2,\zeta_{12}^4$	$0, rac{1}{7}, rac{1}{7}, -rac{1}{7}, -rac{3}{7}$	$(A_3,3)_{\frac{1}{4}}$

N=5

10 distinct topological orders $N_c^{\ B}$ with max $[N_k^{\ ij}] < 4$

N_c^B	$S_{ m top}$	d_1, d_2, \cdots	s_1, s_2, \cdots	type
5^B_0	1.1609	1, 1, 1, 1, 1, 1	$0, rac{1}{5}, rac{1}{5}, -rac{1}{5}, -rac{1}{5}$	
5_4^B	1.1609	1, 1, 1, 1, 1	$0, rac{2}{5}, rac{2}{5}, -rac{2}{5}, -rac{2}{5}$	$(A_4,1)$
$5^{B,a}_2$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,rac{1}{8},-rac{3}{8},rac{1}{3}$	$(A_1,4), (U(1)_3/\mathbb{Z}_2)_{\frac{1}{2}}$
$5^{B,b}_2$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,-rac{1}{8},rac{3}{8},rac{1}{3}$	$[5^{B,a}_2 \otimes 4^{B,b}_0]_{rac{1}{4}}$
$5^{B,a}_{-2}$	1.7924	$1,1,\zeta_{4}^{1},\zeta_{4}^{1},2$	$0,0,-rac{1}{8},rac{3}{8},-rac{1}{3}$	$(C_4,1),(A_3,2)_{rac{1}{2}}$
$5^{B,b}_{-2}$	1.792	example where i	number $-\frac{1}{3}$	$[5^{B,a}_{-2}\otimes 4^{B,b}_0]_{rac{1}{4}}$
$5^B_{16/11}$	2.557	of particle types	is reduced $\sqrt{\frac{5}{11}}$	$(F_4,2),(A_1,9)_{rac{1}{2}}$
$5^{B}_{-16/11}$	2.557 f	rom 4l+1 to l+2	$\frac{1}{1}, \frac{5}{1}$	$(E_8,3), (A_8,2)_{\frac{1}{9}}$
$5^B_{18/7}$	2.5716	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0,-rac{1}{7},-rac{1}{7},rac{1}{7},rac{3}{7}$	$(A_1, 12)_{\frac{1}{4}} (A_2, 4)_{\frac{1}{3}}$
$5^{B}_{-18/7}$	2.5716	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0, rac{1}{7}, rac{1}{7}, -rac{1}{7}, -rac{3}{7}$	$(A_3,3)_{rac{1}{4}}$

N=5

10 distinct topological orders N_c^B with max $[N_k^{\ ij}] < 4$

N_c^B	$S_{ m top}$	d_1, d_2, \cdots	s_1, s_2, \cdots	type
5_0^B	1.1609	1, 1, 1, 1, 1	$0, rac{1}{5}, rac{1}{5}, -rac{1}{5}, -rac{1}{5}$	
5^B_4	1.1609	1, 1, 1, 1, 1, 1	$0, \frac{2}{5}, \frac{2}{5}, -\frac{2}{5}, -\frac{2}{5}$	$(A_4,1)$
$5^{B,a}_2$	1.7924	$1,1,\zeta_4^1,\zeta_4^1,2$	$0, 0, rac{1}{8}, -rac{3}{8}, rac{1}{3}$	$(A_1,4), (U(1)_3/\mathbb{Z}_2)_{\frac{1}{2}}$
$5^{B,b}_2$	1.7924	$1,1,\zeta_4^1,\zeta_4^1,2$	$0, 0, -rac{1}{8}, rac{3}{8}, rac{1}{3}$	$[5^{B,a}_2 \otimes 4^{B,b}_0]_{rac{1}{4}}$
$5^{B,a}_{-2}$	1.7924	operation T_{2}	: combines $-\frac{1}{3}$	$(C_4,1), (A_3,2)_{\frac{1}{2}}$
$5^{B,b}_{-2}$	1.7924	stacking with	n order $4_0^{B,b} \stackrel{\underline{4}_1}{\underline{5}_3}$	$[5^{B,a}_{-2}\otimes 4^{B,b}_0]_{rac{1}{4}}$
$5^B_{16/11}$	2.5573	with 4-fold r	eduction $-\frac{5}{11}$	$(F_4,2), (A_1,9)_{rac{1}{2}}$
$5^{B}_{-16/11}$	2.5573	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, rac{2}{11}, -rac{2}{11}, -rac{1}{11}, rac{5}{11}$	$(E_8,3), (A_8,2)_{\frac{1}{9}}^{2}$
$5^B_{18/7}$	2.5716	$\left[1,\zeta_{5}^{2},\zeta_{5}^{2},\zeta_{12}^{2},\zeta_{12}^{4} ight]$	$0,-rac{1}{7},-rac{1}{7},rac{1}{7},rac{3}{7}$	$(A_1, 12)_{\frac{1}{4}}, (A_2, 4)_{\frac{1}{3}}$
$5^{B}_{-18/7}$	2.5716	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0, rac{1}{7}, rac{1}{7}, -rac{1}{7}, -rac{3}{7}$	$(A_3,3)_{rac{1}{4}}$

