

Quantum plasmonic sensing

Changhyoup Lee

Institute of Theoretical Solid State Physics

Plasmonic sensing

Example: intensity-sensitive ATR sensing

Various sensing mechanisms

Various figures of merit for sensing performance

Sensitivity
$$S = \frac{\delta Y}{S} \frac{\delta n_{ef}}{S}$$

- Resolution $\delta n_{e\!f}$ δn
- Accuracy
- Precision
- ► etc..

$$\sigma_{RI} = rac{\sigma_{so}}{S}$$
 standard deviation

- ✓ beyond the diffraction limit
- ✓ enhanced sensitivity

Quantum sensing (quantum metrology)

C. Caves, PRD 23, 1693 (1981)

Original idea: Gravitational wave detector

The use of quantum state of light

neutron star binary

✓ beats the shot-noise limit

Experiment I on quantum plasmonic sensing

D. A. Kalashnikov et. al., PRX, 4, 011049 (2014)

Experiment II on quantum plasmonic sensing

Experiment II on quantum plasmonic sensing

Quantum plasmonic sensing

Two-mode interferometric nanowire sensing

Two-mode interferometric nanowire sensing

Classical reference (shot-noise limited)

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{m=0}^{\infty} \frac{\alpha^m}{\sqrt{m!}} |m\rangle$$

 $\hat{M} = \hat{I}_a - \hat{I}_b$

Quantum example (Heisenberg limited)

$$|\psi_{\rm in}\rangle = (|N0\rangle_{12} + |0N\rangle_{12})/\sqrt{2}$$
$$\hat{A} = |0, N\rangle\langle N, 0| + |N, 0\rangle\langle 0, N|$$

1.15

plasmonic (C)

1.10

1.20

1.25

 $n_{\rm bio}$

Monitored output: expectation values $\frac{\langle \hat{M} \rangle = M_0 \cos(\phi(n_{\rm bio}))}{\langle \hat{A} \rangle = A_0 \cos(N\phi(n_{\rm bio}))}$

1.30

1.35

plasmonic (Q)

1.40

I

Carlsruhe Institute of Technology

Two-mode interferometric nanowire sensing

Roles of 'quantum' and 'plasmonic' sensing

Plasmonic sensing

: how sensitively the transducer can induce the change in optical phase when an environment is altered.

: how sensitively the source and measurement can identify the change of optical phase when it occurs.

Roles of 'quantum' and 'plasmonic' sensing

Quantum sensing

: how sensitively the source and measurement can identify the change of optical phase when it occurs.

Plasmonic sensing

: how sensitively the transducer can induce the change in optical phase when an environment is altered.

Roles of 'quantum' and 'plasmonic' sensing

- Quantum sensing
 - : how sensitively the source and measurement can identify the change of optical phase when it occurs.

Plasmonic sensing

: how sensitively the transducer can induce the change in optical phase when an environment is altered.

Lossy sensing

Quantum example (Heisenberg limited)

$$|\psi_{\rm in}\rangle = (|N0\rangle_{12} + |0N\rangle_{12})/\sqrt{2}$$

General N-photon state

$$|\psi_{\rm in}\rangle = \sum_{n=0}^{N} c_n |n, N-n\rangle$$

Minimum resolution via Cramer-Rao bound

$$\delta n_{\rm bio} = \delta \phi \left| \frac{\partial \phi}{\partial n_{\rm bio}} \right|^{-1}$$

$$\delta\phi = F_Q^{-1/2}$$

U. Dorner, et al., PRL, 102, 040403 (2009)

Lossy sensing

0.5

0.4

0.3

0.2

0.1

0.0

 $|c_2|^2$

 $|c_0|^2$

1.15

1.20

1.25

 $n_{\rm bio}$

1.30

1.35 1.40

Quantum example (Heisenberg limited)

$$(|\psi_{\rm in}\rangle = (|N0\rangle_{12} + |0N\rangle_{12})/\sqrt{2}$$

General N-photon state

$$|\psi_{\rm in}\rangle = \sum_{n=0}^{N} c_n |n, N-n\rangle$$

Minimum resolution via Cramer-Rao bound

$$\delta n_{\mathrm{bio}} = \delta \phi \left| \frac{\partial \phi}{\partial n_{\mathrm{bio}}} \right|^{-1}$$

$$\delta \phi = F_Q^{-1/2}$$

U. Dorner, et al., PRL, 102, 040403 (2009)

Single-mode intensity-sensitive ATR sensing

Intensity-sensitive ATR sensing

For a given incident angle

The average photon number of initial probe beam, as an example,

$$ext{Signal} = |r_{ ext{spp}}|^2 N \ \Delta ext{Signal} = \sqrt{|r_{ ext{spp}}|^2 N}$$

