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C.P. 04510, México D.F.
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Abstract

This work deals with the functional model for extensions of symmetric oper-
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of the unitary group of exponentials corresponding to almost solvable exten-
sions of a given closed symmetric operator with equal deficiency indices. On
the basis of these formulae, we are able to derive a new representation for
the scattering matrix for pairs of such extensions. We use this representation
to explicitly recover the coupling constants in the inverse scattering problem
for a finite non-compact quantum graph with δ-type vertex conditions.
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1. Introduction

Over the last eighty years or so, the subject of the mathematical analysis of waves in-
teracting with obstacles and structures (“scattering theory”) has served as one of the most
impressive examples of bridging abstract mathematics and physics applications, which in
turn motivated the development of new mathematical techniques. The pioneering works
of von Neumann [62], [63] and his contemporaries during 1930–1950, on the mathematical
foundations of quantum mechanics, fuelled the interest of mathematical analysts to for-
mulating and addressing the problems of direct and inverse wave scattering in a rigorous
way.

The foundations of the modern mathematical scattering theory were laid by Kato,
Rosenblum and Friedrichs [27, 64, 65, 20] and subsequently by Birman and Krĕın [5],
Birman [4], Kato and Kuroda [28] and Pearson [54]. For a detailed exposition of this
subject, see [55, 71]. A parallel approach, which provides a connection to the theory of
dissipative operators, was developed by Lax and Phillips [41], who analysed the direct
scattering problem for a wide class of linear operators in the Hilbert space, including
those associated with the multi-dimensional acoustic problem outside an obstacle, using
the language of group theory (and, indeed, thereby developing the semigroup methods in
operator theory). The associated techniques were also termed “resonance scattering” by
Lax and Phillips.

By virtue of the underlying dissipative framework, the above activity set the stage
for the applications of non-selfadjoint techniques, in particular for the functional model
for contractions and dissipative operators by Szökefalvi-Nagy and Foiaş [61], which has
shown the special rôle in it of the characteristic function of Livšic [44] and allowed Pavlov
[53] to construct a spectral form of the functional model for dissipative operators. The
connection between this work and the concepts of scattering theory was uncovered by the
famous theorem of Adamyan and Arov [1]. Further, Naboko [48] advanced the research
initiated by Pavlov, Adamyan and Arov in two directions. Firstly, he generalised Pavlov’s
construction to the case of non-dissipative operators, and secondly, he bridged the gap
back to the mathematical scattering theory. In particular, he provided explicit formulae
for the wave operators and scattering matrices of a pair of (in general, non-selfadjoint)
operators in the functional model setting. It is remarkable that in this work of Naboko
the difference between the so-called stationary and non-stationary scattering approaches
disappears.

Our first aim in the present work is to extend the approach of Naboko [48], which was
formulated for additive perturbations of self-adjoint operators, to the case of extensions
of symmetric operators. In pursuing this, we will use a version of the functional model of
Pavlov and Naboko as developed by Ryzhov [58]. The work [58] stopped short of proving
the crucial, from the scattering point of view, theorem on “smooth” vectors and therefore
was not able to extend Naboko’s results on the scattering theory to the setting of (in
general, non-selfadjoint) extensions of symmetric operators.

Our second aim is, on the basis of the above construction, to provide an explicit solution
to an open problem of inverse scattering on a finite non-compact quantum graph, that is,
to the problem of determining matching conditions at the graph vertices. The uniqueness
part of this problem has been treated in a preprint by Kostrykin and Schrader [33]. There
is also substantial literature on scattering for vector Schrödinger operators on a half-line
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with matrix potentials, which corresponds to the particular case of a star-graph. Among
the latest works on this subject we point out [68], [69], see also references therein, in which
scattering is treated in the case of most general matching conditions at the vertex.

The mentioned problem on quantum graphs is a natural generalisation of the now
extensively-studied problem of inverse scattering on the infinite and semi-infinite line,
which was solved using the classical integral-operator techniques by Borg [7, 8], Levinson
[42], Krein [36, 37, 38], Gel’fand and Levitan [21], Marchenko [45], Faddeev [18, 19], Deift
and Trubowitz [11]. This body of work has also included the solution to the inverse spectral
problem, i.e. the problem of determining the potential in the Schrödinger equation from
the spectral data. The inverse scattering problem in these works is reduced to the analysis
of the inverse problem based on the Weyl-Titchmarsh m-coefficient, and our analysis below
benefits from a reduction of the same kind.

