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Broken symmetries

If  H(nuc) + H (elec) has the full space translation 
and rotation group, it is not unreasonable to expect 

the ground state to retain the full symmetry
4He (low pressure): the ground state wave-function has the fully symmetric



Frustrated Magnetism

Magnetic systems in which either due to geometrical or 
parametrical reasons, all the interactions in a 

Hamiltonian can not be simultaneously satisfied
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Fig. 1.6 Schematic view of phase space for a geometrically frustrated magnet

within (high-dimensional) phase space for the system as a whole, the ground states
form a manifold with a dimension that is much smaller but nevertheless extensive.
At temperatures small compared to the Curie–Weiss constant (kBT ! JS2), the
system is confined to a region of phase space that forms a thin layer around the
ground state manifold. Quantum effects can be neglected provided JS ! kBT , and
so a strongly correlated, classical window, JS ! kBT ! JS2, opens for large S .

1.5 Order by Disorder

The fact that extensive ground state degeneracy in classical, geometrically frustrated
antiferromagnets is, in the technical sense, accidental prompts us to ask whether it
has robust consequences in the presence of thermal or quantum fluctuations. Specif-
ically, since the degeneracy is not a consequence of symmetry, one expects the
spectrum of fluctuations around each ground state to be different: the possibility
arises that ground states with the lowest excitation frequencies are selected, because
they have the largest entropy and the smallest zero-point energy. Such an apparently
paradoxical mechanism, by which fluctuations enhance order instead of suppressing
it, is termed ‘order-by-disorder’ [31, 32].

We will consider first the effects of thermal fluctuations, and begin by discussing
a cluster of four spins. Two ground states with fluctuations of contrasting types are
illustrated in Fig. 1.7. For the configuration shown on the left, the total spin of the
cluster has a magnitude jLj that varies with the departure ı! from the ground state as
jLj / ı! . Since the excitation energy is proportional to jLj2, it has a conventional,
quadratic dependence on ı! . By contrast, for the excitation from a collinear ground
state shown on the right, jLj / .ı!/2: this mode is therefore soft, with an energy
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A “Modern” recipe for cooking spin liquids

Frustrate ferromagnetic order using competing AF interactions

The resulting paramagnetic state in a FM environment has an 
enhanced propensity for resonating triplet bonds, and 

weakened propensity for resonating singlet bonds

This scenario opens up the possibility of stabilising an exotic 
variant of a quantum paramagnet, dubbed a spin nematic



Spin Nematic

Characterised by an absence of dipolar magnetic order, hŜii = 0

It still breaks SU(2) spin rotation symmetry due to a non-zero 
quadrupolar order parameter of the form

Oµ⌫
ij = hŜµ

i Ŝ
⌫
j i � �µ⌫

3 hŜi · Ŝji (with µ, ⌫ = x, y, z)

Time-reversal symmetry is preserved

It can be viewed as a quantum spin analog of the nematic state 
in liquid crystals.

Andreev & Grishchuk ’84 Chandra, Coleman & Larkin ’ 90 Gorkov & Sokol ‘ 90
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A simple frustrated 2D system with competing AF and FM 
interactions on the square lattice 2

FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model
reads

Ĥ = J1
X
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Ŝ
i

·Ŝ
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where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
ofermions, Ŝ
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) are the pseudofermion creation (annhi-
lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤

Ĥ = J1
X

hi,ji

Ŝi · Ŝj + J2
X

hhi,jii

Ŝi · Ŝj + J3
X
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J1 6 0 (FM) and J2, J3 > 0 (AF)
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FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model
reads
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where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
ofermions, Ŝ
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lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤
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FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD
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·Ŝ
j

+J3
X

hhhi,jiii
Ŝ
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(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
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i

= 1
2

P
↵,�

ĉ†
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the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤
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FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model
reads
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where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
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lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤
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FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD
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reads
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where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
ofermions, Ŝ
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) are the pseudofermion creation (annhi-
lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤
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FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model
reads

Ĥ = J1
X

hi,ji
Ŝ
i

·Ŝ
j

+J2
X

hhi,jii
Ŝ
i

·Ŝ
j

+J3
X

hhhi,jiii
Ŝ
i

·Ŝ
j

, (1)

where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
ofermions, Ŝ

i

= 1
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↵,�

ĉ†
i,↵

���
↵�

ĉ
i,↵

, where ↵, � =" or

#, and ĉ†
i,↵

(ĉ
i,↵

) are the pseudofermion creation (annhi-
lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤

|J1|+ J2 + J3 = 1

�J1

J2

J3

What is the effect of quantum fluctuations?



Pseudo-fermion Functional RG

A new and powerful method developed to deal with spin models 
featuring two-body spin interactions

2D spin models

Much of the physics can be captured by
2D spin-1/2 models with two-body spin
interactions:

H =
X

ij

X

µ=x ,y ,z

Jµ
ij

Sµ
i

Sµ
j

Develop a new method to deal with such models:

Functional renormalization group (FRG)
method with pseudo fermions

Pseudo fermions:
Introduce two fermionic operators f

i", fi# for each lattice site i . Then:

Sµ
i

=
1

2
f †
i

�µf
i

with f
i

=

✓
f
i"
f
i#

◆
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Recently extended to treat off-diagonal antisymmetric 
interactions (Dzyaloshinskii-Moriya) [Hering & Reuther’ 16]

Pseudo-fermions: Cut the physical spin operator into two halves

This is achieved by rewriting the physical spin operator at each 
site i in terms of fermionic operators for spinons  

Ŝi =
1

2

X

↵,�

ĉ†i,↵���↵� ĉi,� ↵,� =" or # Abrikosov’ 1965



Hilbert Space Enlargement: Constraint problem

|ni,"ni,#i : |0, 0i |0, 1i |1, 0i |1, 1i

Enlarged basis for a a given site i is spanned by the following states

c†i,"ci," + c†i,#ci,# = 1 needs to be fulfilled
Exact fulfilment of the constraint using Fedotov-Popov method.

