

REAL-TIME SIMULATION OF THE SCHWINGER EFFECT

Benasque

Boye Buyens

16.02.2017

TNS FOR 1+1 DIMENSIONAL GAUGE FIELD THEORIES

Matrix product states for gauge field theories BB, J. Haegeman, K. Van Acoleyen, H. Verschelde, F. Verstraete

Arxiv: 1312.6654 [hep-lat]

Real-time simulation of the Schwinger effect with Matrix Product States, BB, J. Haegeman, F. Hebenstreit, F. Verstraete and K. Van Acoleyen Arxiv:1612.00739 [hep-lat]

Main message: MPS provide a tool to study non-equilibrium physics

- Simulation of real-time evolution
- 200 YEARS GHENT UNIVERSITY
- Explaining physics behind the results

MOTIVATION

STANDARD MODEL

Glashow-Weinberg-Salam model: unifies QED and weak interaction

Perturbation theory (Feynman diagrams)

Almost... QCD (strong interactions) is challenging

- Perturbation theory fails at low energy
- Lattice QCD (Bali '99)
 - By now most successfull method
 - Limited to small baryon densities (neutron stars)
 - Not formulated for real-time (heavy ion collisions)
- Hamiltonian framework
 - Overcomes obstacles of lattice QCD
 - Many-body problem

MPS FOR SCHWINGER MODEL

(MASSIVE) SCHWINGER MODEL

QED in (1+1)-dimensions

$$\mathcal{L} = \bar{\psi} \left(\gamma^{\mu} (i\partial_{\mu} + gA_{\mu}) - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Local U(1)-symmetry

UNIVERSITY

$$\psi(x) \longrightarrow e^{-ig\varphi(x)}\psi(x),$$
$$A_{\mu}(x) \longrightarrow A_{\mu}(x) - \partial_{\mu}\varphi(x)$$

m/g=0: photon acquires mass (Schwinger '62)

 $m/g \neq 0$: not exactly solvable, perturbative results for $m/g \ll 1$: (strong-coupling regime) (Coleman '75, Adams '97) $m/g \gg 1$: (weak-coupling regime) (Coleman '75) $m/g \sim \mathcal{O}(1)$: non-perturbative methods (Byrnes '03, Bañuls et al. '13-'16,...) GHENT

J. Schwinger, Gauge invariance and mass II, Phys. Rev. 128, 2425 (1962)

LATTICE FORMULATION

Kogut-Susskind discretization (Kogut '75, Banks '76)

$$H = \frac{g}{2\sqrt{x}} \left(\sum_{n=1}^{2N} \frac{1}{g^2} E(n)^2 + \frac{\sqrt{x}}{g} m \sum_{n=1}^{2N} (-1)^n [\sigma_z(n) + (-1)] + x \sum_{n=1}^{2N-1} (\sigma^+(n) e^{i\theta(n)} \sigma^-(n+1) + h.c.) \right) \qquad N \to +\infty$$

$$x = 1/g^2 a^2 \to +\infty \qquad \qquad E(n) = g[L(n) + \alpha]$$

Fermions: spin-system staggered on the lattice (Jordan-Wigner) $\sigma_z |s\rangle = s |s\rangle, s = \pm 1$ $\sigma^{\pm} |\pm 1\rangle = 0$ $\sigma^{\pm} |\mp 1\rangle = |\pm 1\rangle$

$$e^{\pm i\theta} \left| p \right\rangle = \left| p \pm 1 \right\rangle$$

GAUGE INVARIANT MPS-ANSATZ BB '13

Gauss' law

$$G(n) = L(n) - L(n-1) - \frac{\sigma_z(n) + (-1)^n}{2} = 0 \qquad (\partial_z E = g\bar{\psi}\gamma^0\psi)$$

