Symmetry reduction induced by anyon condensation: a tensor network approach

José Garre Rubio Joint work with Sofyan Iblisdir and Pavid Pérez García UCM & ICMAT

(Soon on the ArXiv...)

Funded by

Topological order

- * No local order parameter classification
- * GS Degeneracy- Exotic statistics of quasiparticle excitations
- * RFP. Properties of anyons: Braiding-Fusion
- * How do we go from one phase to another?

Topological phase transitions and TN

- Relate two topological model restricting the topological content [1]
- * Anyon Condensation: Spontaneous Symmetry Breaking (Sharp)

* Modelled with PEPS (path) [2]

[1] JHEP05(2003)068 Alexander F. Bais, Bernd J. Schroers, Joost K. Slingerland

[2] Nature Communications 6, 8284 (2015) J. Haegeman, V. Zauner, N. Schuch, F. Verstraete

Projected Entanglement Pair States (PEPS)

- * GS of local Hamiltonian-Area a) Law and topological order
- * Tensor Construction: Auxiliary d.o.f
- * Action under Global Symmetries

* Motivation and introduction

* Our Work

* Global and gauge symmetries

* Symmetries over anyons

* Approach in 10

Our Work

* Pairs of PEPS connected by Anyon condensation (QD)

* We study symmetries: From Gauge to Global

* Charge condensation and Flux Confinement

* Global Symmetry over Anyons

Parent Tensor: G-isometric PEPS [2]

[3] Annals of Physics, 325 (10). (2010) N. Schuch, D. Pérez-García, I.Cirac

Restricted Tensor

Anyon Condensation - Restrict Gauge invariance

G is no longer a gauge symmetry g[`]∈[g] (ġ' ā

G/Gtopo $\simeq G$ sym

[g`]=[g]

Pure G Gauge symmetry

Gtopo Gauge symmetry + Gsym Global symmetry

Pure Flux excitations

- * Flux Excitations on Parent Model
- * Possibility of deforming / freely
- * Energy independence on length

(g)

(q)

Pure Flux excitations

- * Flux Excitations on Rstricted Model
- * Possibility of deforming 4 freely
- * Energy independence on length

Flux Confinement

Insert Flux Excitation on Restricted Model

* Impossibility of moving freely

Charge Condensation

* Braiding with unconfined fluxes

Indistinguishable from vacuum using braiding

* Not topological excitation- Trivial Sector

[1] JHEP05(2003)068 Alexander F. Bais, Bernd J. Schroers, Joost K. Slingerland

Global Symmetries over Anyons: Pure Flux case

- * Pair of fluxes C[k] + global symmetry action Ug
- * The action of Ug conjugates: k'=gkg⁻¹; C[k]-> C[k']
- * Homomorphism: p: Gsym-> Aut(Gtopo)

Global Symmetries over Anyons: Pure Charge case

- * Action of the symmetry permutes irreps [4]
- * Cocycle function: w: Gsym x Gsym-> Gtopo g'h'(gh')¹ = w(g,h)

* Extension groups: (p, w)

[4] H. Clifford, Representations Induced in an Invariant Subgroup, Annals of Mathematics 38 (3): 533-550, (1937)

1-D Approach: MPS

* Topological order-> Symmetry Breaking Pattern * Action of Operator: Virtual representation of all phases * Induced Representation: Permutation + Projective representation [5] $P_{g'} \left[\bigoplus_{\alpha=1}^{A} V_{g'}^{\alpha} \otimes \bar{V}_{g'}^{\alpha} \right]$

[5] Phys. Rev. B 84, 165139 (2011) Norbert Schuch, David Perez-Garcia, Ignacio Cirac

Conclusion and Outlook

* Modifying the tensor: Symmetries by Condensation

* TO, Local-Global, Anyon symmetries

* Generalizing the restricted tensor to flux condensator

* Combined Symmetry in all sectors (+ S.F. with twisted QD?)