Enlarged Hilbert space
Basis set |n

i", ni#i for one lattice site i :

=) pseudo fermions come along with an enlarged Hilbert space.

Constraint f †
i"fi" + f †

i#fi# = 1 needs to be fulfilled!

Ways to enforce the constraint:
Exact fulfillment within the Popov-Fedotov method
(V. N. Popov and S. A. Fedotov, Sov. Phys. JETP 67, 535 (1988))

=) imaginary chemical potential µ
i" = µ

i# =
i⇡
2�

Fulfillment on average, i.e. hf †
i"fi" + f †

i#fi#i = 1
=) chemical potential µ

i" = µ
i# = 0
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imaginary chemical potenial µi," = µi,# =

i⇡
2�

Average fulfilment of the constraint, i.e., hc†i,"ci," + c†i,#ci,#i = 1

µi," = µi,# = 0



Fermionic Hamiltonian

H =
X

ij

X

µ

Jµ
ijS

µ
i S

µ
j ! 1

4

X

ij

X

µ

Jµ
ij(c

†
i�

µci)(c
†
j�

µcj)

Standard procedure: Mean-field decoupling

hSµ
i i =

1

2
hc†i�

µcii hc†i,↵cj,↵i hc†i,"c
†
j,#i

Spin mean-field Hopping Pairing

Quantum paramagnets 
       (RVB Ansätze) 
           Wen’ 2002

How to treat the spin Hamiltonian in its full complexity?



Diagrammatics

Exploiting Feynman diagrammatics in the fermionic language

Functional renormalization group

Diagrammatics in the fermions:

progagator: G
0

(i!) = 1

i! = interaction vertex: �
0

= ⇠ J

Since there is no small parameter, we need to do better than summing up
terms order by order: Functional renormalization group (FRG)

Introduce infrared frequency cuto↵ in the propagator:

G
0

(i!) = 1

i! �! G⇤

0

(i!) = ⇥(|!|�⇤)

i!

Then:

⌃ = �! ⌃⇤ , � = �! �⇤ , �
3

= �! �⇤
3
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Functional renormalization group

Diagrammatics in the fermions:

progagator: G
0

(i!) = 1

i! = interaction vertex: �
0

= ⇠ J

Since there is no small parameter, we need to do better than summing up
terms order by order: Functional renormalization group (FRG)

Introduce infrared frequency cuto↵ in the propagator:

G
0
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i! �! G⇤

0

(i!) = ⇥(|!|�⇤)
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Propagator: Interaction vertex:

Summing up terms order by order is not the way to go, since the 
Hamiltonian at hand, does not have any small parameter built in it.

Introduce an infra-red frequency cutoff in the propagator:

Functional renormalization group

Diagrammatics in the fermions:

progagator: G
0

(i!) = 1

i! = interaction vertex: �
0

= ⇠ J

Since there is no small parameter, we need to do better than summing up
terms order by order: Functional renormalization group (FRG)

Introduce infrared frequency cuto↵ in the propagator:

G
0

(i!) = 1

i! �! G⇤

0

(i!) = ⇥(|!|�⇤)

i!
) (

0- Αα...Ωω

Then:

⌃ = �! ⌃⇤ , � = �! �⇤ , �
3

= �! �⇤
3
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m-particle vertex functions
FRG formulates differential equations for the m-particle vertex functions

Functional renormalization group

FRG formulates di↵erential equations for all m-particle vertices:

...
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A truncation is required!

Functional renormalization group

FRG formulates di↵erential equations for all m-particle vertices:

Truncation needed!

Flow starts with
⇤!1�! ⇠ J and ends at ⇤ = 0.

Calculate susceptibility from two-particle vertex: �⇤(k) =
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Spin-susceptibility is calculated from the two-particle vertex

Functional renormalization group

FRG formulates di↵erential equations for all m-particle vertices:

Truncation needed!

Flow starts with
⇤!1�! ⇠ J and ends at ⇤ = 0.

Calculate susceptibility from two-particle vertex: �⇤(k) =
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Ladder and bubble diagrams
FRG sums up diagrammatic contributions in infinite order in J

Functional renormalization group

FRG sums up diagrammatic contributions in infinite order in J.

vertex corrections

hf †
i"f

†
j#i hf †

i↵fj↵i hSµ
i

i = 1

2

hf †
i

�µf
i

i

| {z } | {z }

ladder graphs

+
RVB (dimer-)
states

RPA graphs

+
magnetic order
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Functional renormalization group

FRG sums up diagrammatic contributions in infinite order in J.

vertex corrections

hf †
i"f

†
j#i hf †
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hf †
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�µf
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ladder graphs

+
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+
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Functional renormalization group

FRG sums up diagrammatic contributions in infinite order in J.

vertex corrections

hf †
i"f

†
j#i hf †

i↵fj↵i hSµ
i

i = 1

2

hf †
i

�µf
i

i

| {z } | {z }

ladder graphs

+
RVB (dimer-)
states

RPA graphs

+
magnetic order
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Functional renormalization group

FRG formulates di↵erential equations for all m-particle vertices:

Truncation needed!