General MPS

Gauge invariant MPS

$$\widehat{\underline{GHENT}}_{\text{UNIVERSITY}} G(n) |\Psi[A]\rangle = 0 \Leftrightarrow [A_n^{s,p}]_{(q,\alpha_q);(r,\beta_r)} = \delta_{r,q+(s+(-1)^n)/2} \delta_{r,p} [a_n^{q,s}]_{\alpha_q,\beta_r}$$

GAUGE INVARIANT MPS-ANSATZ

$$G(n) = L(n) - L(n-1) - \frac{\sigma_z(n) + (-1)^n}{2} = 0$$

 $G(n) |\Psi[A]\rangle = 0 \Leftrightarrow [A_n^{s,p}]_{(q,\alpha_q);(r,\beta_r)} = \delta_{r,q+(s+(-1)^n)/2} \delta_{r,p} [a_n^{q,s}]_{\alpha_q,\beta_r}$

SCHWINGER MECHANISM SCHWINGER '56

Vacuum is not empty

CLASSICAL ELECTRIC BACKGROUND FIELD

$$H_{\alpha} = \frac{g}{2\sqrt{x}} \left(\sum_{n=1}^{2N} [L(n) + \alpha]^2 + \frac{\sqrt{x}}{g} m \sum_{n=1}^{2N} (-1)^n [\sigma_z(n) + (-1)] + x \sum_{n=1}^{2N-1} (\sigma^+(n)e^{i\theta(n)}\sigma^-(n+1) + h.c.) \right)$$

Initial state $|\Psi(0)\rangle$ is ground state in the abscence of an background charge, $|\Psi(0)\rangle$: ground state of $H_{\alpha=0}$

After t = 0 we apply an electric field quench $\alpha \neq 0$ $|\Psi(t)\rangle = \exp(-iH_{\alpha\neq 0}t)|\Psi(0)\rangle$

<u>TDVP FOR GROUND</u> <u>STATE</u>

$$H_{\alpha} = \frac{g}{2\sqrt{x}} \left(\sum_{n=1}^{2N} [L(n) + \alpha]^2 + \frac{\sqrt{x}}{g} m \sum_{n=1}^{2N} (-1)^n [\sigma_z(n) + (-1)] + x \sum_{n=1}^{2N-1} (\sigma^+(n)e^{i\theta(n)}\sigma^-(n+1) + h.c.) \right)$$

Initial state $|\Psi(0)\rangle$ is ground state in the abscence of an background charge, $|\Psi(0)\rangle$: ground state of $H_{\alpha=0}$

After t = 0 we apply an electric field quench $\alpha \neq 0$ $|\Psi(t)\rangle = \exp(-iH_{\alpha\neq 0}t)|\Psi(0)\rangle$

TDVP FOR GROUND STATE

Ground-state ansatz

$$|\Psi[A]\rangle = \sum_{\{s,p\}} v_L^{\dagger} \left(\prod_{n=1}^N A_1^{s_{2n-1}, p_{2n-1}} A_2^{s_{2n}, p_{2n}} \right) v_R |\{s,p\}\rangle \quad (N \to +\infty)$$

Taking into account gauge invariance

$$G(n) |\Psi[A]\rangle = 0 \Leftrightarrow [A_n^{s,p}]_{(q,\alpha_q);(r,\beta_r)} = \delta_{r,q+(s+(-1)^n)/2} \delta_{r,p} [a_n^{q,s}]_{\alpha_q,\beta_r}$$

We obtain *global optimal MPS-approximation*
$$|\Psi[A]\rangle$$
 for initial state $|\Psi(0)\rangle$
 $|\Psi(0)\rangle \approx |\Psi[A]\rangle$

for a fixed bond dimension, but how far is this from the real ground state?