Parameter estimation

$$\delta n_{\rm analyte} = \frac{\Delta \text{Signal}}{\left| \frac{\partial \text{Signal}}{\partial n_{\rm analyte}} \right|}$$

Two-mode SPR sensing with differential intensity measurement

- Example states: twin modes
- * Classical state $|\alpha\rangle|\alpha\rangle$

$$N_a = N_b$$
$$\Delta N_a = \Delta N_b$$

* Two-mode squeezed vacuum state (SPDC)

$$|\text{TMSV}\rangle = \frac{1}{\cosh(r)} \sum_{n=0}^{\infty} (-1)^n e^{in\phi} \tanh^n(r) |n, n\rangle$$

- * Twin photons $|n_a\rangle|n_b\rangle$
- Measurement: intensity difference

$$\hat{M} = \hat{b}^{\dagger} \hat{b} - \hat{a}^{\dagger} \hat{a}$$

- * two-mode correlation can be used.
- * the excess noise can be eliminated.

Example states: twin modes

$$N_a = N_b$$

* Classical state $|\alpha\rangle|\alpha\rangle$

$$\Delta N_a = \Delta N_b$$

* Two-mode squeezed vacuum state (SPDC)

$$|\text{TMSV}\rangle = \frac{1}{\cosh(r)} \sum_{n=0}^{\infty} (-1)^n e^{in\phi} \tanh^n(r) |n, n\rangle$$

- * Twin photons $|n_a\rangle|n_b\rangle$
- Measurement: intensity difference

$$\hat{M} = \hat{b}^{\dagger} \hat{b} - \hat{a}^{\dagger} \hat{a}$$

- * two-mode correlation can be used.
- * the excess noise can be eliminated.

Average input power

$$N_a = N_b = 1$$

No channel losses at both modes $\eta_a = \eta_b = 1$

$$\eta_a = \eta_b = 1$$

Refractive index of sample

$$n_{\text{analyte}} = 1.267$$

$$R_{\rm SNR} = \frac{SNR}{SNR_c} = \sqrt{\frac{1+|r_{\rm spp}|^2}{(1-|r_{\rm spp}|^2)^2Q_{\rm M}+2\sigma|r_{\rm spp}|^2+(1-|r_{\rm spp}|^2)}}$$
 Mandel Q-factor
$$Q_{\rm M} = \frac{\left\langle \Delta N_a^2\right\rangle}{\left\langle N_a\right\rangle} - 1$$
 Degree of correlation
$$\sigma = \frac{\left\langle \Delta (N_a-N_b)^2\right\rangle}{\left\langle N_a\right\rangle+\left\langle N_b\right\rangle}$$

	$Q_{ m M}$	σ	R
Coherent state	0	1	1
TMSV state	>0	0	$\sqrt{\frac{1 + r_{\rm spp} ^2}{(1 - r_{\rm spp} ^2)^2 Q_{\rm M} + (1 - r_{\rm spp} ^2)}}$
Twin-photon state	-1	0	$\sqrt{rac{1 + r_{ m spp} ^2}{(1 - r_{ m spp} ^2) r_{ m spp} ^2}}$

Two-mode squeezed state (SPDC)

$$|\text{TMSV}\rangle = \frac{1}{\cosh(r)} \sum_{n=0}^{\infty} (-1)^n e^{in\phi} \tanh^n(r) |n, n\rangle$$

Twin photons $|n_a
angle |n_b
angle$

Effect of increasing the input photon number

Effect of increasing the channel losses

Estimation of the refractive index

 \blacksquare for a given incident angle $\theta_{\rm in}=60$

$$N_a = N_b = 1$$
$$\eta_a = \eta_b = 1$$

Conclusion

Conclusion

Thank you!

Institute of Theoretical Solid State Physics

Colleagues

Prof. Carsten Rockstuhl (Karlsruhe Institute of Technologies, Germany)

Prof. Mark Tame (University of KwaZulu-Natal, South Africa)

Prof. Jinhyoung Lee (Hanyang University, South Korea)

Mr. Frederik Dieleman (Imperial College London, UK)