In the general operator-theoretic context, the m-coefficient is generalised to both the
classical Dirichlet-to-Neumann map (in the PDE setting), and to the so-called M -operator,
which takes the form of the generalised Weyl-Titchmarsh M -matrix in the case of quantum
graphs and, more generally, symmetric operators with finite deficiency indices. This has
been exploited extensively in the study of operators, self-adjoint non-selfadjoint alike,
through the works of Krein’s school in Ukraine on the theory of boundary triples and the
associated M -operators (Gorbachuk and Gorbachuk [23], Kochubei [30, 31], Derkach [12]
and others) and of the students of Pavlov in St. Petersburg on the derivation and analysis
of functional models for various classes of non-selfadjoint operators and of the associated
formulae for wave operators (see e.g. [48]). In our view, the theory of boundary triples
is conveniently tailored to the study of quantum graphs, when it can also be viewed as a
version of the celebrated Birman-Krěın-Vǐsik theory [3, 35, 67].

Quantum graphs, i.e. metric graphs with ordinary differential operators acting on
the edges subject to some “coupling” conditions at the graph vertices, see e.g. [2] are
known to combine certain one-dimensional and multidimensional features. Assuming that
the graph topology and the lengths of the edges are known, for the operator of second
differentiation on all graph edges and δ-type conditions at all graph vertices (see Section 8
for precise definitions), in the present paper we determine the coupling constants at all
vertices of a finite graph from the knowledge of its scattering matrix. Our approach to
the above problem uses as a starting point the strategy of the work [58] mentioned above,
which derived the functional model for dissipative restrictions of “maximal” operators,
i.e. the adjoints of symmetric densely-defined operators with equal deficiency indices. The
functional-model approach allows us to obtain a new formula for the wave operator for any
pair of such restrictions, in terms of the M -operator for an appropriate boundary triple
on the graph. This formula, in turn, implies an expression for the scattering operator and
its spectral representation (“scattering matrix”). The obtained formula is given explicitly
in terms of the coupling constants at the graph vertices, which allows us to carry out
the inverse procedure of recovering these constants from the knowledge of the scattering
matrix. Our approach is a development of the idea of Ershova et al. [14, 15, 16], who
studied the inverse spectral problem and the inverse topology problem for quantum graphs
using boundary triples and M -operators.

The paper is organised as follows. In Section 2 we recall the key points of the theory
of boundary triples for extensions of symmetric operators with equal deficiency indices
and introduce the associated M -operators, following mainly [13] and [58]. In Section
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3 we derive formulae for the resolvents of the family of extensions Aκ parametrised by
operators κ in the boundary space, in terms of the so-called characteristic function of a
fixed element of the family. These formulae are then employed in Section 4 to derive the
functional model for the above family of extensions. The material of Sections 3 and 4
closely follows the approach of [58]. In Section 5 we characterise the absolutely continuous
subspace of Aκ as the closure of the set of “smooth” vectors in the model Hilbert space
introduced in Section 4. On the basis of this characterisation, in Section 6 we define
the wave operators for a pair from the family {Aκ} and demonstrate their completeness
property. This, in combination with the functional model, allows us to obtain formulae for
the scattering operator of the pair. In Section 7 we describe a convenient representation
of the scattering operator, namely the “scattering matrix”, which is explicitly written
in terms of the M -operator, analogous to the classical notion of the scattering matrix.
All material up to this point is applicable to a general class of operators subject to the
assumptions discussed in Sections 2 and 5. In Section 8 we recall the concept of a quantum
graph and discuss the implications of the preceding theory for the associated scattering
operator for the pair (Aκ, A0), where κ is the parametrising operator as before, now
written in terms of the “coupling” constants at the graph vertices and A0 = Aκ|κ=0 is the
“unperturbed” operator with Kirchhoff vertex conditions. Finally, in Section 9 we solve
the inverse scattering problem for a graph with δ-type couplings at the vertices, using the
formulae for the scattering matrix in terms of the M -matrix of the graph.

