Entire spectrum of fully many-body localized systems using tensor networks

Thorsten B. Wahl

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

10 February 2017

in collaboration with Arijeet Pal, Steve Simon (Oxford)

T. B. Wahl, A. Pal, and S. H. Simon, arXiv:1609.01552

《曰》 《國》 《臣》 《臣》

DQC.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Ergodicity in classical systems

equiprobability

all $\{x_i\}, \{p_i\}$ consistent with $H(\{x_i\}, \{p_i\}) = E$ are reached with equal probability

$$E = E_A + E_B + E_{AB}$$

 $\mathsf{microcanonical} \to \mathsf{canonical}$

$$p(\lbrace x_{Ai}\rbrace,\lbrace p_{Ai}\rbrace)dE_A = \exp\left(-\frac{E_A(\lbrace x_{Ai}\rbrace,\lbrace p_{Ai}\rbrace)}{T}\right)dE_A$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $|A| \ll |B|$

ergodicity

the system acts as its own heat bath

Ergodicity in quantum systems

$$H|\psi_n\rangle = E_n|\psi_n\rangle$$
$$H = H_A + H_B + H_{AB}$$

$$\langle \psi_n | \hat{O}_A | \psi_n \rangle = \frac{\operatorname{tr} \left(\hat{O}_A \exp \left(-\beta_n H_A \right) \right)}{\operatorname{tr} \left(\exp \left(-\beta_n H_A \right) \right)}$$

Eigenstate Thermalization Hypothesis (ETH)

J. M. Deutsch, Phys. Rev. A. **43**, 2046 (1991) M. Srednicki, Phys. Rev. E **50**, 888 (1994)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Violation of ETH

Anderson impurity model:

$$H = \sum_{i} \epsilon_{i} a_{i}^{\dagger} a_{i} - \sum_{i < j} \left(t_{ij} a_{i}^{\dagger} a_{j} + \text{h.c.} \right)$$

Violation of ETH

Anderson impurity model:

$$H = \sum_{i} \epsilon_{i} a_{i}^{\dagger} a_{i} - \sum_{i < j} \left(t_{ij} a_{i}^{\dagger} a_{j} + \text{h.c.} \right)$$

Simplifications:

- impurities lie on a lattice
- 2 $t_{\langle i,j\rangle} = t$, zero otherwise
- $\bullet_i \in [-W, W]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Switching on interactions

1D chain:
$$H = \sum_{i} \epsilon_{i} a_{i}^{\dagger} a_{i} - \sum_{i} t \left(a_{i}^{\dagger} a_{i+1} + a_{i+1}^{\dagger} a_{i} \right) + \sum_{i} n_{i} n_{i+1}$$

localization survives for $W > W_c$:

Many-body localization

D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. **321**, 1126 (2006).
 I. Gornyi, A. Mirlin, and D. Polyakov, Phys. Rev. Lett. **95**, 206603 (2005).
 M. Schreiber, *et. al*, Science **349**, 842 (2015).

- no heat or electrical conductivity
- system retains memory of initial state
- topological protection at all energy scales (quantum memory)

Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath, Nat. Comm. 6, 7341 (2015).

Table of content

2 Many-body localization

3 Tensor Network ansatz

4 Numerical Results

Table of content

2 Many-body localization

3 Tensor Network ansatz

4 Numerical Results

Many-body localization (MBL)

Disordered Heisenberg antiferromagnet: MBL for $W > W_c \approx 3.5$

$$H = \sum_{i=1}^{N} (J\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + h_{i}S_{i}^{z}), \quad h_{i} \in [-W, W]$$

$$\begin{aligned} \tau_i^z &= U\sigma_i^z U^{\dagger} \\ [H,\tau_i^z] &= [\tau_i^z,\tau_j^z] = 0 \end{aligned}$$

▲日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Many-body localization (MBL)

