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Introduction – General setting

I Stabilization issues for one-dimensional hyperbolic systems of
conservation laws:

∂tu + ∂x(f (u)) = 0, f : Ω ⊂ Rn → Rn, (SCL)

satisfying the (strict) hyperbolicity condition that at each point

Strict hyperbolicity
df has n distinct real eigenvalues λ1 < · · · < λn.

I Typical examples: compressible fluid flows, fluid through a canal,
traffic flow, etc.



Characteristic fields

I Corresponding to the characteristic speeds λ1 < · · · < λn, the
Jacobian A(u) := df (u) has n right eigenvectors ri (u).

I We denote (`i )i=1,...,n the left eigenvectors of df (u) satisfying
`i · rj = δij .

I The characteristic families will be supposed to be genuinely
non-linear (GNL), that is:

∇λi · ri 6= 0 for all u in Ω.

 Convention: ∇λi · ri > 0.



Boundary conditions
System of conservation laws in a bounded interval (0, L):

∂tu + ∂x(f (u)) = 0, t ≥ 0, x ∈ (0, L), (SCL)

→ Has to be completed with suitable boundary conditions.

I We suppose moreover that the characteristic speeds are stricly
separated from 0:

λ1 < · · · < λm < 0 < λm+1 < · · · < λn.

I We will be interested in boundary conditions put in the following
form: (

u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
with

u+ := (um+1, . . . , un) and u− := (u1, . . . , um).



Stabilization problem
I We consider an equilibrium point u of the system. To simplify, we

fix u = 0 and G (0) = 0.
I The question is to design boundary conditions, i.e. G so that u

becomes an asymptotically stable point for the resulting closed-loop
system.

I We recall that a point u is called stable when for any neighborhood
V of u, there exists a neighborhood U of u such that any trajectory
of the system starting from u stays in V for all t ≥ 0.

I It is called asymptotically stable when moreover any trajectory
starting from U satisfies u(t, ·)→ u as t → +∞.



Stabilization problem
I A point u = 0 is called exponentially stable when any trajectory

starting from some neighborhood U of u = 0 satisfies

‖u(t, ·)‖ ≤ C exp(−γt)‖u(0, ·)‖ for all t ≥ 0,

for some fixed γ > 0 and C > 0.

Careful...
Stabilization properties may depend on the functional setting under
consideration !



On the functional setting – Appearance of shocks

When considering the Burger’s equation

∂tu + ∂x

(
u2

2

)
= 0, t > 0, x ∈ R,

solutions with smooth initial data may develop singularities in finite time:

⇒ 2 possible functional settings:
I Smooth functions (e.g. C 1 or H2) with small norms;
I Discontinuous functions, corresponding to weak solutions.



Weak solutions

I Weak solutions can account for shock waves.

I In the context of weak solutions, uniqueness holds provided we
consider entropy conditions.

I We thus consider bounded variation functions, with small total
variation in x (“à la Glimm”).



Entropy solutions

Definition
An entropy/entropy flux couple for a hyperbolic system of conservation
laws (SCL) is defined as a couple of regular functions (η, q) : Ω→ R
satisfying:

∀u ∈ Ω, Dη(u) · Df (u) = Dq(u).

Definition
A function u ∈ L∞(0,T ;BV (0, L)) ∩ Lip(0,T ; L1(0, L)) is called an
entropy solution of (SCL) when, for any entropy/entropy flux couple
(η, q), with η convex, one has in the sense of measures

∂t(η(u)) + ∂x(q(u)) ≤ 0.



Entropy conditions, 2

I Of course (η, q) = (±Id,±f ) are entropy/entropy flux couples. So
entropy solutions are particular cases of weak solutions.

I The entropy inequalities are automatically satisfied by vanishing
viscosity limits:

uε → u with ∂tu
ε + ∂x(f (uε))− ε∂xxuε = 0.

I Glimm (1965) showed the existence of global entropy solutions with
the assumption of small total variation, that is when ∂xu0 is small in
the space of bounded measures.



References on stabilization in the context of classical
solutions

I Slemrod, Greenberg-Li, . . .

I Bastin-Coron, Bastin-Coron-d’Andrea-Novel,
Bastin-Coron-d’Andrea-Novel-de Halleux-Prieur,
Bastin-Coron-Krstic-Vazquez, . . .

I Leugering-Schmidt, Dick-Gugat-Leugering, Gugat-Herty,. . .

I Ta-Tsien Li, Tie Hu Qin, . . .

I Many others!  See the recent book of Bastin-Coron.

The stabilization of (SCL) indeed depends on the functional setting at
hand !
 Coron-Nguyen 2015.