2. Extension theory and boundary triples

Let H be a separable Hilbert space and denote by 〈·, ·〉 the inner product in this space
(which we consider to be antilinear in the second argument).

Let A be a closed symmetric operator densely defined in H, i.e. A ⊂ A∗, with domain
dom(A) ⊂ H. For such operators, the lower and upper half-planes are points of regular
type and the deficiency indices n+(A), n−(A) are defined as follows:

n±(A) := dim(H	 ran(A− zI)) = dim(ker(A∗ − zI)) , z ∈ C± .

If A = A∗ then A is referred to as self-adjoint.

Definition 1. A closed operator L is said to be completely non-selfadjoint if there is no
subspace reducing L such that the part of L in this subspace is self-adjoint. A completely
non-selfadjoint symmetric operator is often referred to as simple.

For a closed symmetric operator to be simple it suffices that it has no invariant subspace
in which the operator is self-adjoint [6, Thm. 4.6.1].

As shown in [39, Sec. 1.3](see also [24, Thm. 1.2.1]), the maximal invariant subspace
for the closed symmetric operator A in which it is self-adjoint is⋂

z∈C\R

ran(A− zI) .

Thus, a necessary and sufficient condition for the closed symmetric operator A to be
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completely non-selfadjoint (or simple) is that⋂
z∈C\R

ran(A− zI) = {0} . (2.1)

In this work we consider extensions of a given closed symmetric operator A with equal
deficiency indices, i. e. n−(A) = n+(A), and use the theory of boundary triples. In
order to deal with the family of extensions {Aκ} of the symmetric operator A (where
the parameter κ is itself an operator, see notation immediately following Proposition
2.2), we first construct a functional model of its particular dissipative extension. This is
done following the Pavlov-Naboko procedure, which in turn stems from Sz.-Nagy-Foiaş
functional model. This allows us to obtain a simple model for the whole family {Aκ},
in particular yielding a possibility to apply it to the scattering theory for certain pairs
of operators in {Aκ}, including both the cases when these operators are self-adjoint and
non-selfadjoint.

Taking into account the importance of dissipative operators in our work, we briefly
recall that a densely defined operator L in H is called dissipative if

Im 〈Lf, f〉 ≥ 0 ∀f ∈ dom(L). (2.2)

For a dissipative operator L, the lower half-plane is contained in the set of points of regular
type, i.e.

C− ⊂ {z ∈ C : ∃C > 0 ∀f ∈ dom(L) ‖(L− zI)f‖ ≥ C ‖f‖} .

A dissipative operator L is called maximal if C− is actually contained in its resolvent set
ρ(L) := {z ∈ C : (L − zI)−1 ∈ B(H)}. (B(H) denotes the space of bounded operators
defined on the whole Hilbert space H). Clearly, a maximal dissipative operator is closed.

We next describe the boundary triple approach to the extension theory of symmetric
operators with equal deficiency indices. It has proven to be particularly useful in the study
of self-adjoint extensions of differential operators of second order.

Definition 2. For a closed symmetric operator A with equal deficiency indices, consider
the linear mappings

Γ1 : dom(A∗)→ K, Γ0 : dom(A∗)→ K ,

where K is an auxiliary separable Hilbert space, such that

(1) 〈A∗f, g〉H − 〈f,A
∗g〉H = 〈Γ1f,Γ0g〉K − 〈Γ0f,Γ1g〉K ; (2.3)

(2) The mapping dom(A∗) 3 f 7→
(

Γ1f

Γ0f

)
∈ K ⊕K is surjective.

Then the triple (K,Γ1,Γ0) is said to be a boundary triple for A∗.

Remark 1. There exist boundary triples for A∗ whenever A has equal deficiency indices
(the case of infinite indices is not excluded).