N= 6

 $\max[N_k{}^{ij}] < 3$

50 distinct topological orders N_c^B

N_c^B	$S_{ m top}$	D^2	d_1, d_2, \cdots	81 80	$N^B_c \otimes \widetilde{N}^B_{\widetilde{c}}$	type
6_1^B	1.2924	6	1, 1, 1, 1, 1, 1	$\frac{s_1, s_2, \cdots}{0, \frac{1}{12}, \frac{1}{12}, -\frac{1}{4}, \frac{1}{3}, \frac{1}{3}}$	$2^B_{-1}\otimes 3^B_2$	$U(1)_3$
6^B_{-1}	1.2924	6	1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1	$0, \frac{1}{12}, \frac{1}{12}, -\frac{1}{4}, \frac{1}{3}, \frac{1}{3} \\ 0, -\frac{1}{12}, -\frac{1}{12}, \frac{1}{4}, -\frac{1}{3}, -\frac{1}{3} \\ 0, -\frac{1}{12}, -\frac{1}{12}, \frac{1}{4}, -\frac{1}{3}, -\frac{1}{3} \\ 0, -\frac{1}{12}, -\frac{1}{12}$	$2 \stackrel{-1}{_{-1}} \otimes 3 \stackrel{-2}{_{-2}} 2^B_1 \otimes 3^B_{-2}$	0 (1)3
6_3^B	1.2924	6	1, 1, 1, 1, 1, 1, 1	0, $\frac{12}{12}$, $\frac{12}{4}$, $\frac{3}{3}$, $\frac{3}{12}$	$2^{P}_{1}\otimes 3^{P}_{2}$ $2^{B}_{1}\otimes 3^{B}_{2}$	
6^{B}_{-3}	1.2924	6	1, 1, 1, 1, 1, 1	$0, -\frac{1}{12}, -\frac{1}{12}, \frac{1}{4}, -\frac{1}{3}, -\frac{1}{3} \\ 0, \frac{1}{4}, \frac{1}{3}, \frac{1}{3}, -\frac{5}{12}, -\frac{5}{12} \\ 0, -\frac{1}{4}, -\frac{1}{3}, -\frac{1}{3}, \frac{5}{12}, \frac{5}{12} \\ 0, -\frac{1}{4}, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{5}{12}, \frac{5}{12} \\ 0, -\frac{1}{4}, -\frac{1}{3}, -\frac{1}{3}, -\frac{5}{12}, -\frac{5}{12} \\ 0, -\frac{1}{4}, -\frac{1}{3}, -\frac{5}{12}, -\frac{5}{12} \\ 0, -\frac{1}{4}, -\frac{1}{3}, -\frac{1}{3}, -\frac{5}{12}, -\frac{5}{12} \\ 0, -\frac{1}{4}, -\frac{1}{3}, -\frac{5}{12}, -\frac{5}{12} \\ 0, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{3}, -\frac{5}{12}, -\frac{5}{12} \\ 0, -\frac{1}{4}, -4$	$2^{B}_{-1}\otimes 3^{B}_{-2}$	$(A_5, 1)$
$6^{-3}_{1/2}$	1.5	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$\begin{array}{c} 0, \ \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{1}{16}, \frac{3}{16} \end{array}$	$2^{-1}_{-1} \otimes 3^{-2}_{-1/2}$	(113, 1)
$6^{B}_{-1/2}$	1.5	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$\begin{array}{c} 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{1}{16}, \frac{3}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{1}{16}, \frac{3}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, \frac{1}{16}, -\frac{3}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, \frac{1}{16}, \frac{5}{16} \end{array}$	$2^B_1 \otimes 3^B_{-3/2}$	
6^B_3	1.5	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, \frac{1}{16}, \frac{5}{16}$	$2^B_1\otimes 3^B_{1/2}$	
$6^B_{\frac{3}{2}}^B$ $6^B_{-3/2}^B$	1.5	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{1}{12}, -\frac{5}{12}$	$2^B_1\otimes 3^B_{-5/2}$	
$6^{B}_{5/2}$	1.5	8	$1, 1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, \frac{3}{16}, \frac{7}{16}$	$2^B_1 \otimes 3^B_{3/2}$	