SCHMIDT SPECTRUM

Half-chain cut of the lattice: Schmidt decomposition

$$|\Psi[A]\rangle = \sum_{q\in\mathbb{Z}}\sum_{\alpha_q=1}^{D^q} \sqrt{\sigma_{\alpha_q}^q} |\Psi_{q,\alpha_q}^{(1)}\rangle \otimes |\Psi_{q,\alpha_q}^{(2)}\rangle$$

Exact ground state in limit $D^q \to +\infty$

$$H \sim \frac{1}{2\sqrt{x}} \sum_{n} [L(n) + \alpha]^2$$

At low energies: states with large electric field have small contribution in Schmidt spectrum

$$|q + \alpha| \gtrsim 3 \Rightarrow \sigma_{\alpha_q, q} \ll 1$$

We can safely neglect the high-q sectors, i.e.

$$|q + \alpha| \gtrsim 4 \Rightarrow D^q = 0$$

TRUNCATING ELECTRIC FIELD

Two interesting quantities for the weight of each sector

- > Number of Schmidt values larger than 10⁻¹⁶ $\tilde{D}^q = \#\{\sigma^q_{\alpha_q} \ge 10^{-16}\}$
- Contribution to reduced density matrix

$$\rho_{2} = \bigoplus_{q=p_{min}}^{p_{max}} \rho_{2,q}$$

$$\frac{1}{2N} \left| \langle \Psi[A] | O | \Psi[A] \rangle \right| = \left| \sum_{q=p_{min}}^{p_{max}} \operatorname{tr} \left(\rho_{2,q} o_{q} \right) \right|$$

$$\leq \left| \left| \rho_{2,q} \right| \left|_{1} \cdot \underbrace{\left| \left| o_{q} \right| \right|}_{\leq q^{M}} \right|$$

TOWARDS CONT

Continuum limit $1/\sqrt{x} \to 0 \Leftrightarrow x \to +\infty$

GHENT

TOWARDS PHASE TRANSITION

 ∞

TOWARDS PHASE TRANSITION

Elitzurs' theorem ('75): ground state is automatically gauge invariant, so why should we care?

	without GI	with GI	without GI	with GI	with GI [1]
p_{max}	2	2	3	3	3
D	29	[26984]	40	[2 3 7 11 10 4 2]	[5 20 48 70 62 34 10]
steps	9645	2.78	12417	561	
time	3 h 30 min	2 min	6 h 27min	5 min	
$\langle G^2 \rangle$	3×10^{-9}	0	3×10^{-9}	0	0
е	-3.048961	-3.048961	-3.048961	-3.048961	-3.048961
$E_{1,\nu}$	1.04252{10}	1.04254	1.04194 {14}	1.04209	1.04207
$E_{2,\nu}$	2.455 {37}	2.455	2.385 {59}	2.386	2.357
$E_{1,s}$	1.7719{20}	1.7719	1.7559 {31}	1.7565	1.7516

p

p+2

 $A_1^{1,p} = p+1$

0 ... 0

 $a_1^{\overline{q,1}}$

0 ... 0

0 ... 0

. . . 0

0

0

÷

... 0

... 0

0 ... 0

0

0

0

0 ...

0

0

... 0

ITEBD FOR REAL-TIME

$$H_{\alpha} = \frac{g}{2\sqrt{x}} \left(\sum_{n=1}^{2N} [L(n) + \alpha]^2 + \frac{\sqrt{x}}{g} m \sum_{n=1}^{2N} (-1)^n [\sigma_z(n) + (-1)] + x \sum_{n=1}^{2N-1} (\sigma^+(n)e^{i\theta(n)}\sigma^-(n+1) + h.c.) \right)$$

Initial state $|\Psi(0)\rangle$ is ground state in the abscence of an background charge, $|\Psi(0)\rangle$: ground state of $H_{\alpha=0}$ \checkmark

After t = 0 we apply an electric field quench $\alpha \neq 0$ $|\Psi(t)\rangle = \exp(-iH_{\alpha\neq 0}t)|\Psi(0)\rangle$

