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Introduction — General setting

» Stabilization issues for one-dimensional hyperbolic systems of
conservation laws:

Deu+ Ox(F(u)) =0, f:QCR” R, (SCL)

satisfying the (strict) hyperbolicity condition that at each point

Strict hyperbolicity
df has n distinct real eigenvalues \; < --- < A,.

» Typical examples: compressible fluid flows, fluid through a canal,
traffic flow, etc.



Characteristic fields

» Corresponding to the characteristic speeds \; < --- < A, the
Jacobian A(u) := df(u) has n right eigenvectors r;(u).

» We denote (¢;)i—1
E,’ . I’J = 6U

» the left eigenvectors of df(u) satisfying

» The characteristic families will be supposed to be genuinely
non-linear (GNL), that is:

VAi-ri#0 forall uin Q.

~ Convention: V;-r; > 0.



Boundary conditions

System of conservation laws in a bounded interval (0, L):
O+ O (f(u)) =0, t>0,x € (0,L), (SCL)

— Has to be completed with suitable boundary conditions.

» We suppose moreover that the characteristic speeds are stricly
separated from 0:

M < <A <0< Ay <+ < Ay

» We will be interested in boundary conditions put in the following
form:
<U+(t,0)> -G (U+(t, L))
u_(t,L) u_(t,0)

uy = (Um+17"'>un) and u_ = (U17""um)'

with



Stabilization problem

» We consider an equilibrium point T of the system. To simplify, we
fix 7=0and G(0) =0.

» The question is to design boundary conditions, i.e. G so that ¥
becomes an asymptotically stable point for the resulting closed-loop
system.

» We recall that a point T is called stable when for any neighborhood
V of T, there exists a neighborhood U of T such that any trajectory
of the system starting from @ stays in V for all t > 0.

» It is called asymptotically stable when moreover any trajectory
starting from U satisfies u(t, ) — T as t — +oc.



Stabilization problem

» A point T = 0 is called exponentially stable when any trajectory
starting from some neighborhood U of T = 0 satisfies

[u(t, )l < Cexp(=1)[[u(0,-)]| forall t >0,
for some fixed v > 0 and C > 0.

Careful...

Stabilization properties may depend on the functional setting under
consideration !



On the functional setting — Appearance of shocks

When considering the Burger's equation
w2
8tu+8x(2>20; t>O,X€R,

solutions with smooth initial data may develop singularities in finite time:

= 2 possible functional settings:
» Smooth functions (e.g. C! or H2) with small norms;

» Discontinuous functions, corresponding to weak solutions.



Weak solutions

» Weak solutions can account for shock waves.

» In the context of weak solutions, uniqueness holds provided we
consider entropy conditions.

» We thus consider bounded variation functions, with small total
variation in x (“a la Glimm").



Entropy solutions

Definition
An entropy/entropy flux couple for a hyperbolic system of conservation
laws (SCL) is defined as a couple of regular functions (n,q) : @ — R
satisfying:

YueQ, Dn(u)-Df(u) = Dg(u).

Definition

A function u € L°°(0, T; BV(0, L)) N Lip(0, T; L1(0, L)) is called an
entropy solution of (SCL) when, for any entropy/entropy flux couple
(n, ), with 1 convex, one has in the sense of measures

9 (n(u)) + 9x(q(u)) < 0.



Entropy conditions, 2

» Of course (1, q) = (£Id, +f) are entropy/entropy flux couples. So
entropy solutions are particular cases of weak solutions.

» The entropy inequalities are automatically satisfied by vanishing
viscosity limits:

u® — u with 9;u° + 0x(f(uf)) — edxxu® = 0.

» Glimm (1965) showed the existence of global entropy solutions with
the assumption of small total variation, that is when O, ug is small in
the space of bounded measures.



References on stabilization in the context of classical
solutions

» Slemrod, Greenberg-Li, ...

» Bastin-Coron, Bastin-Coron-d’Andrea-Novel,
Bastin-Coron-d'Andrea-Novel-de Halleux-Prieur,
Bastin-Coron-Krstic-Vazquez, ...

» Leugering-Schmidt, Dick-Gugat-Leugering, Gugat-Herty,. ..
» Ta-Tsien Li, Tie Hu Qin, ...

» Many others! ~» See the recent book of Bastin-Coron.

The stabilization of (SCL) indeed depends on the functional setting at
hand !
~~ Coron-Nguyen 2015.