Flow starts with
⇤!1�! ⇠ J and ends at ⇤ = 0.

Calculate susceptibility from two-particle vertex: �⇤(k) =
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vertex corrections

hSµ
i i =

1

2
hc†i�

µciihc†i,↵cj,↵ihc†i,"c
†
j,#i

Functional renormalization group

FRG sums up diagrammatic contributions in infinite order in J.

vertex corrections

hf †
i"f

†
j#i hf †

i↵fj↵i hSµ
i

i = 1

2

hf †
i

�µf
i

i

| {z } | {z }

ladder graphs

+
RVB (dimer-)
states

RPA graphs

+
magnetic order
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Ladder diagrams

RVB states (Dimer 
states and spin 
liquids)

RPA Bubble diagrams

Magnetic order



Competition between Ladder and bubble diagrams

ladder diagrams are the leading contributions in a

1
N expansion

=) quantum paramagnet states

RPA bubble diagrams are the leading contributions in a

1
S expansion

=) magnetic order

neglecting three-particle vertices are sub-leading in 1
N and 1

S

Hence, deep inside ordered and disordered phases, this proves to be 
accurate, however, phase boundaries which feature competition 
between ordering and disordering tendencies are subject to uncertainty

The FRG equations are solved with the full frequency dependence of 
the vertex functions. The typical system sizes we treat are ~1000-sites 
in 2d and ~4000-sites in 3d. 



Quantum Phase Diagram: Magnetic Orders
2
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-

FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model
reads

Ĥ = J1
X

hi,ji
Ŝ
i

·Ŝ
j

+J2
X

hhi,jii
Ŝ
i

·Ŝ
j

+J3
X

hhhi,jiii
Ŝ
i

·Ŝ
j

, (1)

where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
ofermions, Ŝ

i

= 1
2

P
↵,�

ĉ†
i,↵

���
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ĉ
i,↵

, where ↵, � =" or

#, and ĉ†
i,↵

(ĉ
i,↵

) are the pseudofermion creation (annhi-
lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤

* Diminished extent of FM phase 

* Quantum fluctuations extend the domain 
of stability of the stripe AF 

* Quantum effects drastically shrink the 
domain of 1D spiral (q,0) order to a small 
pocket 

* The 2D spiral (q,q) order prevails over 
large regions of the phase diagram 

* Throughout the domain of both spiral 
orders we do not observe a discontinuous 
jump of the spiral wave-vector to            , 
thus pointing to the absence of 
commensurate orders at  

q ! ⇡
2

Q = (±⇡
2 , 0) and (±⇡

2 ,±
⇡
2 )
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FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model
reads

Ĥ = J1
X

hi,ji
Ŝ
i

·Ŝ
j

+J2
X

hhi,jii
Ŝ
i

·Ŝ
j

+J3
X

hhhi,jiii
Ŝ
i

·Ŝ
j

, (1)

where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
ofermions, Ŝ
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) are the pseudofermion creation (annhi-
lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤



Shifts in Spiral wave-vectors
4

min

max

(q, q)

(q, 0
)

(⇡, 0)FM

PM

FIG. 3. (Color online) Deviation �Q = Q�Qcl of the order-
ing wave vector Q from its classical value Qcl as a function
of J2/|J1| and J3/|J1|. The shifts in the black regions are
identically zero, and the gray region denotes the PM phase.
The classical boundaries are marked with white dashed lines.
The maximum shifts in the (q, q) and (q, 0) HM phases are
⇡ 37% and ⇡ 100%, respectively, of the classical values.

III. RESULTS

The PFFRG quantum phase diagram of the spin- 12 J1-
J2-J3 Heisenberg model of Eq. (1) is shown in Fig. 1. In-
dividual data points are labeled according to which type
of phase they belong to. For small J2 and J3, FM order
prevails, however, with a diminished extent compared to
its classical domain. For large J2, and small to intermedi-
ate J3, the FM order gives way to stripe AF order, with
quantum fluctuations extending its domain beyond the
classically allowed region45. Quantum e↵ects also dras-
tically shrink the domain of (q, 0) HM order to a small
pocket. Upon increasing J3 (for all J2), the (q, q) HM or-
der onsets and prevails over the phase diagram. The real
space illustration and the corresponding representative
magnetic susceptibility profiles of the ordered phases are
shown in Figs. 1(b)-(e), wherein the Bragg peaks of the
respective types of magnetic orders are clearly resolved.
Throughout the domain of both HM orders, we do not
observe a discontinuous jump of the spiral wave-vector
q ! ⇡

2 , thus pointing to the absence of commensurate
magnetic orders with Q = (±⇡

2 , 0) and (±⇡

2 ,±
⇡

2 ) as re-
ported in Ref. 33. The access to a continuous set of wave-
vectors within our implementation of PFFRG together
with a very large correlation area accounted for in the cal-
culations, enables us to obtain a high-accuracy estimate
of the shift in the spiral wave vectors with respect to the
classical phases. Throughout the HM ordered phases it
is found that quantum fluctuations always increase the
magnitude of the wave vectors leading to more antifer-
romagnetic types of order, see Fig. 3. In the (q, q) HM

FIG. 4. (Color online) Magnetic susceptibility profiles in the
PM regime of the quantum phase diagram evaluated at the
corresponding labeled points.

phase, the shift �Q has a maximal value of �Q ⇡ 37%
and decreases monotonically with increasing J2/|J1| and
J3/|J1|. Similarly, shifts of ⇡ 100% are found in portions
of the classical (q, 0) HM phase that is turned into stripy
AF order by quantum fluctuations, thus leading to the
appearance of a ridge-like feature of �Q in the vicinity of
the quantum phase boundary as seen in Fig. 3.