ITEBD FOR REAL-TIME EVOLUTION

$$|\Psi(t)\rangle = \exp(-iH_{\alpha}t)|\Psi(0)\rangle \approx \exp(-iH_{\alpha}t)|\Psi[A]\rangle \stackrel{iTEBD}{\approx} |\Psi[A(t)]\rangle$$

with

$$|\Psi[A(t)]\rangle = \sum_{\{s,p\}} v_L^{\dagger} \left(\prod_{n=1}^N A_1^{s_{2n-1},p_{2n-1}}(t) A_2^{s_{2n},p_{2n}}(t)\right) v_R |\{s,p\}\rangle$$

$$[A_{n}^{s,p}(t)]_{(q,\alpha_{q}),(r,\beta_{r})} = \delta_{r,q+(s+(-1)^{n})/2}\delta_{r,p}[a_{n}^{q,s}(t)]_{\alpha_{q},\beta_{r}} \quad \text{(Gauge invariance!)}$$

ITEBD (Vidal '04) tells us how to determine $a_n^{q,s}(t) \in \mathbb{C}^{D^q(t) \times D^r(t)}$

- Size of matrices changes also over time
- Involves two sources of error (see next slide)

SOURCES OF ERROR IN ITEBD

1. Trotter-error:

Trotter-decomposition of $\exp(-iH_{\alpha}t) : \exp(A + B) \approx \exp(A) \exp(B)$ Can be controlled very well: error of order $(dt)^5$ Exact in limit $dt \to 0$

2. After every step dt: size of $a_n^{q,s}(t) \in \mathbb{C}^{D^q(t) \times D^r(t)}$ is multiplied by two

$$D^{q}(t+dt) = 2D^{q}(t) \Rightarrow D^{q}(t+Mdt) = 2^{M}D^{q}(t)$$

EVOLUTION OF BOND DIMENSION

 $m/g = 0.25, \alpha = 1.25, x = 100$

<u>CONTINUUM LIMIT</u> $ga = 1/\sqrt{x} \to 0 \Leftrightarrow x \to +\infty$

Our results at x = 100 are very close to the continuum limit!

RESULTS: WEAK-FIELD REGIME

QUASI-PERIODIC OSCILLATIONS

For $\alpha \gtrsim 0.1$ results leave linear response regime

Quasi-periodic behavior electric field: frequencies can be computed from mass gap H_{lpha}

WEAK-FIELD APPROXIMATION

Idea: restricting Hilbert space to ground state and single-particle excitations of H_{α}

 $H_{\alpha} \rightarrow |0\rangle, |\mathcal{E}_m(k)\rangle, \ldots$

Are all approximated accurately by MPS! (BB '13, '15; Haegeman '12)

Creation/annihilation operators

 $a_m^{\dagger}(k) \left| 0 \right\rangle = \left| \mathcal{E}_m(k) \right\rangle$ $a_m(k) \left| 0 \right\rangle = 0$

Expand observables linearly in these operators (Delfino '14)

UNIVERSITY

WEAK-FIELD APPROXIMATION

$$H_{\alpha} \to |0\rangle, |\mathcal{E}_{m}(k)\rangle, \dots \quad a_{m}^{\dagger}(k)|0\rangle = |\mathcal{E}_{m}(k)\rangle \quad a_{m}(k)|0\rangle = 0$$
$$\mathcal{O} \approx \sum_{m,n} \int dk \int dk' O_{m,n}(k,k') a_{m}^{\dagger}(k) a_{n}(k) + \sum_{m} \left(\int dk \ o_{m}(k) a_{m}(k) + h.c \right)$$

Expansion identically zero in the many-particle excitations subspace!

 $O_{m,n}(k,k')$ and $o_m(k)$ are easily computed within MPS framework

$$O_{m,n}(k,k') = 2\pi\delta(k-k')o_{1,m,n}$$
 $O_m(k) = 2\pi\delta(k)o_{2,m}$

$$\delta(k) = \frac{2N}{2\pi} \delta_{k,0} \ (N \to +\infty)$$

WEAK-FIELD APPROXIMATION

$$H_{\alpha} \to |0\rangle, |\mathcal{E}_{m}(k)\rangle, \dots \quad a_{m}^{\dagger}(k)|0\rangle = |\mathcal{E}_{m}(k)\rangle \quad a_{m}(k)|0\rangle = 0$$
$$\mathcal{O} \approx \sum_{m,n} \int dk \int dk' O_{m,n}(k,k') a_{m}^{\dagger}(k) a_{n}(k) + \sum_{m} \left(\int dk \ o_{m}(k) a_{m}(k) + h.c \right)$$

