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Despite this, understanding the effects of dissipation in quantum many body 
systems is still a very difficult problem.

Why?

1.Exhibit the same computational complexity class as 
equilibrium system   (                  ) 

2.Physical constraints of a density matrix that can be used 
to represent such systems

O(d2N )

Efficient numerical tools for study of open quantum many body 
systems is still lacking and continues to be a challenge!
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Assuming Markovian evolution, the dynamics of an open quantum system 
can be described by the following Lindbladian Master equation

   is the Liouvillian operator,     the Hamiltonian of  the system and               
               the jump/Lindblad operators describing the dissipation.
L H
{Lµ, L

†
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we can now integrate the above equation to get

|⇢(T )i] = eTL] |⇢(0)i]

we can then obtain the steady state for very large times

|⇢si] ⌘ lim
T!1

|⇢(T )i]
d

dt
|⇢si] = L]|⇢si] = 0i.e.
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X

hi,ji

h[i,j] L] =
X

hi,ji

L[i,j]
]

e�TH eTL]

|e0i |⇢si]
he0|H|e0i = e0 ]h⇢s|L]|⇢si] = 0

Imaginary time Real time

Use the usual TN algorithms to obtain the steady states??



Tensor Networks

∑ ⊗⊗⊗=
N

N
iii

Niii iiiC
..

21..
21

21
...ψ

tensor with N indices 

A quantum many-body wave function can be written as

D Matrix Product States (MPS)
C

Projected Entangled Pair States (PEPS)Arbitrary Tensor Network
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Target the ground state of           (hermitian & 
positive semi-definite) 
A. A. Gangat, T. I and Y.-Jer Kao, arXiv:1608.06028; 
E. Mascarenhas, H. Flayac, and V. Savona,  
Phys. Rev. A 92, 022116 (2015);J. Cui, J. I. Cirac, 
and M. C. Bañuls, Phys. Rev. Lett. 114, 220601 
(2015)  

Perform imaginary time 
evolution & get direct 
convergence with TEBD or 
DMRG 
Interactions no more local!! 
Bond dimension of the 
MPOs get squared!! 
(still manageable in 1d)

L†
]L]

L†
]

L]



Steady States with TNs:2d
Applications in 2d systems??

Targeting  the ground state of           is extremely difficult hereL†
]L]

L†
]

L]

Can (in principle) perform imaginary time 
evolution & get direct convergence with TEBD 

Interactions in           no more local!! 
Bond dimension of the PEPOs get squared!! 

(very difficult in 2d!! )

L†
]L]
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Steady States with TNs:2d
Use real time evolution with      until steady state is reachedL]

Choi isomorphism + PEPOs

⇢ D

d

D

{

d2

|⇢i]

Simple and efficient 
Growth of entanglement?? 
Not necessarily positive!

Growth of entanglement in 2D may be 
slow compared to the fixed point attractor 
Very good accuracy and small positivity error

So, one can apply the usual iPEPS algorithm in the vectorized form.
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Phase diagram of the steady state of this model is still controversial: 
Existence of a bistable phase in the steady state?? 
Tony E. Lee, H. Häfner and M. C. Cross, Phys. Rev. A 84, 031402 (2011); M. Marcuzzi et al, Phys. Rev. Lett. 113, 210401 (2014); M. F. 
Maghrebi and A. V. Gorshkov, Phys. Rev. B 93, 014307 (2016); J. J. Mendoza-Arenas et al, Phys. Rev. A 93, 023821 (2016)  

1st order phase transition? 
H. Weimer, Phys. Rev. A 91, 063401 (2015); H. Weimer, Phys. Rev. Lett. 114, 040402 (2015) 

Antiferromagnetic phase in the steady state? 
Tony E. Lee, H. Häfner and M. C. Cross, Phys. Rev. A 84, 031402 (2011); M. Höning et al, Phys. Rev. A 87, 023401 (2013) 
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Benchmark results
V = 5�, � = 0.1, hz = 0

 spin-up density

n" =
1

2N

NX

i=1

D⇣
1 + �[i]

z

⌘E

(a)	 (b)	

(c)	 (d)	

n"

(a)	 (b)	

(c)	 (d)	
purity of n-sites

�n = tr(⇢2n)

�n

Good agreement with the correlated variational ansatz 
1st order transition 

No bi-stability 
H. Weimer, Phys. Rev. A 91, 063401 (2015); H. Weimer, Phys. Rev. Lett. 114, 040402 (2015)



Benchmark results
V = 5�, � = 0.1, hz = 0

� =] h⇢s|L]|⇢si]

(a)	 (b)	

(c)	 (d)	

steady-state approximation

�

-

-

positivity error

✏n =
X

i|⌫i<0

⌫i(⇢n)

(a)	 (b)	

(c)	 (d)	

✏n

Very good accuracy 
error due to positivity: not very large



Benchmark results

V = 5�, � = 0.1

Turning on the longitudinal field, previous 
studies have found the existence of AF 
region in the steady state phase diagram of    
            vs  
Tony E. Lee, H. Häfner and M. C. Cross, Phys. Rev. A 84, 031402 (2011) 
M. Höning et al, Phys. Rev. A 87, 023401 (2013)

h
x

/� hz/�

Using our techniques, the AF region is 
found to shrink from D = 2-5 and finally 

disappear for D = 6,7. This suggests that 
the AF region may not be there after all 

for these parameter regimes.
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Conclusions & Outlook

• Proposed a simple TN algorithm to approximate the steady states of 2d 
dissipative systems of infinite size. 

    - very accurate results and relatively small errors induced.

• Studied the controversial steady state phase diagram of the 2d dissipative 
quantum Ising model. 

    - no bistable region in its steady state.  
    - first order phase transition  
    - AF region in the presence of longitudinal field seem to disappear.

• Investigate into dissipative QPTs, Topological order by dissipation, etc? 
• Connections to area-laws for rapidly-mixing dissipative systems? 
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