The most salient e↵ect of quantum fluctuations is the
stabilization of an extended PM phase. Quantum fluc-
tuations are found to eat up significant portions of the
classical domains of the two HM phases, and to a com-
paratively lesser degree that of the FM phase (mostly at
small J3). This leads, in total, to a PM phase settling
in the vicinity of most classical phase boundaries [see
Fig. 1(a)]. In particular, on the J3 = 0 line, a finite extent
of the PM phase for 0.31(2) 6 J2/|J1| 6 0.45(2) is found.
This limit of the phase diagram has previously been ad-
dressed by a variety of methods with contrasting results
on the issue of the presence of a paramagnetic phase.
Exact diagonalization (ED) studies for up to 36 spins,
based on an analysis of the low-energy ED spectra argued
for a PM phase for 0.4 . J2/|J1| . 0.633,34. However,
subsequent ED calculations for up to 40 spins46, based
on the analysis of the ground state spin-spin correlation
functions and the magnetic order parameter, found the
stripe AF order to persist down till J2/|J1| = 0.44, but
were inconclusive between the melting transition of the
FM phase at J2/|J1| = 0.393 and J2/|J1| = 0.44. A high-
order coupled cluster method (CCM) study claimed for

Deviation �Q = Q � Qcl of the ordering wave vector Q from its classical

value Qcl as a function of J2/|J1| and J3/|J1|. The shifts in the black regions

are identically zero, and the gray region denotes the PM phase. The classical

boundaries are marked with white dashed lines.

• Throughout the HM ordered phases it is found that quantum fluctua-
tions always increase the magnitude of the wave vectors leading to more
antiferromagnetic types of order

• In the (q, q) HM phase, the shift �Q has a maximal value of �Q ⇡ 37%
and decreases monotonically with increasing J2/|J1| and J3/|J1|

• Similarly, shifts of ⇡ 100% are found in portions of the classical (q, 0) HM
phase that is turned into stripy AF order by quantum fluctuations, thus
leading to the appearance of a ridge-like feature of �Q in the vicinity of
the quantum phase boundary
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx

ij

= Oyy

ij

. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫

ij

= Oµ⌫

ji

. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ

p,ij

= ✏
µ⌫�

O⌫�

ij

and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫

ij

but is probed by singlet spin-expectation values

hŜ
i

· Ŝ
j

i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0

LN = hŜ
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i�hŜ
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i+ŷ
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For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations
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Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator
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e�⌧Ĥ. For the three nematic states,
the biasing patterns lead to strengthened (weakened)
correlators C+ (C�) along the respective spin direc-
tions/bonds given by
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where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by

nem =
J
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C⇤
+ � C⇤
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C⇤

+ + C⇤�
, (6)

where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.

3
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by
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�Oxx

i,i+ŷ
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx

ij

= Oyy

ij

. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫

ij

= Oµ⌫

ji

. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ

p,ij

= ✏
µ⌫�

O⌫�

ij

and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫

ij

but is probed by singlet spin-expectation values
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i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0

LN = hŜ
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For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations

Ĥ
d-SN = �

X

i

(Ŝz
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� Ŝy

i

Ŝy
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Ĥ
s-SN = �

X

i

(Ŝz
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Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator
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=
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j

(0)i (4)

with Ŝµ
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(⌧) = e⌧ĤŜµ

i

e�⌧Ĥ. For the three nematic states,
the biasing patterns lead to strengthened (weakened)
correlators C+ (C�) along the respective spin direc-
tions/bonds given by
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) , C� =
1

2
(Czz

i,i+ŷ
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, (5)

where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by

nem =
J
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C⇤
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C⇤

+ + C⇤�
, (6)

where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by
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�Oxx

i,i+ŷ
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx

ij

= Oyy

ij

. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫

ij

= Oµ⌫

ji

. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ

p,ij

= ✏
µ⌫�

O⌫�

ij

and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫

ij

but is probed by singlet spin-expectation values

hŜ
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· Ŝ
j

i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0
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i.
For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations
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Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator
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i

e�⌧Ĥ. For the three nematic states,
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, C� = Cµµ

i,i+x̂�ŷ
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where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by

nem =
J
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, (6)

where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx
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= Oyy
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. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫
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ji

. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ
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and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫
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but is probed by singlet spin-expectation values
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i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0
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For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations

Ĥ
d-SN = �

X

i

(Ŝz
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Ŝz

i+x̂

� Ŝx
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(Ŝ
i

· Ŝ
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Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator
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e�⌧Ĥ. For the three nematic states,
the biasing patterns lead to strengthened (weakened)
correlators C+ (C�) along the respective spin direc-
tions/bonds given by
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where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by

nem =
J
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, (6)

where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.
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(Ŝz

i

Ŝ
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x

i

Ŝ
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� Ŝ
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i � hŜ
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by