 $H_0 |\Psi(0)\rangle = 0 \Rightarrow a_m(k) |\Psi(0)\rangle = d'_m \delta(k) |\Psi(0)\rangle$: Initial state is coherent state of $a_m(k)$

$$\frac{1}{2N} \langle \Psi(t) | \mathcal{O} | \Psi(t) \rangle = \frac{1}{2\pi} \left[\left(\sum_{m} o_{2,m} d'_{m} e^{-i\mathcal{E}_{m}(0)t} + h.c. \right) + \sum_{m,n} o_{1,m,n} \bar{d}'_{m} d_{n} e^{-i[\mathcal{E}_{m}(0) - \mathcal{E}_{n}(0)]t} \right]$$

Valid as long as
$$\rho_m = \frac{|d_m'|^2}{2\pi a} \ll \mathcal{E}_m(0)$$

STRONG-FIELD REGIME

SCHWINGER EFFECT

Schwinger effect ('56 Schwinger)

GHEN

- Classical background field
- Electron-postitron pairs created at constant rate UNIVERSITY

Semi-classical (Klüger '92, Hebenstreit '13)

- \succ Electric field is treated classically $\langle E^2 \rangle = 0$
- Backreaction of fermions with gauge fields

When $\alpha\gtrsim 1.25\,$: quantitative agreement for electric field improves

- Creation of electron-positron pairs accelerates particles
- > Saturation of current $j^1 = -\dot{E}/g$ for tg pprox 3 (Klüger '92)
- Increasing half-chain entropy (Calabrese '05)

FULL-QUANTUM VS. SEMI-CLASSICAL

Particle number: only qualitative agreement

In general: oscillations are more damped as predicted by semi-classical studies

EQUILIBRATION

State brought out-of-equilbrium will equilibrate locally (Linden '09)

$$\rho_m(t) = \operatorname{tr}_{1,\dots,2n,2(n+m+1)+1,\dots,2N} \left(|\Psi(t)\rangle \left\langle \Psi(t) | \right) \\ \rho_m(t) \to \rho_m^{(asymptotic)}$$

How does $\rho_m^{(asymptotic)}$ look?

Thermalization:
$$\rho_m^{(asymptotic)} = \operatorname{tr}_{1,\dots,2n,2(n+m+1)+1,\dots,2N}\left(\frac{e^{-\beta H_{\alpha}}}{\operatorname{tr}(e^{-\beta H_{\alpha}})}\right)$$

i.e. Asymptotic state corresponds locally to a thermal state

Lot of debate on that: ETH, strong, weak-thermalization, GGE-thermalization, many-body localization (see talk D. Abanin)...

GHENT UNIVERSITY

But let's start to investigate whether thermalization could occur

INVERSE TEMPERATURE

QU

To determine $\beta = 1/T$

 \succ Energy conservation over time $\mathcal{E}(t)=\mathcal{E}(0)$

> Energy of Gibbs state is
$$\mathcal{E}_{\beta} = \frac{\operatorname{tr} \left(e^{-\beta H} H \right)}{\operatorname{tr} \left(e^{-\beta H} \right)}$$

> $\beta = 1/T$ follows from $\mathcal{E}_{\beta} = \mathcal{E}(0)$

THERMALIZATION?

Electric field oscilates around its predicted thermal value

Particle number is close to thermal value for $\alpha \gtrsim 1.25$ GHENT UNIVERSITY First indications for thermalization, but we should be very cautious!!

THERMALIZATION?