Disordered Heisenberg antiferromagnet: MBL for $W > W_c \approx 3.5$

$$H = \sum_{i=1}^{N} (J\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + h_{i}S_{i}^{z}), \quad h_{i} \in [-W, W]$$

$$\begin{aligned} \tau_i^z &= U\sigma_i^z U^{\dagger} \\ [H, \tau_i^z] &= [\tau_i^z, \tau_j^z] = 0 \end{aligned}$$

$$H|\psi_{i_1\ldots i_N}\rangle = E_{i_1\ldots i_N}|\psi_{i_1\ldots i_N}\rangle$$

$$\begin{split} \tau_1^z |\psi_{\uparrow i_2 \dots i_N} \rangle &= |\psi_{\uparrow i_2 \dots i_N} \rangle \\ \tau_1^z |\psi_{\downarrow i_2 \dots i_N} \rangle &= -|\psi_{\downarrow i_2 \dots i_N} \rangle \ \text{etc} \end{split}$$

 au_i^z [*H*, Disordered Heisenberg antiferromagnet: MBL for $W > W_c \approx 3.5$

$$H = \sum_{i=1}^{N} (J\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + h_{i}S_{i}^{z}), \quad h_{i} \in [-W, W]$$

$$= U\sigma_{i}^{z}U^{\dagger}$$

$$\tau_{i}^{z}] = [\tau_{i}^{z}, \tau_{j}^{z}] = 0$$

$$H|\psi_{i_{1}...i_{N}}\rangle = E_{i_{1}...i_{N}}|\psi_{i_{1}...i_{N}}\rangle$$

$$\tau_{1}^{z}|\psi_{\downarrow i_{2}...i_{N}}\rangle = |\psi_{\uparrow i_{2}...i_{N}}\rangle$$
etc.
$$H|W_{i_{1}...i_{N}}\rangle = -|\psi_{\downarrow i_{2}...i_{N}}\rangle$$

$$H|W_{i_{1}...i_{N}}\rangle = -|\psi_{\downarrow i_{2}...i_{N}}\rangle$$

$$H|W_{i_{1}...i_{N}}\rangle = -|\psi_{\downarrow i_{2}...i_{N}}\rangle$$

$$H|W_{i_{1}...i_{N}}\rangle = -|\psi_{\downarrow i_{2}...i_{N}}\rangle$$

Sac

 $\rho_{\mathcal{A}} = \operatorname{tr}_{\overline{\mathcal{A}}}(|\psi_{i_1\dots i_N}\rangle\langle\psi_{i_1\dots i_N}|)$

entanglement entropy $S(
ho_A) = -\mathrm{tr}(
ho_A \ln(
ho_A)) < \mathrm{const.}$ as $|A| o \infty$

M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert, Phys. Rev. Lett. 114, 170505 (2015).

approximation by Matrix Product States

Table of content

Motivation

2 Many-body localization

3 Tensor Network ansatz

4 Numerical Results

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Matrix Product States

 $|\psi_{i_1...i_N}\rangle \approx$

Numerical Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix Product States

 $|\psi_{i_1...i_N}\rangle \approx$

D. Pekker, B. K. Clark, Phys. Rev. B 95, 035116 (2017).

How to make $|\tilde{\psi}_{i_1...i_N}\rangle$ orthonormal?

Spectral Tensor Networks

we want: $\tilde{U}\tilde{U}^\dagger \stackrel{!}{=} \mathbb{1}$ and $\tilde{U}H\tilde{U}^\dagger \approx$ diagonal matrix

Spectral Tensor Networks

we want: $\tilde{U}\tilde{U}^{\dagger} \stackrel{!}{=} \mathbb{1}$ and $\tilde{U}H\tilde{U}^{\dagger} \approx \,$ diagonal matrix

F. Pollmann, V. Khemani, J. I. Cirac, and S. L. Sondhi, Phys. Rev. B 94, 041116 (2016)

Scaling

approximate integrals of motion: $\tilde{\tau}_i^z = \tilde{U}\sigma_i^z \tilde{U}^{\dagger}$