O
d-SN = Ozz

i,i+x̂

�Oxx

i,i+x̂

= �(Ozz

i,i+ŷ
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx

ij

= Oyy
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. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫

ij

= Oµ⌫

ji

. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ
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= ✏
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O⌫�

ij

and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫

ij

but is probed by singlet spin-expectation values
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i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0
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i+x̂

i�hŜ
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For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations

Ĥ
d-SN = �

X

i

(Ŝz
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Ŝy

i+x̂

) + (x̂ ! ŷ) ,
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Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator
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, C� = Cµµ

i,i+x̂�ŷ
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where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by

nem =
J
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+ + C⇤�
, (6)

where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by
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�Oxx

i,i+ŷ
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i

· Ŝ
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx
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= Oyy
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. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫

ij

= Oµ⌫

ji

. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ

p,ij
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µ⌫�
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ij

and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫

ij

but is probed by singlet spin-expectation values
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i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0
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For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations
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Ŝy

i+x̂

) + (x̂ ! ŷ) ,
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Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator
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e�⌧Ĥ. For the three nematic states,
the biasing patterns lead to strengthened (weakened)
correlators C+ (C�) along the respective spin direc-
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where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by

nem =
J
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where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.
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(Ŝz

i

Ŝ
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x

i

Ŝ
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by
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i � hŜ
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx

ij

= Oyy

ij

. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫

ij
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ji

. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ
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ij

and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫

ij

but is probed by singlet spin-expectation values
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i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0
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i+x̂

i�hŜ
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For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations
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Ĥ
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Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator
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i

e�⌧Ĥ. For the three nematic states,
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where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by
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where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.
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)
��� with a pos-

itive (negative) prefactor and the respective nearest neighbor
lattice vector ê = x̂, ŷ. (c) The perturbation is proportional
to the di↵erence in the thickness of the two diagonals, i.e.,
hŜ
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and eventually causes the flow to become unstable as
the channel flows towards strong coupling. Otherwise, a
smooth flow behavior of the susceptibility indicates the
absence of magnetic order. The total area of correlated
sites in our calculations is kept to 312 = 961 sites, cor-
responding to the longest spin-spin correlator being 15
lattice spacings along the x and y axes. For further de-
tails about the PFFRG procedure we refer the reader to
Refs. 35, 38, and 39.

To probe the nature of the quantum paramagnetic
phase, we examine nematic response functions of three
di↵erent types of nematic states, the d-SN, s-SN and LN.
The corresponding order parameters O

d-SN, Os-SN, and
OLN are given by
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where x̂ and ŷ denote unit vectors along the lattice di-
rections. Furthermore, we assume that spin-isotropy is
always retained for spin rotations in the x-y-plane such
that Oxx
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= Oyy
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. Due to the di↵erence between spin
correlations with x and z components, the d-SN and s-
SN both break SU(2) spin-rotation symmetry down to
U(1). Additionally, d-SN breaks the lattice-point group
C4v down to C2v, which is indicated by a relative minus
sign between correlations along the x̂ and ŷ directions in
the first line of Eq. (2), leading to an e↵ective d-wave
character of this state. It is worth noting that the d-SN
and s-SN order parameters are both of symmetric n-type,
obeying Oµ⌫
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. This contrast with the antisymmet-
ric, chiral p-type nematic state where the order param-
eter is of the form Oµ
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and is argued to
be stabilized in the presence of additional ring-exchange
terms43. Finally, the LN order parameter breaks the
same lattice symmetries as the d-SN state but keeps
SU(2) spin-rotation symmetry intact. The LN state can
therefore not be described by the triplet order parame-
ters Oµ⌫
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but is probed by singlet spin-expectation values

hŜ
i

· Ŝ
j

i44. Note that in Eq. (2) the LN order parame-

ter has been written as a di↵erence between correlations
along the diagonal x̂+ŷ and x̂�ŷ directions. As described
below, this type of order parameter turns out to be par-
ticularly suitable to probe the LN state as compared to
the nearest-neighbor term O0

LN = hŜ
i

· Ŝ
i+x̂

i�hŜ
i

· Ŝ
i+ŷ

i.
For an illustration of the order parameters, see Fig. 2.
In general, the formation of a spin-nematic state is

accompanied by a divergence of the corresponding order-
parameter susceptibility, which is given by a four-spin
correlator. In pseudo-fermion language such a correlator
is represented by the fermionic four-particle vertex. The
computation of such vertices is, however, far beyond the
scope of current FRG implementations. We therefore
pursue a simpler and more direct approach to probe the
system with respect to these types of order. Collecting
the operator content of the order parameters we define
the perturbations

Ĥ
d-SN = �

X

i

(Ŝz

i

Ŝz

i+x̂

� Ŝx

i

Ŝx

i+x̂

� Ŝy

i

Ŝy

i+x̂

)� (x̂ ! ŷ) ,

Ĥ
s-SN = �

X

i

(Ŝz

i

Ŝz

i+x̂

� Ŝx

i

Ŝx

i+x̂

� Ŝy

i

Ŝy

i+x̂

) + (x̂ ! ŷ) ,

ĤLN = �
X

i

(Ŝ
i

· Ŝ
i+x̂+ŷ

� Ŝ
i

· Ŝ
i+x̂�ŷ

) . (3)