To reach definite conclusion we should track state for longer times

Linear increase in entanglement

GHENT UNIVERSITY Hence, exponential increase in variational parameters (quite problematic 😕)48

<u>CONCLUSION</u>

CONCLUSION: MPS FOR REAL-TIME

MPS for the Schwinger effect works good

- Real-time simulation when amount of entanglement is not too large (e.g. Small quench, at early times)
- To understand our results
 - Excitations for weak-field regime to explain oscilatory behavior
 - Thermal states for first evidence of thermalization

Still many interesting things to explore

- Finding ways to approximate real-time at late times for large quenches
- > Other setups:
 - Scattering Gaussian wavepackets
 - Confinement with dynamical charges (Hebenstreit '13)
 - Other quenches (e.g. Mass quench, time-dependent background field)

MASS QUENCH: SET-UP

$$H_{m/g} = \frac{g}{2\sqrt{x}} \left(\sum_{n=1}^{2N} \frac{1}{g^2} E(n)^2 + \frac{\sqrt{x}}{g} m \sum_{n=1}^{2N} (-1)^n [\sigma_z(n) + (-1)] + x \sum_{n=1}^{2N-1} (\sigma^+(n) e^{i\theta(n)} \sigma^-(n+1) + h.c.) \right)$$
$$E(n) = gL(n)$$

Initial state $|\Psi(0)\rangle$ is ground state in the abscence of an background charge, $|\Psi(0)\rangle$: ground state of $H_{m/g=0.25}$

After t=0 we apply a mass quench $\Delta(m/g)$

$$|\Psi(t)\rangle = \exp(-iH_{m/g=0.25+\Delta(m/g)}t)|\Psi(0)\rangle$$

MASS QUENCH: PRELIMINARY RESULTS

MASS QUENCH: PRELIMINARY RESULTS

$$\hat{N}(k) = \int_0^{+\infty} dt \ e^{ikt} N(t)$$

Shows (delta)-peak around $k = k_{max}$ corresponding to mass second excited state:

$$k_{max} \approx \mathcal{E}_2$$

State with energy \mathcal{E}_2 = bound state of two particles with energy \mathcal{E}_1 (Confinement, Kormos '16)

$\Delta(m/g)$	k _{max}	\mathcal{E}_2
0.01	1.7682	1.7712
0.005	1.7569	1.7614
0.001	1.7505	1.7526

CONCLUSION: TNS FOR GAUGE FIELD THEORIES

MPS works good for 1D gauge (field) theories,e.g.,

- Schwinger model (this work, Byrnes '02, Bañuls et al '13-'16.,...)
- ➤ U(1) QLM (Rico '13), SU(2) (Silvi '16, Kühn '16 ...),

But... real world is nor one-dimensional, nor QED

PAPERS WITH PROPER REFERENCES

B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde, F. Verstraete, 'MPS for gauge field theories', Physical Review Letters 113 091601, arXiv:1312.6654 (2013)

B. Buyens, K. Van Acoleyen, J. Haegeman, F. Verstraete, 'Matrix product states for Hamiltonian lattice gauge theories', PoS(LATTICE2014)308, arXiv:1411.0020 (2014)

B. Buyens, J. Haegeman, F. Verstraete, K. Van Acoleyen, 'Tensor networks for gauge field theories', PoS(EPS-HEP2015)375/PoS(LATTICE 2015)280, arXiv:1511.04288 (2015)

B. Buyens, J. Haegeman, H. Verschelde, F. Verstraete, K. Van Acoleyen, 'Confinement and string breaking for QED2 in the Hamiltonian picture', Phys. Rev. X 6 041040, arXiv:1509.00246 (2015)

B. Buyens, F. Verstraete, K. Van Acoleyen, 'Hamiltonian simulation of the Schwinger model at finite temperature', Phys. Rev. D 94, 085018 (2016), arXiv:1606.03385 (2016)

GHENT B. Buyens, J. Haegeman, F. Hebenstreit, F. Verstraete and K. Van Acoleyen, 'Real-time simulation UNIVERSITY of the Schwinger effect', arXiv:1612.00739 [hep-lat]