$6^{B}_{-5/2}$	1.5	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{3}{16}, -\frac{7}{16}$	$2^B_1 \otimes 3^{B}_{-7/2}$	
$6^{B}_{7/2}$	1.5	8	$1,1,1,1,\zeta_2^1,\zeta_2^1$	$0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, \frac{5}{16}, -\frac{7}{16}$	$2^B_1 \otimes 3^B_{5/2}$	
$6^{B'}_{-7/2}$	1.5	8	$1,1,1,1,\zeta_2^1,\zeta_2^1$	$\begin{array}{c} 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{1}{16}, -\frac{5}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{1}{16}, -\frac{5}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, \frac{3}{16}, \frac{7}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{3}{16}, -\frac{7}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, \frac{5}{16}, -\frac{7}{16} \\ 0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}, -\frac{5}{16}, \frac{7}{16} \\ 0, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{15}, \frac{1}{15}, \frac{2}{15} \\ 0, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{15}, \frac{1}{15}, \frac{2}{16} \\ \end{array}$	$2^B_1 \otimes 3^B_{7/2}$	
$6^B_{4/5}$	1.7200	10.854	$1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1$	$0, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{15}, \frac{1}{15}, \frac{2}{5}$	$2^B_{14/5} \otimes 3^B_{-2}$	
$6^{B}_{-4/5}$	1.7200	10.854	$1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1$	$0, \frac{1}{3}, \frac{1}{3}, -\frac{1}{15}, -\frac{1}{15}, -\frac{2}{15}, -\frac{2}{5}\\0, -\frac{1}{3}, -\frac{1}{3}, \frac{4}{15}, \frac{4}{15}, -\frac{2}{5}$	$2^B_{-14/5}\otimes 3^B_2$	
$6^B_{16/5}$	1.7200	10.854	$1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1$	$0, -\frac{1}{3}, -\frac{1}{3}, \frac{4}{15}, \frac{4}{15}, -\frac{2}{5}$	$2^B_{-14/5}\otimes 3^B_{-2}$	$(A_2,2)$
$6^B_{-16/5}$	1.7200	10.854	$1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1$	$0, \frac{1}{3}, \frac{1}{3}, -\frac{4}{15}, -\frac{4}{15}, \frac{2}{5}$	$2^B_{rac{14}{5}}\otimes 3^B_2$	
$6^B_{-27/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, \frac{5}{16}, -\frac{1}{10}, \frac{2}{5}, -\frac{23}{80}$	$2^B_{14}\otimes 3^B_{5/2}$	$(E_7, 2)$
$6^B_{-17/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, \frac{7}{16}, -\frac{1}{10}, \frac{2}{5}, -\frac{13}{80}$	$2^{\ddot{B}}_{14} \otimes 3^{B}_{7/2}$	
$6^B_{-7/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, -\frac{7}{16}, -\frac{1}{10}, \frac{2}{5}, -\frac{3}{80}$	$2^{B^{5}}_{14} \otimes 3^{B}_{7/2}$	
$6^B_{3/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, -\frac{5}{16}, -\frac{1}{10}, \frac{2}{5}, \frac{7}{80}$	$2rac{B^5}{14}\otimes 3^B_{-7/2}\ 2rac{B^5}{5}\otimes 3^B_{-5/2}$	
$6^{B}_{13/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, -\frac{3}{16}, -\frac{1}{10}, \frac{2}{5}, \frac{17}{80}$	$2\frac{14}{5} \otimes 3^B$	