Setting 0 < � ⌧ |J1|, J2, J3 and adding these terms to
Ĥ [Eq. (1)] induces a small bias towards the respective
type of nematicity, see Fig. 2. In PFFRG, the response
of the system to these perturbations can be probed via
the static (imaginary time-integrated) spin correlator

Cµ⌫

ij

=

Z 1

0
d⌧hŜµ

i

(⌧)Ŝ⌫

j

(0)i (4)

with Ŝµ

i

(⌧) = e⌧ĤŜµ

i

e�⌧Ĥ. For the three nematic states,
the biasing patterns lead to strengthened (weakened)
correlators C+ (C�) along the respective spin direc-
tions/bonds given by

d-SN: C+ =
1

2
(Czz

i,i+x̂

+ Cxx

i,i+ŷ

) , C� =
1

2
(Czz

i,i+ŷ

+ Cxx

i,i+x̂

),

s-SN: C+ = Czz

i,j

, C� = Cxx

i,j

,

LN : C+ = Cµµ

i,i+x̂+ŷ

, C� = Cµµ

i,i+x̂�ŷ

, (5)

where i, j denote arbitrary nearest neighbors and µ =
x, y, z can be any spin direction. Since Ĥ

d-SN gener-
ates two inequivalent types of strengthened and weakened
bonds we take the average in the first line of Eq. (5). The
generalized nematic responses nem are then defined by

nem =
J

�

C⇤
+ � C⇤

�
C⇤

+ + C⇤�
, (6)

where J is the coupling on the respective unperturbed
bond. Note that Eq. (6) is normalized such that nem > 1
(nem < 1) corresponds to an enhancement (rejection) of
the perturbation during the RG flow.

nem > 1

nem < 1

enhancement

rejection
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s-SN
d-SN
LN

-

FIG. 1. (Color online) (a) Quantum phase diagram of the spin- 12 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within
PFFRG. The coupling constants are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain
featuring s-SN, d-SN, and LN orders. Interpolating colors indicate regions of uncertainties near the phase boundaries. The
corresponding classical phase diagram is shown in the upper left. A depiction of the exchange couplings is shown in the upper
right. (b)-(e) Illustrations of the real space pattern (upper row) and momentum-space resolved magnetic susceptibility profile
(lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0, 0), (⇡, 0), (q, 0), and (q, q), evaluated at the parameters
(|J1|, J2, J3) = (0.84, 0.08, 0.08), (0.52, 0.42, 0.06), (0.48, 0.38, 0.14), (0.52, 0.06, 0.42), respectively.

of quantum fluctuations in this model. In lowest (first)
order in 1/S, a significant enhancement of the stripe AF
phase at the expense of FM and HM states has been re-
ported30–32, and the e↵ect of the J3 interaction was also
analyzed using exact-diagonalization (ED) on systems up
to 36 spins33.

To shed more light on the quantum e↵ects in the J1-
J2-J3 Heisenberg model on the square lattice, we employ
a state-of-the-art implementation of the pseudo-fermion
functional renormalization group (PFFRG) method en-
abling access to very large correlation areas (⇠ 1000-
sites). In particular, we introduce generalized ne-
matic response functions within the PFFRG frame-
work. Aside from d-wave spin nematic (d-SN) order that
breaks SU(2) spin-rotation symmetry as well as lattice-
rotation symmetry33,34, we also find regimes of s-wave
spin-nematic (s-SN) order which exclusively break spin-
rotation symmetry (while keeping lattice symmetries in-
tact), and lattice nematic (LN) orders which only break
lattice-rotation symmetries (while keeping spin-rotation
symmetries intact). Our main results are summarized as
follows: quantum fluctuations eat up significant portions
of the HM and FM orders, stabilizing a PM phase over a
vast region of parameter space. The PM phase features
di↵erent domains wherein either d-SN, s-SN, or LN re-
sponse function dominates, indicating that all three types
of nematic orders might be realized in the system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model
reads

Ĥ = J1
X

hi,ji
Ŝ
i

·Ŝ
j

+J2
X

hhi,jii
Ŝ
i

·Ŝ
j

+J3
X

hhhi,jiii
Ŝ
i

·Ŝ
j

, (1)

where J1 6 0 (FM) and J2, J3 > 0 (AF) and hi, ji,
hhi, jii, and hhhi, jiii denote sums over nearest-neighbor
(NN), second-nearest-neighbor (2-NN) and third-nearest-
neighbor (3-NN) pairs of sites, respectively [see inset of
Fig. 1(a)]. Within the PFFRG scheme35–40 this Hamil-
tonian is first rewritten in terms of Abrikosov pseud-
ofermions, Ŝ