In the context of entropy solutions

» Scalar cases:

>

vVYyY VvV VvVYy

Ancona and Marson (1998), (reachable set)

Horsin (1998), (reachable set)

Perrollaz (2011), (Stabilization)
Adimurthi-Gowda-Ghoshal (2013), (reachable set)
Andreianov-Donadello-Marson (2015), (reachable set)
Adimurthi-Ghoshal-Marcati (2016), (reachable set)

> Several works on the system case:

Yy VY VvVVvYVvYYy

Bressan-Coclite (asymptotic result and a counterexample, 2002),
Ancona-Coclite (Temple systems, 2005, reachable set),
Ancona-Marson (one-side open loop stabilization, 2007),

Glass (Euler equations, 2007, 2014),
Andreianov-Donadello-Ghoshal-Razafison (2015, triangular system),
Coron-E.-Glass.-Ghoshal-Perrollaz (2017).



A simple framework
» Here we consider 2 x 2 systems of conservation laws:
Oru~+ 0x(f(u)) =0 in [0,4+00) x [0, L],
with characteristic speeds A\; < A» and satisfying the conditions:

> each characteristic field is genuinely non-linear,

» velocities are positive: 0 < A1 < Aa.
» The boundary conditions are as follows:
u(t,0) = Ku(t, L),
where K is a 2 x 2 (real) matrix.

» The goal is to find conditions on K ensuring the (exponential)
stability of the system.



Main result

Theorem [Coron-E.-Glass-Ghoshal-Perrollaz 2017]

Suppose the above assumptions satisfied. If K satisfies

inf £1(0) - Kri (0 45(0) - Kri (0
LU (max {[£1(0) - Kri(0)] + «|¢2(0) - Kri(0)],
a1 01(0) - Kra(0)] + [€2(0) - Kra(0)}) < 1,
3 positive constants C, v, g9 > 0, such that Yug € BV/(0, L) satisfying

|ug|gv < €o,

3 an entropy solution u in L*°(0, co; BV(0, L)) satisfying u(0,-) = uo(-),
and the boundary conditions for almost all times, s.t.

lu(t)|sv < Cexp(—vt)|uolsy, t>0.



Rewriting the condition

Denoting for p € [1, 00)

n 1/p
16wl = (Z |x,-|P> G0l = max ]
i=1

M|, = ma§1\|Mx\|p for M e R™",

lIxIle

one defines
pp(K) :=inf{||[AKA™||,, A diagonal with positive entries}.

It is easy to check that

inf  (max {[¢1(0) - Kr1(0)| + a|¢2(0) - Kry(0)],
a€(0,+00)

a”![£1(0) - Kra(0)] + [€2(0) - Kr2(0)[ }) = pa(K),

so that the condition can be written as p;(K) < 1.



Analogous conditions

» For the same question for classical solutions in C™-norm (m > 1), a

sufficient condition is:
Poo(K) < 1.

Cf. T. H. Qin, Y. C. Zhao, T. Li and Bastin-Coron.

> In the case of Sobolev spaces W™P([0, L]) with m > 2 and
p € [1,+oc], a sufficient condition is:

pp(K) < 1.

Cf. Coron-d'Andréa-Novel-Bastin for p = 2, Coron-Nguyen for
general p.

» One can actually show that

p1(K) = poo(K).



Remarks: Cauchy problem with boundary

» The known results on the existence of a standard Riemann
semigroup for initial-boundary problem do not seem to cover our
situation exactly and uniqueness of solutions in the spirit of
Bressan-LeFloch or Bressan-Goatin seems open.

Cf. Amadori, Amadori-Colombo, Colombo-Guerra,
Donadello-Marson, Sablé-Tougeron,. ..



A general idea of the proof

» One constructs solutions using the wave-front tracking approach
(here, DiPerna’s approach since we consider 2 x 2 systems)

» Then the result relies on a Lyapunov function.
» This Lyapunov function is mainly inspired by two sources:

> Lyapunov functions constructed in the classical case, cf.
Coron-Bastin-d'Andrea-Novel, Coron-Bastin, ...

> Glimm's functional used to construct entropy solutions in BV



1. Wave-front tracking algorithm

» Solutions are constructed directly using a wave-front tracking
approach (cf. Dafermos, DiPerna, Bressan, ...):

> one constructs a sequence of approximations of a solutions,

» these approximations are piecewise constant functions on Ry x R
where the discontinuities are straight lines separating states
connected by shocks or rarefactions,

t




The Riemann problem... far from the boundary

» Find autosimilar solutions u = T(x/t) to

{ v+ (F(u))x =0

Ur- = U and UR+ = Ur.

» Solved by introducing Lax's curves which consist of points that can
be joined starting from v (in the case of GNL fields):

> either by a shock,

> or by a rarefaction wave.