In this work we consider proper extensions of A, i.e. extensions of A that are restric-
tions of A∗. For a closed linear relation B on K, i.e. a subspace of K ⊕K, let AB be the
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restriction of A∗ such that, for a specific choice of the triple (K,Γ1,Γ0) one has

dom(AB) =

{
f ∈ dom(A∗) :

(
Γ1f

Γ0f

)
∈ B

}
. (2.4)

Clearly, AB is a proper extension of A (see [59, Sec. 14]).
In this paper we treat those proper extensions AB of A that arise from linear relations

B that are graphs of bounded operators defined on the whole space K. In this case we
identify the relation B and the corresponding bounded operator, i. e., B ∈ B(K). The
extensions AB for which there exists a triple (K,Γ1,Γ0) and B ∈ B(K) are called almost
solvable with respect to the triple (K,Γ1,Γ0). In this case, (2.4) implies that

f ∈ dom(AB) ⇐⇒ Γ1f = BΓ0f . (2.5)

Remark 2. Most of what is said henceforth remains valid not only for almost solvable
extensions but for more general extensions given by relations, which we shall pursue else-
where.

The following assertions, written in slightly different terms, can be found in [30, Thm. 2]
and [25, Chap. 3 Sec. 1.4] (see also [29, Thm. 2.3], [58, Thm. 1.1], and [59, Sec. 14] for a
closer formulation). We compile them in the next proposition for easy reference.

Proposition 2.1. Let A be a closed symmetric operator with equal deficiency indices and
let (K,Γ1,Γ0) be a the boundary triple for A∗. Assume that AB is an almost solvable
extension. Then the following statements hold:

1. f ∈ dom(A) if and only if Γ1f = Γ0f = 0.

2. AB is maximal, i. e., ρ(AB) 6= ∅.

3. A∗B = AB∗ .

4. AB is dissipative if and only if B is dissipative.

5. AB is self-adjoint if and only if B is self-adjoint.

Definition 3. The function M : C− ∪ C+ → B(H) such that

M(z)Γ0f = Γ1f ∀f ∈ ker(A∗ − zI)

is the Weyl function of the boundary triple (K,Γ1,Γ0) for A∗.

The Weyl function defined above has the following properties [13].

Proposition 2.2. Let M be a Weyl function of the boundary triple (K,Γ1,Γ0) for A∗.
Then the following statements hold:

1. M : C \ R→ B(K) .

2. M is a B(K)-valued double-sided R-function [26], that is,

M(z)∗ = M(z) and Im(z) Im(M(z)) > 0 for z ∈ C \ R .

5



3. The spectrum of AB coincides with the set of points z0 ∈ C such that (M − B)−1

does not admit analytic continuation into z0.

Let us lay out the notation for some of the main objects in this paper. In the auxiliary
Hilbert space K, choose a bounded nonnegative self-adjoint operator α so that the operator

Bκ :=
ακα

2
(2.6)

belongs to B(K), where κ is a bounded operator in E := clos(ran(α)) ⊂ K. In what
follows, we deal with almost solvable extensions of a given symmetric operator A that
are generated by Bκ via (2.5). It is always assumed that the deficiency indices of A are
equal and that some boundary triple (K,Γ1,Γ0) for A∗ is fixed. In order to streamline the
formulae, we write

Aκ := ABκ . (2.7)

Here κ should be understood as a parameter for a family of almost solvable extensions
of A. Note that if κ is self-adjoint then so is Bκ and, hence by Proposition 2.1(5), Aκ is
self-adjoint. Note also that AiI is maximal dissipative, again by Proposition 2.1.

Definition 4. The characteristic function of the operator AiI is the operator-valued func-
tion S on C+ given by

S(z) := I �E +iα
(
B∗iI −M(z)

)−1
α �E , z ∈ C+. (2.8)

In the general setting, the characteristic function is defined as in [58, Def. 1.7]. Our
definition is justified by [58, Eq. 1.16].

Remark 3. The function S is analytic in C+ and, for each z ∈ C+, the mapping S(z) :
E → E is a contraction. Therefore, S has nontangential limits almost everywhere on the
real line in the strong topology [61], which we will henceforth denote by S(k), k ∈ R.

Remark 4. When α =
√

2I, an straightforward calculation yields that S(z) is the Cayley
transform of M(z), i.e.

S(z) = (M(z)− iI)(M(z) + iI)−1 .