i

= 1
2

P
↵,�

ĉ†
i,↵

���
↵�

ĉ
i,↵

, where ↵, � =" or

#, and ĉ†
i,↵

(ĉ
i,↵

) are the pseudofermion creation (annhi-
lation) operators, and ��� is the Pauli vector. Following
the introduction of an infrared frequency cuto↵ ⇤ in
the fermion propagator, the FRG Ansatz is formulated
in terms of an exact but infinite hierarchy of coupled
flow equations for the m-particle vertex functions41,42.
For a numerical implementation, the hierarchy of equa-
tions is truncated to keep only the self-energy and two-
particle vertex functions. This truncation is performed
such that via self-constistent feedback of the self-energy
into the two-particle vertex, the approach remains sepa-
rately exact in the large S limit as well as in the large
N limit [where the spins’ symmetry group is promoted
from SU(2) to SU(N)]. This property allows for an unbi-
ased investigation of the competition between magnetic
ordering tendencies and quantum paramagnetic behav-
ior. The two-particle vertex is related to the ⇤-dependent
spin-spin correlator and – via Fourier transform – to
the static, q-space resolved susceptibility �⇤(q), which
is the main physical outcome of the PFFRG. If a system
develops magnetic order, the corresponding two-particle
vertex channel anomalously grows under the flow of ⇤
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the onset of stripe AF order immediately after the region
of stability of the FM phase, thus finding no evidence
for a PM phase46. Finally, a variational Monte Carlo
(VMC) study employing projected BCS wave-functions
with spin-triplet pairing of spinons again found a non-
magnetic intermediate phase for 0.42 . J2/|J1| . 0.5747.

In Fig. 4, we plot the magnetic susceptibility profiles
at di↵erent parameter values in the PM region. Com-
pared to the magnetic phases one observes a smearing of
the spectral weight of the susceptibility with soft max-
ima at the Bragg peak positions of the nearest orders.
Typical RG flow behaviors of the susceptibility in the
di↵erent magnetically ordered and PM phases are shown
in Fig. 5(a). While the PM flow does not show features
of instability at any ⇤ scale, the magnetic flows exhibit
a pronounced kink below which the evolution of the sus-
ceptibility becomes numerically unstable. Note that the
(q, 0) HM is characterized by a weak but still clearly
resolved instability feature which manifests as a slight
downturn of the susceptibility during the flow. This hints
at small magnetic order parameters in this regime.

At each point in the PM phase, we calculated the ne-
matic response function nem for s-SN, d-SN, and LN
orders. Interestingly, in a large portion of the PM phase,
one response always clearly dominates over the other two,
leading to a sharp distinction between nematic phases,
see Fig. 1(a). Narrow intermediate regimes where re-
sponses are of similar size are indicated by interpolating
colors in Fig. 1(a). A comparison of the responses shows
that in the region surrounding the FM phase, i.e., when
J1 is dominant, the s-SN [see Fig. 2(b)] response un-
dergoes the largest relative enhancement [see Fig. 5(b)],
pointing to the existence of s-SN order in this regime [or-
ange region in Fig. 1(a)]. As J2 is increased, the d-SN
[see Fig. 2(a)] response becomes dominant [see Fig. 5(c)].
This region is found to extend over a vast domain [green
region in Fig. 1(a)] eating into the classical domain of the
(q, 0) HM phase. In particular, the d-SN phase ranges
down to the J3 = 0 line as has previously been predicted
by ED and VMC studies33,34,47,48. In a narrow stripe
between the d-SN and the (q, q) HM phase we observe
strong LN responses [see Fig. 2(c) and Fig. 5(d)] forming
the pink region in Fig. 1(a). As mentioned before, the LN
biasing pattern that was used to identify this phase acts
on second neighbor couplings J2. While in general, the
breaking of the lattice-point group symmetry C4v down
to C2v could also be probed with a nearest neighbor term
of the form Ĥ0

LN = �
P

i

(Ŝ
i

· Ŝ
i+x̂

� Ŝ
i

· Ŝ
i+ŷ

), the cor-
responding response is mostly found to be smaller (dark
purple lines in Figs. 5(b)-(d)). As a result, the type of
symmetry breaking that leads to the formation of the LN
phase predominantly a↵ects the correlations on diagonal
bonds. This is expected because LN order parameters
probe the singlet channel of two spins, which is energeti-
cally favored on antiferromagnetic bonds.

An interesting limit of the phase diagram is the line
J1 = 0 [right edge of the triangle in Fig. 1(a)] where
only antiferromagnetic J2 and J3 interactions are finite.
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FIG. 5. (Color online) (a) Representative RG flows of
the magnetic susceptibilities at the ordering wave vectors
of the four ordered regimes of Fig. 1 and the PM regime,
evaluated at the following data points (|J1|, J2, J3): (i) FM:
(0.90, 0.00, 0.10), (ii) (⇡, 0): (0.52, 0.42, 0.06), (iii) (q, 0) HM:
(0.46, 0.42, 0.12), (iv) (q, q) HM: (0.52, 0.06, 0.42), and (v)
PM: (0.66, 0.26, 0.08). The points at which the solid lines
become dashed (marked by arrows) indicate an instability in
the flow and express the onset of order. In the smooth flow
(green curve) indicating paramagnetism, no such instability
is found. (b)-(d) Representative nematic responses inside the
three PM phases of Fig. 1(a), evaluated at the data points
(0.74,0.14,0.12) (b), (0.68,0.30,0.02) (c), and (0.12,0.52,0.36)
(d). The dark purple color curve (LNNN) corresponds to a
lattice nematic bias on the NN bonds.