 $t_{\rm CPU} \sim \exp(n)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Scaling

approximate integrals of motion: $\tilde{\tau}_i^z = \tilde{U} \sigma_i^z \tilde{U}^{\dagger}$

 $t_{ ext{CPU}} \sim \exp(n) \sim \exp(\exp(\ell))$

Alternative tensor network

$$\#_{\rm parameters} \sim 2^{\ell}$$

sufficient to capture τ_i^z correctly on length scale ℓ

error
$$\sim \exp\left(-rac{\ell}{\xi_L}
ight)$$

э

Sac

$$t_{
m CPU} \sim {
m exp}(\ell) \; \Rightarrow {
m error} \sim rac{1}{{
m poly}(t_{
m CPU})}$$

Alternative tensor network

$$\#_{\rm parameters} \sim 2^\ell$$

sufficient to capture τ_i^z correctly on length scale ℓ

error
$$\sim \exp\left(-rac{\ell}{\xi_L}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$t_{
m CPU} \sim \exp(\ell) \; \Rightarrow {
m error} \sim rac{1}{{
m poly}(t_{
m CPU})}$$

Variance as a figure of merit

 $t_{
m CPU} \sim N rac{2^{7\ell}}{\ell}$

(ロ)、(型)、(E)、(E)、 E) の(()

Our figure of merit

Recap

$$\begin{aligned} \tau_i^z &= U\sigma_i^z U^{\dagger} \\ [H, \tau_i^z] &= [\tau_i^z, \tau_j^z] = 0 \\ \tilde{\tau}_i^z &= \tilde{U}\sigma_i^z \tilde{U}^{\dagger} \end{aligned}$$

Our figure of merit

Recap

$$\begin{aligned} \tau_i^z &= U\sigma_i^z U^{\dagger} \\ [H, \tau_i^z] &= [\tau_i^z, \tau_j^z] = 0 \\ \tilde{\tau}_i^z &= \tilde{U}\sigma_i^z \tilde{U}^{\dagger} \end{aligned}$$

Define figure of merit as:

$$f(\{u_{x,y}\}) = \frac{1}{2^N} \sum_{i=1}^N \operatorname{tr} \left([H, \tilde{\tau}_i^z] [H, \tilde{\tau}_i^z]^{\dagger} \right)$$

= const. $-\sum_{x=1}^{N/\ell} f_x(u_{x,1}, u_{x-1,2}, u_{x,2})$

scaling: $t_{\rm CPU} \sim N 2^{3\ell} \ell^2$

€ 9Q@

Table of content

Motivation

2 Many-body localization

3 Tensor Network ansatz

4 Numerical Results

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Comparison to exact diagonalization

Comparison to exact diagonalization

Approximation of local observables

Scaling with system size

Summary benchmark results • very high precisions for $\ell = 6, 8$ • local observables approximated accurately at $t_{\rm CPU} \sim N$

 \Rightarrow simulation of large MBL systems with high accuracies

《曰》 《國》 《臣》 《臣》

æ

590

Approaching the phase transition for N = 72

 $\#_{\mathrm{param}}(\ell=8)=6307$

ヘロト ヘ回ト ヘヨト ヘヨト

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Detection of the phase transition

Detection of the phase transition

 \overline{S}, σ_S

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Comparison to exact diagonalization

N = 12

990

Now again for a large system of N = 72

$$S, \sigma_S$$

Now again for a large system of N = 72

Now again for a large system of N = 72

Now again for a large system of N = 72

N = 72

æ

Conclusions

- tensor network ansatz for fully MBL systems
- \bullet computational complexity $t_{\rm CPU} \propto \textit{N}$
- scalable: error $\sim 1/\mathrm{poly}\left(t_\mathrm{CPU}
 ight)$ for given N
- figure of merit decomposes into local parts (improved scaling $2^{7\ell} \ \to 2^{3\ell})$
- very high accracies, even in vicinity of MBL-to-thermal transition

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Comparison to previous scheme for N = 12

€ 9Q@

ΓЛ	oth	atio	-
111	ULIN	auu	