				$0, \frac{1}{2}, -\frac{1}{16}, -\frac{1}{10}, \frac{1}{5}, \frac{1}{80}$	$2rac{1}{14}^{rac{1}{5}}\otimes 3^B_{-3/2} \ 2rac{1}{14}^{rac{1}{5}}\otimes 3^B_{-1/2}$	
$6^B_{23/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, -\frac{1}{16}, -\frac{1}{10}, \frac{2}{5}, \frac{27}{80}$	$2\frac{14}{5} \otimes 3^{-}_{-1/2}$	
$6^B_{33/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_1^2, \zeta_2^1\zeta_3^1$	$0, \frac{1}{2}, \frac{1}{16}, -\frac{1}{10}, \frac{2}{5}, \frac{37}{80}$	$2^D_{rac{14}{5}}\otimes 3^D_{1/2}$	
$6^B_{-37/10}$	1.9276	14.472	$1,1,\zeta_2^1,\zeta_3^1,\zeta_3^1,\zeta_2^1\zeta_3^1$	$0, \frac{1}{2}, \frac{3}{16}, -\frac{1}{10}, \frac{2}{5}, -\frac{33}{80}$	$2rac{B}{14} \otimes 3^B_{1/2} \ 2rac{B}{14} \otimes 3^B_{3/2} \ 2rac{B}{14} \otimes 3^B_{3/2}$	
$6^B_{27/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$\begin{array}{c} 0, \frac{1}{2}, -\frac{5}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{23}{80} \\ 0, \frac{1}{2}, -\frac{7}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{33}{80} \\ 0, \frac{1}{2}, -\frac{7}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{13}{80} \\ 0, \frac{1}{2}, \frac{7}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{3}{80} \\ \end{array}$	$2^B_{-14/5} \otimes 3^B_{-5/2}$	
$6^B_{17/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, -\frac{7}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{13}{80}$	$2^B_{-14/5} \otimes 3^B_{-7/2}$	
$6^{B}_{7/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, \frac{7}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{3}{80}$	$2^B_{-14/5} \otimes 3^B_{7/2}$	
$6^{B}_{-3/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, \frac{1}{16}, \frac{1}{10}, -\frac{2}{5}, -\frac{1}{80}$	$2^B_{-14/5} \otimes 3^B_{5/2}$	
0 19/10	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, \frac{3}{16}, \frac{1}{10}, -\frac{2}{5}, -\frac{17}{80}$ $0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{2}{27}, -\frac{27}{27}$	$2^B_{-14/5} \otimes 3^B_{3/2} \otimes 2^B_{-14/5} \otimes 2^$	
$6^{B}_{-23/10}$	1.9276	14.472	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, \frac{1}{16}, \frac{1}{10}, -\frac{1}{5}, -\frac{1}{80}$	$2^B_{-14/5} \otimes 3^B_{1/2}$	
$6^{-23/10}_{-33/10}$ $6^{B}_{37/10}$	$1.9276 \\ 1.9276$	$14.472 \\ 14.472$	$1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1 \\ 1, 1, \zeta_2^1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_2^1 \zeta_3^1$	$0, \frac{1}{2}, -\frac{1}{16}, \frac{1}{10}, -\frac{2}{5}, -\frac{37}{80} \\ 0, \frac{1}{2}, -\frac{3}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{33}{80} \\ \end{array}$	$2^B_{-14/5} \otimes 3^B_{-1/2} \ 2^B_{-14/5} \otimes 3^B_{-3/2}$	