In the context of entropy solutions

I Scalar cases:
I Ancona and Marson (1998), (reachable set)
I Horsin (1998), (reachable set)
I Perrollaz (2011), (Stabilization)
I Adimurthi-Gowda-Ghoshal (2013), (reachable set)
I Andreianov-Donadello-Marson (2015), (reachable set)
I Adimurthi-Ghoshal-Marcati (2016), (reachable set)

I Several works on the system case:

I Bressan-Coclite (asymptotic result and a counterexample, 2002),
I Ancona-Coclite (Temple systems, 2005, reachable set),
I Ancona-Marson (one-side open loop stabilization, 2007),
I Glass (Euler equations, 2007, 2014),
I Andreianov-Donadello-Ghoshal-Razafison (2015, triangular system),
I Coron-E.-Glass.-Ghoshal-Perrollaz (2017).



A simple framework
I Here we consider 2× 2 systems of conservation laws:

∂tu + ∂x(f (u)) = 0 in [0,+∞)× [0, L],

with characteristic speeds λ1 < λ2 and satisfying the conditions:

I each characteristic field is genuinely non-linear,

I velocities are positive: 0 < λ1 < λ2.

I The boundary conditions are as follows:

u(t, 0) = Ku(t, L),

where K is a 2× 2 (real) matrix.

I The goal is to find conditions on K ensuring the (exponential)
stability of the system.



Main result

Theorem [Coron-E.-Glass-Ghoshal-Perrollaz 2017]
Suppose the above assumptions satisfied. If K satisfies

inf
α∈(0,+∞)

(
max

{
|`1(0) · Kr1(0)|+ α|`2(0) · Kr1(0)|,

α−1|`1(0) · Kr2(0)|+ |`2(0) · Kr2(0)|
})

< 1,

∃ positive constants C , ν, ε0 > 0, such that ∀u0 ∈ BV (0, L) satisfying

|u0|BV ≤ ε0,

∃ an entropy solution u in L∞(0,∞;BV (0, L)) satisfying u(0, ·) = u0(·),
and the boundary conditions for almost all times, s.t.

|u(t)|BV ≤ C exp(−νt)|u0|BV , t ≥ 0.



Rewriting the condition
Denoting for p ∈ [1,∞)

‖(x1, . . . , xn)‖p :=

(
n∑

i=1

|xi |p
)1/p

, ‖(x1, . . . , xn)‖∞ := max
i=1...n

|xi |

‖M‖p := max
‖x‖p=1

‖Mx‖p for M ∈ Rn×n,

one defines

ρp(K ) := inf{‖∆K∆−1‖p, ∆ diagonal with positive entries}.

It is easy to check that

inf
α∈(0,+∞)

(
max

{
|`1(0) · Kr1(0)|+ α|`2(0) · Kr1(0)|,

α−1|`1(0) · Kr2(0)|+ |`2(0) · Kr2(0)|
})

= ρ1(K ),

so that the condition can be written as ρ1(K ) < 1.



Analogous conditions

I For the same question for classical solutions in Cm-norm (m ≥ 1), a
sufficient condition is:

ρ∞(K ) < 1.

Cf. T. H. Qin, Y. C. Zhao, T. Li and Bastin-Coron.

I In the case of Sobolev spaces Wm,p([0, L]) with m ≥ 2 and
p ∈ [1,+∞], a sufficient condition is:

ρp(K ) < 1.

Cf. Coron-d’Andréa-Novel-Bastin for p = 2, Coron-Nguyen for
general p.

I One can actually show that

ρ1(K ) = ρ∞(K ).



Remarks: Cauchy problem with boundary

I The known results on the existence of a standard Riemann
semigroup for initial-boundary problem do not seem to cover our
situation exactly and uniqueness of solutions in the spirit of
Bressan-LeFloch or Bressan-Goatin seems open.

Cf. Amadori, Amadori-Colombo, Colombo-Guerra,
Donadello-Marson, Sablé-Tougeron,. . .



A general idea of the proof

I One constructs solutions using the wave-front tracking approach
(here, DiPerna’s approach since we consider 2× 2 systems)

I Then the result relies on a Lyapunov function.

I This Lyapunov function is mainly inspired by two sources:

I Lyapunov functions constructed in the classical case, cf.
Coron-Bastin-d’Andrea-Novel, Coron-Bastin, . . .

I Glimm’s functional used to construct entropy solutions in BV



1. Wave-front tracking algorithm
I Solutions are constructed directly using a wave-front tracking

approach (cf. Dafermos, DiPerna, Bressan, . . . ):

I one constructs a sequence of approximations of a solutions,

I these approximations are piecewise constant functions on R+ × R
where the discontinuities are straight lines separating states
connected by shocks or rarefactions,

x

t



The Riemann problem... far from the boundary

I Find autosimilar solutions u = u(x/t) to{
ut + (f (u))x = 0
u|R− = ul and u|R+ = ur .

I Solved by introducing Lax’s curves which consist of points that can
be joined starting from ul (in the case of GNL fields):

I either by a shock,

I or by a rarefaction wave.



Shocks and rarefaction waves (GNL fields)

Shocks

ul ur

Discontinuities satisfying:
I Rankine-Hugoniot (jump) relations[

f (u)
]

= s
[
u
]
,

I Lax’s inequalities:

λi (ur ) < s < λi (ul)

Propagates at speed s ∼ 1
ur−ul

´ ur
ul
λi

Rarefaction waves

ul ur

Regular solutions,
obtained with integral curves of ri :

d

dσ
Ri (σ) = ri (Ri (σ)),

Ri (0) = ul ,

with σ ≥ 0.