Here, the model reduces to two decoupled copies of the
well-known Heisenberg model on the square lattice with
antiferromagnetic NN and 2-NN couplings (which here
correspond to J2 and J3 interactions, respectively). The
existence of a paramagnetic phase between J3/J2 ⇡ 0.4
and J3/J2 ⇡ 0.6 is well established for this model49–51

and has also been confirmed by PFFRG [see Ref. 35
and Fig. 1(a)]. The precise nature of this phase and
the question whether it exhibits spontaneous symmetry
breaking of valence-bond crystal (VBC)-type is, however,
still debated. The most promising candidates for VBCs
are columnar dimer order (with singlet dimers on the
J2 bonds, arranged in a columnar pattern) and plaque-
tte order (with resonating dimers on square plaquettes
of J2 bonds). Previous PFFRG studies found that at
J1 = 0 both states yield only moderate and compet-
ing dimer responses such that the VBC scenario seems

* Previous ED studies were inconclusive on the issue of the existence of a Paramagnetic phase 
* High-order coupled cluster method found no evidence for a Paramagnetic phase 
* Variational Monte Carlo study employing projected BCS wave-functions found an extended 

Paramagnetic phase

J1-J2 limit
Shannon, Momoi, Sindzingre ’ 2006

Richter et al. ’ 2010 Shindou, Yunoki, Momoi ’ 2011
Sindzingre et al. ’ 2009
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FIG. 3. (Color online) Deviation �Q = Q�Qcl of the order-
ing wave vector Q from its classical value Qcl as a function
of J2/|J1| and J3/|J1|. The shifts in the black regions are
identically zero, and the gray region denotes the PM phase.
The classical boundaries are marked with white dashed lines.
The maximum shifts in the (q, q) and (q, 0) HM phases are
⇡ 37% and ⇡ 100%, respectively, of the classical values.

III. RESULTS

The PFFRG quantum phase diagram of the spin- 12 J1-
J2-J3 Heisenberg model of Eq. (1) is shown in Fig. 1. In-
dividual data points are labeled according to which type
of phase they belong to. For small J2 and J3, FM order
prevails, however, with a diminished extent compared to
its classical domain. For large J2, and small to intermedi-
ate J3, the FM order gives way to stripe AF order, with
quantum fluctuations extending its domain beyond the
classically allowed region45. Quantum e↵ects also dras-
tically shrink the domain of (q, 0) HM order to a small
pocket. Upon increasing J3 (for all J2), the (q, q) HM or-
der onsets and prevails over the phase diagram. The real
space illustration and the corresponding representative
magnetic susceptibility profiles of the ordered phases are
shown in Figs. 1(b)-(e), wherein the Bragg peaks of the
respective types of magnetic orders are clearly resolved.
Throughout the domain of both HM orders, we do not
observe a discontinuous jump of the spiral wave-vector
q ! ⇡

2 , thus pointing to the absence of commensurate
magnetic orders with Q = (±⇡

2 , 0) and (±⇡

2 ,±
⇡

2 ) as re-
ported in Ref. 33. The access to a continuous set of wave-
vectors within our implementation of PFFRG together
with a very large correlation area accounted for in the cal-
culations, enables us to obtain a high-accuracy estimate
of the shift in the spiral wave vectors with respect to the
classical phases. Throughout the HM ordered phases it
is found that quantum fluctuations always increase the
magnitude of the wave vectors leading to more antifer-
romagnetic types of order, see Fig. 3. In the (q, q) HM
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FIG. 4. (Color online) Magnetic susceptibility profiles in the
PM regime of the quantum phase diagram evaluated at the
corresponding labeled points.

phase, the shift �Q has a maximal value of �Q ⇡ 37%
and decreases monotonically with increasing J2/|J1| and
J3/|J1|. Similarly, shifts of ⇡ 100% are found in portions
of the classical (q, 0) HM phase that is turned into stripy
AF order by quantum fluctuations, thus leading to the
appearance of a ridge-like feature of �Q in the vicinity of
the quantum phase boundary as seen in Fig. 3.

The most salient e↵ect of quantum fluctuations is the
stabilization of an extended PM phase. Quantum fluc-
tuations are found to eat up significant portions of the
classical domains of the two HM phases, and to a com-
paratively lesser degree that of the FM phase (mostly at
small J3). This leads, in total, to a PM phase settling
in the vicinity of most classical phase boundaries [see
Fig. 1(a)]. In particular, on the J3 = 0 line, a finite extent
of the PM phase for 0.31(2) 6 J2/|J1| 6 0.45(2) is found.
This limit of the phase diagram has previously been ad-
dressed by a variety of methods with contrasting results
on the issue of the presence of a paramagnetic phase.
Exact diagonalization (ED) studies for up to 36 spins,
based on an analysis of the low-energy ED spectra argued
for a PM phase for 0.4 . J2/|J1| . 0.633,34. However,
subsequent ED calculations for up to 40 spins46, based
on the analysis of the ground state spin-spin correlation
functions and the magnetic order parameter, found the
stripe AF order to persist down till J2/|J1| = 0.44, but
were inconclusive between the melting transition of the
FM phase at J2/|J1| = 0.393 and J2/|J1| = 0.44. A high-
order coupled cluster method (CCM) study claimed for



CONCLUSIONS

Pseudo-fermion Functional Renormalisation group method 
provides a powerful method to study two and three-dimensional 
spin models with arbitrary two-body interactions. 

Nematic order and valence-bond crystal order formation can be 
investigated. 

Finite-temperature correlation profiles are straightforwardly 
computed. Quantities such as Néel temperature can be accurately 
estimated, in light of  the correspondence between the RG cutoff  
parameter and temperature. 

The method has a very efficient scaling with increasing system 
size, enabling one to simulate very large system sizes ~20x20x20 
sites thus enabling one to obtain reliable estimates in the 
thermodynamic limit.
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