$6^{37/10}_{1/7}$	2.1082	18.591	$1, 1, \zeta_2^1, \zeta_3^3, \zeta_3^3, \zeta_2^2, \zeta_3^2$ $1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2$	$0, \frac{1}{2}, -\frac{3}{16}, \frac{1}{10}, -\frac{2}{5}, \frac{33}{80} \\ 0, -\frac{1}{4}, -\frac{1}{7}, -\frac{11}{28}, \frac{1}{28}, \frac{2}{7}$	$2_{-14/5} \otimes 3_{-3/2} \ 2_{-1}^B \otimes 3_{8/7}^B$	
$6^{B}_{-1/7}$	2.1082	18.591	$1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2$ $1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2$	$0, -\frac{1}{4}, -\frac{1}{7}, -\frac{1}{28}, \frac{1}{28}, \frac{1}{7} \\ 0, \frac{1}{4}, \frac{1}{7}, \frac{11}{28}, -\frac{1}{28}, -\frac{2}{7} \\ 0, -\frac{1}{4}, -\frac{1}{28}, -\frac{1}{28}$	$2^{-1}_{-1}\otimes 3^{8/7}_{-8/7}$ $2^B_1\otimes 3^B_{-8/7}$	$(C_5,1)$
$6^{-1/7}_{15/7}$	2.1082	18.591	$1, 1, \zeta_5, \zeta_5, \zeta_5, \zeta_5, \zeta_5$ $1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2$	$0, \frac{1}{4}, \frac{3}{28}, -\frac{1}{7}, \frac{2}{7}, -\frac{13}{28}$	$2^{I}\otimes 3^{-8/7}_{-8/7}$ $2^{B}_{1}\otimes 3^{B}_{rac{8}{2}}$	$(A_1, 5)$
$6^{B}_{-15/7}$	2.1082	18.591	$1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2$	$0, -\frac{1}{4}, -\frac{3}{28}, \frac{1}{7}, -\frac{2}{7}, \frac{13}{28}$	$2^B_{-1} \otimes 3^B_{-8/7}$	(1)-)
$6^{-15/7}_{-15/7}$	2.1609	20	$1, 1, \xi_5, \xi_5, \xi_5, \xi_5, \xi_5$ $1, 1, 2, 2, \sqrt{5}, \sqrt{5}$	$\begin{array}{c} 0, -\frac{1}{4}, -\frac{1}{28}, \frac{1}{7}, -\frac{1}{7}, \frac{1}{28} \\ 0, 0, \frac{1}{5}, -\frac{1}{5}, 0, \frac{1}{2} \end{array}$	<u>−1</u> • • • −8/7	$(D_5,2)_{rac{1}{2}},(U(1)_5/\mathbb{Z}_2)_{rac{1}{2}}$
$6^{B,b}_0$	2.1609	20	$1, 1, 2, 2, \sqrt{5}, \sqrt{5}$ $1, 1, 2, 2, \sqrt{5}, \sqrt{5}$	$0, 0, \frac{1}{5}, -\frac{1}{5}, \frac{1}{4}, -\frac{1}{4}$		$ \begin{bmatrix} D_5, 2 \end{pmatrix}_{\frac{1}{2}}^1, \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{\frac{1}{2}}^1, \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{\frac{1}{2}}^1 \\ \begin{bmatrix} 6_0^{B,a} \otimes 4_0^{B,b} \end{bmatrix}_{\frac{1}{2}} $
$\frac{0_{0}}{6_{4}^{B,b}}$	2.1609	20	$1, 1, 2, 2, \sqrt{5}, \sqrt{5}$ $1, 1, 2, 2, \sqrt{5}, \sqrt{5}$	$\frac{0,0,\frac{2}{5},-\frac{2}{5},\frac{1}{4},-\frac{1}{4}}{0,0,\frac{2}{5},-\frac{2}{5},\frac{1}{4},-\frac{1}{4}}$		$\frac{[0_0 \otimes 4_0]_{\frac{1}{4}}}{(B_2,2)}$
$6^{B,a}_4$	2.1609 2.1609	20	$1, 1, 2, 2, \sqrt{5}, \sqrt{5}$ $1, 1, 2, 2, \sqrt{5}, \sqrt{5}$	$0, 0, \frac{1}{5}, -\frac{1}{5}, \frac{1}{4}, -\frac{1}{4} \\ 0, 0, \frac{2}{5}, -\frac{2}{5}, 0, \frac{1}{2}$		$[6^{B,b}_4 \otimes 4^{B,b}_0]_{\frac{1}{2}}$
$6^B_{58/35}$	2.5359	33.632	$\frac{1, 1, 2, 2, \sqrt{6}, \sqrt{6}}{1, \zeta_3^1, \zeta_5^1, \zeta_5^2, \zeta_3^1\zeta_5^1, \zeta_3^1\zeta_5^2}$	$0, \frac{2}{5}, \frac{1}{7}, -\frac{2}{7}, -\frac{16}{35}, \frac{4}{35}$	$2^{B}_{14} \otimes 3^{B}_{24}$	