Propagates at speed λi (Ri (σ))



Lax’s curves (GNL fields)

I We call Φi (·, ul) the i-th Lax curve consisting of points ur that can
be connected

I by a i-shock (σ < 0)
I or by a i-rarefaction wave (σ ≥ 0).

I When u+ = Φi (σi , u−), we call σi the strength of the simple wave
(u−, u+).

I By convention, σi > 0 for rarefactions and σi < 0 for shocks.

I Lax’s theorem asserts that for ul and ur sufficiently close, one can
find (σi ) such that

ur = Φ2(σ2, ·) ◦ Φ1(σ1, ·)ul .

I This allows to solve the Riemann problem.



Solving the Riemann problem

ul

um

ur

1-shock

2-rarefaction

x

t

ul

um

ur

I Lax’s Theorem proves that one can solve (at least locally) the
Riemann problem by first following the 1-curve, then the 2-curve.



Front-tracking algorithm

I Approximate initial condition by piecewise constant functions.
I Solve the Riemann problems and replace rarefaction waves by

rarefaction fans.
I For small times, one obtains a piecewise constant function where

states are separated by straight lines called fronts.

x

t

I At each interaction point (points where fronts meet), iterate the
process without splitting again rarefaction fronts



Estimates, convergence, etc.

I One shows than this defines a piecewise constant function, with a
finite number of fronts and discrete interaction points.

I A central argument is due to Glimm: consider

V (τ) =
∑

α wave at time t

|σα| ; Q(τ) =
∑
α,β

approaching waves

|σα|.|σβ |,

I Analyzing interactions α + β → α′ + β′ one shows that: for some
C > 0, if TV (u0) is small enough, then V (t) + CQ(t) is
non-increasing. (Glimm’s functional)

I One deduces bounds in L∞t BVx , then in LiptL1
x , so we have

compactness. . .



Boundary Riemann problem
I In our case we have to take the boundary into account, and to be

able to solve the boundary Riemann problem.

I Cf. Dubois-LeFloch, Amadori, Amadori-Colombo, Colombo-Guerra,
Donadello-Marson, etc.

ur

1-rarefaction

2-shock

x = 0 x = L

ul



Boundary “interactions”
I One can then take “boundary interactions” into account.
I One can measure the size of the oungoing fronts in terms of the size

of the incoming one. This highly depends on K !
I Roughly speaking, our condition ensures

|σ1
outgoing|+ |σ2

outgoing| ≤ κ|σincoming|, 0 < κ < 1.

σ2
outgoing

ur

ul

x = Lx = 0 σincoming

σ1
outgoing



2. Using Lyapunov functions
Let λ > 0, and consider here, for sake of simplicity,{

∂tu + λ∂xu = 0, (t, x) ∈ (0,∞)× (0, L),
u(t, 0) = ku(t, L), t ≥ 0.

Exponential decay ⇔ |k | < 1
An easy way to prove ⇐: Introduce

J(t) =

ˆ L

0
|u(t, x)|2e−2γx dx ,

which satisfies

d

dt
J(t) = −2γλJ(t)− λ

(
u(t, L)2e−2γL − u(t, 0)2)≤ −2γλJ(t)

if exp(−γL) > |k|, so that
√
J(t) ≤ e−γλt

√
J(0).

Can be generalized to many (much more intricate) settings, see
Bastin-Coron’s book.



In our context
Our Lyapunov functional is as follows:

J := V + CQ

where

V (U) =
n∑

i=0

(|σi,1|+ |σi,2|) e−γxi ,

Q(U) =
∑
(xi ,σi )

|σi |e−γxi
( ∑

(xj ,σj ) approaching (xi ,σi )

|σj |e−γxj
)
,

for suitable constants, where
I σi,k is the strength of the k-wave at xi (σi when there is no

ambiguity, i.e. for i ≥ 1),
I x1, . . . , xn are the discontinuities in (0, L),
I u(t, 0+) = Ψ2(σ0,2,Ψ1(σ0,1,Ku(t, L−))).



Our Lyapunov functional, 2

Analyzing in particular interactions of fronts with the boundary, one
shows that for suitable constants and provided that

TV (u0) is small enough,

one has for proper ν > 0:

J(t) ≤ J(0) exp(−νt).

This allows to construct approximations and the solutions globally in time

and to get the result.



Open problems

I Considering a less particular case:

I speeds with different signs,

I n × n systems,

I nonlinear boundary conditions,

I non GNL characteristic fields, etc.

I What about source terms?



Thank you for your attention!

Ref: Dissipative boundary conditions for 2x2 hyperbolic systems of
conservation laws for entropy solutions in BV.
J.D.E. 262 (2017), no. 1, 1–30.
J.-M. Coron, S. Ervedoza, S.S. Ghoshal, O. Glass, V. Perrollaz.