Shocks and rarefaction waves (GNL fields)

Shocks

Ui ur

Discontinuities satisfying:

» Rankine-Hugoniot (jump) relations
[f(u)] =s[u],
» Lax's inequalities:

)\,’(Ur) <s < )\,'(U/)

Propagates at speed s ~ —% f“’ Ai

ur—uj uy

Rarefaction waves

uy ur

Regular solutions,
obtained with integral curves of r;:

d
<5 Filo) = ri(Ri(9)),
R,(O) = uy,

with o > 0.

Propagates at speed \;(Ri(0))



Lax's curves (GNL fields)

» We call ®;(+, uj) the i-th Lax curve consisting of points u, that can
be connected

> by a i-shock (o < 0)
> or by a i-rarefaction wave (o > 0).

> When u; = ®(0;, u_), we call g; the strength of the simple wave
(U_, U+)-

» By convention, o; > 0 for rarefactions and o; < 0 for shocks.

v

Lax's theorem asserts that for u; and v, sufficiently close, one can
find (o;) such that

u, = ®a(02,°) o ®1(01, ") uy.

v

This allows to solve the Riemann problem.



Solving the Riemann problem

/ Um

/ .
/ 2-rarefaction
uy

Um

u, u,
1-shock ! ’

» Lax's Theorem proves that one can solve (at least locally) the
Riemann problem by first following the 1-curve, then the 2-curve.



Front-tracking algorithm

» Approximate initial condition by piecewise constant functions.

» Solve the Riemann problems and replace rarefaction waves by
rarefaction fans.

» For small times, one obtains a piecewise constant function where
states are separated by straight lines called fronts.

t

» At each interaction point (points where fronts meet), iterate the
process without splitting again rarefaction fronts



Estimates, convergence, etc.

» One shows than this defines a piecewise constant function, with a
finite number of fronts and discrete interaction points.

> A central argument is due to Glimm: consider

V= > loal: Q7)= > |oal-losl,

« wave at time t a,f
approaching waves

» Analyzing interactions a + 8 — o’ + /3’ one shows that: for some
C >0, if TV(up) is small enough, then V(t) + CQ(t) is
non-increasing. (Glimm's functional)

» One deduces bounds in L$°BV,, then in Lip,L, so we have
compactness. ..



Boundary Riemann problem

» In our case we have to take the boundary into account, and to be
able to solve the boundary Riemann problem.

» Cf. Dubois-LeFloch, Amadori, Amadori-Colombo, Colombo-Guerra,
Donadello-Marson, etc.

1-rarefaction

uy

S
S 2-shock
S

ly ur




Boundary “interactions”

» One can then take “boundary interactions” into account.

» One can measure the size of the oungoing fronts in terms of the size
of the incoming one. This highly depends on K!

» Roughly speaking, our condition ensures

|Uéutg0ing| + |U§utgoing| < H|Uincoming|; 0<r<l

1
Uolltgoing

2
9outgoing

uy

ur

x = ol Tincoming x=1L



2. Using Lyapunov functions

Let A > 0, and consider here, for sake of simplicity,

Oru + A0yu =0, (t,x) € (0,00) x (0, L),
u(t,0) = ku(t, L), t>0.

Exponential decay <« |kl <1
An easy way to prove <: Introduce

L
J(t) :/ lu(t, x)|?e 27 dx,
0
which satisfies

%J(t) = —29MJ(t) — A (u(t, L)?e 2"t — u(t,0)%) < —29AJ(t)

if exp(—vL) > |k|, so that \/J(t) < e~ 7*t,/J(0).

Can be generalized to many (much more intricate) settings, see
Bastin-Coron's book.



In our context

Our Lyapunov functional is as follows:

J=V+CQ

V(U) = (loial +loi2l) e,
i=0

0w = Y X )
(xi,0i) (xj,05) approaching (xi,o;)

for suitable constants, where

> 0 is the strength of the k-wave at x; (o; when there is no
ambiguity, i.e. for i > 1),

> X1, ..., X, are the discontinuities in (0, L),
> U(t7 O+) = W2(0'072, \Ul(Uo’l, KU(I‘7 L—)))



Our Lyapunov functional, 2
Analyzing in particular interactions of fronts with the boundary, one
shows that for suitable constants and provided that
TV (up) is small enough,
one has for proper v > 0:
J(t) < J(0) exp(—vt).

This allows to construct approximations and the solutions globally in time

and to get the result.



Open problems

» Considering a less particular case:
> speeds with different signs,
> n X n systems,
» nonlinear boundary conditions,

» non GNL characteristic fields, etc.

» What about source terms?



Thank you for your attention!

Ref: Dissipative boundary conditions for 2x2 hyperbolic systems of
conservation laws for entropy solutions in BV.

J.D.E. 262 (2017), no. 1, 1-30.

J.-M. Coron, S. Ervedoza, S.S. Ghoshal, O. Glass, V. Perrollaz.