GF SCIENCES

Boye Buyens Research unit Theoretical and Mathematical Physics PHYSICS AND ASTRONOMY

EBoye.Buyens@ugent.beT+32 (0)9 264 66 97

www.ugent.be

f Ghent University✓ @ugentin Ghent University

BACK-UP SLIDES

MPS-ANSATZ EXCITATIONS

Ground- state ansatz

$$|\Psi[A]\rangle = \sum_{s,p} v_L^{\dagger} \left(\prod_{n=1}^{2N} A^{s_n, p_n}\right) v_R |s_1, p_1, \dots, s_{2N}, p_{2N}\rangle \quad (N \to +\infty)$$

One-particle excitations ansatz (Haegeman '12)

$$\Phi[B]\rangle = \sum_{m=1}^{2N} e^{ikn} \sum_{s,p} v_L^{\dagger} \underbrace{A^{s_1,p_1} \dots A^{s_{m-1},p_{m-1}}}_{(m-1)\times} B^{s_m,p_m} \underbrace{A^{s_{m+1},p_{m+1}} \dots A^{s_{2N},p_{2m}}}_{(2N-m-1)\times} v_R |s_1,p_1,\dots,s_{2N},p_{2N}\rangle$$

$$\widehat{\min}_{\substack{\text{GHENT}\\\text{UNIVERSITY}}} Minimize \quad \frac{\langle \Phi[\bar{B}]|H|\Phi[B]\rangle}{\langle \Phi[\bar{B}]|\Phi[B]\rangle} = \text{equivelent with generalized eigenvalue}_{problem}$$

$$58$$

SINGLE-PARTICLE EXCITATIONS

 α

ITEBD FOR FINITE TEMPERATURE

$$\mathcal{H}_{full} = \bigotimes_{n=1}^{2N} \mathcal{H}_n \otimes \mathcal{H}_n^a$$

 $\rho_{Gibbs}(0) = \mathrm{id}_{GI} = \mathrm{tr}_{\mathcal{H}^a} \left(|\Psi[A]\rangle \left\langle \Psi[\bar{A}] \right| \right)$

$$\begin{split} \Psi[A] \rangle &= \sum_{\vec{\kappa},\vec{\kappa}^a} \operatorname{tr} \left(A_1^{\kappa_1,\kappa_1^a} \dots A_{2N}^{\kappa_{2N},\kappa_{2N}^a} \right) |\vec{\kappa},\vec{\kappa}^a \rangle \\ & [A_n^{(s,p),(s^a,p^a)}]_{(q,\alpha);(r,\beta)} = [a_n]_{\alpha_q,\beta_r} \delta_{r,q+[s+(-1)^n]/2} \delta_{p,r} \delta_{s,s^a} \delta_{p^a,q+[s^a+(-1)^n]/2} \delta_{p,r} \delta_{p^a,q+[s^a+(-1)^n]/2} \delta_{p,r} \delta_{p^a,q+[s^a+(-1)^n]/2} \delta_{p,r} \delta_{p^a,q+[s^a+(-1)^n]/2} \delta_{p$$

$$\rho_{Gibbs}(\beta) = e^{-\beta H} = \operatorname{tr}_{\mathcal{H}^{a}} \left(|\Psi[A(\beta)]\rangle \langle \Psi[\bar{A}]| \right)$$
$$|\Psi[A(\beta)]\rangle = e^{-\beta H/2} |\Psi[A(0)]\rangle \quad \text{with iTEBD}$$

~ ---

FINITE T SIMULATIONS

TWO DIMENSIONS

Pure QED: Gauge fields live on links

Gauss' law:

$$\vec{\nabla} \cdot \vec{E} = 0 \Leftrightarrow (q_u - q_d + q_r - q_l) |\Psi\rangle = 0$$
$$q_u, q_d, q_l, q_r \in \mathbb{Z}$$

PEPS-ANSATZ

PEPS = 2D analogue of MPS (Verstraete '04)