$6^{B}_{-58/35}$	2.5359		$1, \zeta_3^1, \zeta_5^1, \zeta_5^2, \zeta_3^1\zeta_5^1, \zeta_3^1\zeta_5^2$	0, 5, 7, 7, 35, 35 $0, -\frac{2}{5}, -\frac{1}{7}, \frac{2}{7}, \frac{16}{35}, -\frac{4}{35}$	$2^B_{rac{14}{5}} \otimes 3^B_{-8/7} \ 2^B_{-14/5} \otimes 3^B_{8/7}$	
$6^{-58/35}_{-58/35}$ $6^B_{138/35}$	2.5359 2.5359	33.632	$1, \zeta_3, \zeta_5, \zeta_5, \zeta_3, \zeta_5, \zeta_3, \zeta_5, \zeta_3, \zeta_5 \ 1, \zeta_3^1, \zeta_5^1, \zeta_5^2, \zeta_3^1 \zeta_5^1, \zeta_3^1 \zeta_5^2$	$0, -\frac{1}{5}, -\frac{1}{7}, \frac{7}{7}, \frac{35}{35}, -\frac{35}{35}$ $0, \frac{2}{5}, -\frac{1}{7}, \frac{2}{7}, \frac{9}{35}, -\frac{11}{35}$	$2_{-14/5} \otimes 3_{8/7} \ 2^B_{rac{14}{5}} \otimes 3^B_{8/7}$	
$6^{B}_{-138/35}$ $6^{B}_{-138/35}$	2.5359	33.632	$1, \zeta_3^1, \zeta_5^1, \zeta_5^2, \zeta_3^1\zeta_5^1, \zeta_3^1\zeta_5^2$ $1, \zeta_3^1, \zeta_5^1, \zeta_5^2, \zeta_3^1\zeta_5^1, \zeta_3^1\zeta_5^2$	$0, \frac{2}{5}, \frac{1}{7}, \frac{2}{7}, \frac{3}{35}, -\frac{3}{35} \\ 0, -\frac{2}{5}, \frac{1}{7}, -\frac{2}{7}, -\frac{9}{35}, \frac{11}{35}$	$2rac{14}{5} \otimes 3^{B}_{8/7} \ 2^{B}_{-14/5} \otimes 3^{B}_{-8/7}$	
$6^{-138/35}_{46/13}$	2.9132		$1, \zeta_3, \zeta_5, \zeta_5, \zeta_3 \zeta_5, \zeta_3 \zeta_5, \zeta_3 \zeta_5 \ 1, \zeta_{11}^1, \zeta_{11}^2, \zeta_{11}^3, \zeta_{11}^4, \zeta_{11}^5$	$0, -\frac{1}{5}, \frac{7}{7}, -\frac{7}{7}, -\frac{35}{35}, \frac{35}{35}$ $0, \frac{4}{13}, \frac{2}{13}, -\frac{6}{13}, \frac{6}{13}, -\frac{1}{13}$	² −14/5 ⊗ 3−8/7	$(A_1, 11)_{\frac{1}{2}}$
$6^{B}_{-46/13}$	2.9132	56.746				
			$\frac{1,\zeta_{11}^1,\zeta_{11}^2,\zeta_{11}^3,\zeta_{11}^4,\zeta_{11}^5}{1,\zeta_7^3,\zeta_7^3,\zeta_{16}^2,\zeta_{16}^4,\zeta_{16}^6}$	$0, -\frac{4}{13}, -\frac{2}{13}, \frac{6}{13}, -\frac{6}{13}, \frac{1}{13}$		$(A_{10}, 2)_{\frac{1}{11}}$
$6^B_{8/3}$	3.1107	74.617		$0, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{3}, -\frac{1}{3}$		$(A_1, 16)_{\frac{1}{4}}$
$6^{B}_{-8/3}$	3.1107	74.617	$\frac{1, \zeta_7^3, \zeta_7^3, \zeta_{16}^2, \zeta_{16}^4, \zeta_{16}^6}{\frac{1}{3+\sqrt{21}}} \xrightarrow{3+\sqrt{21}} \xrightarrow{3+\sqrt{21}} \xrightarrow{3+\sqrt{21}} \xrightarrow{5+\sqrt{21}} \xrightarrow{7+\sqrt{21}}$	$0, -\frac{1}{9}, -\frac{1}{9}, -\frac{1}{9}, -\frac{1}{3}, \frac{1}{3}$		$(A_2,6)_{rac{1}{9}}$
6^B_2	3.3263	100.61	$ \begin{array}{c} 1, \frac{3+\sqrt{21}}{2}, \frac{3+\sqrt{21}}{2}, \frac{3+\sqrt{21}}{2}, \frac{5+\sqrt{21}}{2}, \frac{7+\sqrt{21}}{2} \\ 1, \frac{3+\sqrt{21}}{2}, \frac{3+\sqrt{21}}{2}, \frac{3+\sqrt{21}}{2}, \frac{5+\sqrt{21}}{2}, \frac{7+\sqrt{21}}{2} \end{array} $	$0, -\frac{1}{7}, -\frac{2}{7}, \frac{3}{7}, 0, \frac{1}{3}$		
6^B_{-2}	3.3263	100.61	$1, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}, \frac{\cdots}{2}$	$0, rac{1}{7}, rac{2}{7}, -rac{3}{7}, 0, -rac{1}{3}$		$(G_2,3)$