3. Formulae for the resolvents of almost solvable extensions

In this section we establish some useful relations between the resolvents of the operators
Aκ for any κ ∈ B(E) and the resolvents of the maximal dissipative operator AiI and its
adjoint. These relations are instrumental for the construction of the functional model in
the next section.

Notation 1. We abbreviate

Θκ(z) : = I − iα(BiI −M(z))−1αχ+
κ , z ∈ C− , (3.1)

Θ̂κ(z) : = I + iα(B∗iI −M(z))−1αχ−κ , z ∈ C+ , (3.2)

where

χ±κ :=
I ± iκ

2
, (3.3)
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and for simplicity we have written I instead of I �E . We use this convention throughout
the text.

It follows from Definition 4 and Proposition 2.2(2) that the operator-valued functions
Θκ(z) and Θ̂κ(z) can be expressed in terms of the characteristic function S, as follows:

Θκ(z) = I + (S∗(z)− I)χ+
κ ∀ z ∈ C− , (3.4)

Θ̂κ(z) = I + (S(z)− I)χ−κ ∀ z ∈ C+ . (3.5)

The formulae in the next lemma are analogous to [58, Eqs. 2.18 and 2.22].

Lemma 3.1. The following identities hold:

(i) αΓ0(AiI − zI)−1 = Θκ(z)αΓ0(Aκ − zI)−1 ∀ z ∈ C− ∩ ρ(Aκ);

(ii) αΓ0(Aκ − zI)−1 = Θκ(z)−1αΓ0(AiI − zI)−1 ∀ z ∈ C− ∩ ρ(Aκ);

(iii) αΓ0(A∗iI − zI)−1 = Θ̂κ(z)αΓ0(Aκ − zI)−1 ∀ z ∈ C+ ∩ ρ(Aκ);

(iv) αΓ0(Aκ − zI)−1 = Θ̂κ(z)−1αΓ0(A∗iI − zI)−1 ∀ z ∈ C+ ∩ ρ(Aκ) .

Proof. We start by proving (i). To this end, suppose that z ∈ C− ∩ ρ(Aκ) so (AiI − zI)−1

and (Aκ − zI)−1 are defined on the whole space H. Fix an arbitrary h ∈ H and define

ϕ := (AiI − zI)−1h, g := (Aκ − zI)−1h . (3.6)

Clearly, the vector

f := ϕ− g =
(
(AiI − zI)−1 − (Aκ − zI)−1

)
h

is in ker(A∗−zI) since A∗ is an extension of both operators AiI and Aκ. According to (2.5),
it follows from ϕ ∈ dom(AiI) and g ∈ dom(Aκ) that Γ1ϕ = BiIΓ0ϕ and Γ1g = BκΓ0g.
Thus, one has

0 = Γ1(f + g)−BiIΓ0(f + g)

= Γ1f −BiIΓ0f + Γ1g −BiIΓ0g

= M(z)Γ0f −BiIΓ0f +BκΓ0g −BiIΓ0g ,

where in the last equality we also use the fact that f ∈ ker(A∗ − zI), together with
Definition 3. Hence one has

Γ0f = (BiI −M(z))−1(Bκ −BiI)Γ0g ,

which, in turn, implies that

Γ0ϕ = Γ0f + Γ0g =
[
I + (BiI −M(z))−1(Bκ −BiI)

]
Γ0g. (3.7)

Taking into account (3.6), using the fact that Bκ − BiI = −iαχ+
κα and applying the

operator α to both sides of (3.7), we obtain

αΓ0(AiI − zI)−1h =
[
I − iα(BiI −M(z))−1αχ+

κ
]
αΓ0(Aκ − zI)−1h,
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which is the identity (i), in view of the definition (3.4).
Similar computations with the pairs Aκ, Bκ and AiI , BiI interchanged lead to

αΓ0(Aκ − zI)−1h =
[
I + iα(Bκ −M(z))−1αχ+

κ
]
αΓ0(AiI − zI)−1h, (3.8)

for z ∈ C− ∩ ρ(Aκ). Now, (ii) follows from (3.8) using the identity

Θκ(z)−1 = I + iα
(
Bκ −M(z)