N=	7
----	---

 $\max[N_k{}^{ij}] < 2$

24 distinct topological orders N_c^B

N_c^B	$S_{ m top}$	D^2	d_1, d_2, \cdots	R1 R0	type]
\overline{B}_{a}				s_1, s_2, \cdots	type	
$7_2^{B,a}$	1.4036	7	1, 1, 1, 1, 1, 1, 1	$0, \frac{1}{7}, \frac{1}{7}, \frac{2}{7}, \frac{2}{7}, -\frac{3}{7}, -\frac{3}{7}$		
$7^{B,a}_{-2}$	1.4036	7	1, 1, 1, 1, 1, 1, 1	$0, -\frac{1}{7}, -\frac{1}{7}, -\frac{2}{7}, -\frac{2}{7}, \frac{3}{7}, \frac{3}{7}$	$(A_6, 1)$	
$7^{B}_{9/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, rac{1}{2}, rac{3}{32}, rac{3}{32}, rac{1}{4}, -rac{1}{4}, rac{15}{32}$	$(A_1, 6)$	
$7^{B'}_{13/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, rac{1}{2}, rac{7}{32}, rac{7}{32}, rac{1}{4}, -rac{1}{4}, -rac{13}{32}$	$[7^B_{9/4}\otimes 4^B_1]_{rac{1}{4}}$	
$7^{B}_{-15/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, rac{1}{2}, rac{11}{32}, rac{11}{32}, rac{1}{4}, -rac{1}{4}, -rac{9}{32}$	$[7^B_{13/4} \otimes 4^B_1]_{\frac{1}{4}}$	
$7^{B}_{-11/4}$	2.3857	27.313	1 . 1 . 0 . 0 . 2	$\frac{1}{4}, -\frac{5}{32}$	$[7^B_{-15/4} \otimes 4^B_1]_{\frac{1}{4}}$	
$7^{B}_{-7/4}$	2.3857	27.313	operation T_8 : c	combines $\begin{bmatrix} 1\\ -\frac{1}{4}, -\frac{1}{32} \end{bmatrix}$	$[7^B_{-11/4}\otimes 4^B_1]^{4}_{rac{1}{4}}$	
$7^{B}_{-3/4}$	2.3857	27.313	stacking with o		$[7^B_{-7/4}\otimes 4^B_1]_{rac{1}{4}}$	
$7^{B}_{1/4}$	2.3857	27.313	•		$[7^B_{-3/4} \otimes 4^B_1]_{\frac{1}{4}}$	
$7^{B}_{5/4}$	2.3857	27.313	with 4-fold red	uction $-\frac{1}{4}, \frac{11}{32}$	$[7^B_{1/4}\otimes 4^B_1]_{\frac{1}{4}}$	
$7^B_{7/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, \frac{1}{2}, \frac{13}{32}, \frac{13}{32}, \frac{1}{4}, -\frac{1}{4}, \frac{1}{32}$	$(C_6, 1)$	
$7^{B'}_{11/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, \frac{1}{2}, -\frac{15}{32}, -\frac{15}{32}, \frac{1}{4}, -\frac{1}{4}, \frac{5}{32}$	$[7^B_{7/4}\otimes 4^B_1]_{rac{1}{4}}$	
$7^B_{15/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, \frac{1}{2}, -\frac{11}{32}, -\frac{11}{32}, \frac{1}{4}, -\frac{1}{4}, \frac{9}{32}$	$[7^B_{11/4} \otimes 4^B_1]^{-1}_{\frac{1}{4}}$	
$7^{B}_{-13/4}$	2.3857	27.313	$1,1,\zeta_{6}^{1},\zeta_{6}^{1},\zeta_{6}^{2},\zeta_{6}^{2},\zeta_{6}^{3},\zeta_{6}^{3}$	$0, rac{1}{2}, -rac{7}{32}, -rac{7}{32}, rac{1}{4}, -rac{1}{4}, rac{13}{32}$	$[7^B_{15/4} \otimes 4^B_1]_{\frac{1}{4}}$	
$7^{B}_{-9/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, \frac{1}{2}, -\frac{3}{32}, -\frac{3}{32}, \frac{1}{4}, -\frac{1}{4}, -\frac{15}{32}$	$[7^B_{-13/4} \otimes 4^B_1]_{\frac{1}{4}}$	$\rightarrow T_8$
$7^{B}_{-5/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, rac{1}{2}, rac{1}{32}, rac{1}{32}, rac{1}{4}, -rac{1}{4}, -rac{11}{32}$	$[7^B_{-9/4} \otimes 4^B_1]_{rac{1}{4}}$	
$7^{B}_{-1/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, rac{1}{2}, rac{5}{32}, rac{5}{32}, rac{1}{4}, -rac{1}{4}, -rac{7}{32}$	$[7^B_{-5/4}\otimes 4^B_1]_{rac{1}{4}}$	
$7^B_{3/4}$	2.3857	27.313	$1, 1, \zeta_6^1, \zeta_6^1, \zeta_6^2, \zeta_6^2, \zeta_6^3$	$0, rac{1}{2}, rac{9}{32}, rac{9}{32}, rac{1}{4}, -rac{1}{4}, -rac{3}{32}$	$[7^B_{-1/4} \otimes 4^B_1]_{rac{1}{4}}$	
$7^{B,b}_2$	2.4036	28	$1, 1, 2, 2, 2, \sqrt{7}, \sqrt{7}$	$0, 0, rac{1}{7}, rac{2}{7}, -rac{3}{7}, rac{1}{8}, -rac{3}{8}$	$(U(1)_7/\mathbb{Z}_2)_{\frac{1}{2}}$	
$7_2^{B,c}$	2.4036	28	$1, 1, 2, 2, 2, \sqrt{7}, \sqrt{7}$	$0,0,rac{1}{7},rac{2}{7},-rac{3}{7},-rac{1}{8},rac{3}{8}$	$[7_2^{B,b}\otimes 4_0^{B,b}]_{\frac{1}{4}}^{2}$	$rac{1}{2}$
$7^{B,b}_{-2}$	2.4036	28	$1, 1, 2, 2, 2, \sqrt{7}, \sqrt{7}$	$0, 0, -rac{1}{7}, -rac{2}{7}, rac{3}{7}, -rac{1}{8}, rac{3}{8}$	$B_3,2),\ (D_7,2)_{rac{1}{2}}$	
$7^{B,c}_{-2}$	2.4036	28	$1, 1, 2, 2, 2, \sqrt{7}, \sqrt{7}$	$0, 0, -rac{1}{7}, -rac{2}{7}, rac{3}{7}, rac{1}{8}, -rac{3}{8}$	$[7^{B,b}_{-2}\otimes 4^{B,b}_0]_{rac{1}{4}}$	$\rightarrow T_{2}$
$7^{B}_{8/5}$	3.2194	86.750	$1, \zeta_{13}^1, \zeta_{13}^2, \zeta_{13}^3, \zeta_{13}^4, \zeta_{13}^5, \zeta_{13}^6$	$0, -rac{1}{5}, rac{2}{15}, 0, rac{2}{5}, rac{1}{3}, -rac{1}{5}$	$(A_1, 13)_{rac{1}{2}}$	
$7^{B}_{-8/5}$	3.2194	86.750	$1, \zeta_{13}^1, \zeta_{13}^2, \zeta_{13}^3, \zeta_{13}^4, \zeta_{13}^5, \zeta_{13}^6$	$0, rac{1}{5}, -rac{2}{15}, 0, -rac{2}{5}, -rac{1}{3}, rac{1}{5}$	$(A_{12},2)_{rac{1}{13}}$	

main results

- systematic search through N=7
- simple-current constructions of anyon wavefunctions

to be further clarified

- status of simplified axiomatic approach
- systematics of simple-current constructions, mathematics behind the T_2 and T_8 orbits