)−1
αχ+

κ ∀ z ∈ C− ∩ ρ(Aκ) , (3.9)

which is validated by multiplying together the right-hand sides of (3.9) and (3.1) and
employing a version of the second resolvent identity (cf. [70, Thm. 5.13]):

(Bκ −M(z))−1 − (BiI −M(z))−1 = (Bκ −M(z))−1(BiI −Bκ)(BiI −M(z))−1

which holds for all z ∈ C− ∩ ρ(Aκ).
We next proceed to the proof of (iii) and (iv). Fix an arbitrary z ∈ C+ ∩ ρ(Aκ) and

an arbitrary h ∈ H and define

ϕ := (A∗iI − zI)−1h , g := (Aκ − zI)−1h , (3.10)

then f := ϕ− g is in ker(A∗ − zI). Since ϕ ∈ dom(A∗iI), one has that

0 = Γ1(f + g)−B∗iIΓ0(f + g)

= M(z)Γ0f + Γ1g −B∗iIΓ0f −BiIΓ0g ,

where in the second equality we use the fact that f ∈ ker(A∗ − zI). On the other hand,
in view of the inclusion g ∈ dom(Aκ), the formula (2.5) allows us to replace the second
term in the last expression by BκΓ0g, which yields

0 = (M(z)−B∗iI)Γ0f + (Bκ −B∗iI)Γ0g . (3.11)

Since Bκ −B∗iI = iαχ−κα, the equality (3.11) is rewritten as

Γ0f = i(B∗iI −M(z))−1αχ−καΓ0g ,

which in turn implies that

Γ0ϕ =
[
I + i(B∗iI −M(z))−1αχ−κα

]
Γ0g .

Applying the operator α to both sides of the last equation and using (3.10), we obtain

αΓ0(A∗iI − zI)−1h =
[
I + iα(B∗iI −M(z))−1αχ−κ

]
αΓ0(Aκ − zI)−1h,

which is (iii), in view of the definition (3.5).
Finally, we interchange the operators A∗iI and Aκ in (3.10) and repeat the computa-

tions, correspondingly interchanging BiI and Bκ. This yields the identity

αΓ0(A∗κ − zI)−1h =
[
I − iα(B∗iI −M(z))−1αχ−κ

]
αΓ0(A∗iI − zI)−1h, (3.12)
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for all z ∈ C+ ∩ ρ(Aκ). In a similar way to (3.9), we verify that

Θ̂κ(z)−1 = I − iα(B∗iI −M(z))−1αχ−κ ∀ z ∈ C+ ∩ ρ(Aκ)

and hence establish (iv).

4. Functional model and theorems about smooth vectors

Following [48], we introduce a Hilbert space serving as a functional model for the family
of operators Aκ. This functional model was constructed for completely non-selfadjoint
maximal dissipative operators in [53, 51, 52] and further developed in [48]. Next we
recall some related necessary information. In what follows, in various formulae, we use
the subscript “±” to indicate two different versions of the same formula in which the
subscripts “+” and “−” are taken individually.

A function f analytic on C± and taking values in K is said to be in the Hardy class
H2
±(E) if and only if

sup
y>0

∫
R
‖f(x± iy)‖2e dx < +∞

(cf. [56, Sec. 4.8]). Whenever f ∈ H2
±(E), the left-hand side of the above inequality

defines ‖f‖2H2
±(E). We use the notation H2

+ and H2
− for the usual Hardy spaces of C-

valued functions.
Any element in the Hardy spaces H2

±(E) can be associated with its boundary values
in the topology of K, which exist almost everywhere on the real line. The spaces of
boundary functions of H2

±(E) are denoted by Ĥ2
±(E) and they are subspaces of L2(R, E)

[56, Sec. 4.8, Thm. B]). By the Paley-Wiener theorem [56, Sec. 4.8, Thm. E]), one verifies
that these subspaces are the orthogonal complements of each other (i.e., L2(R, E) =
Ĥ2

+(E)⊕ Ĥ2
−(E)).

Following the argument of [48, Thm. 1], it is shown in [58, Lem. 2.4] that

αΓ0(AiI − ·I)−1h ∈ H2
−(E) and αΓ0(A∗iI − ·I)−1h ∈ H2

+(E) . (4.1)

As mentioned in Remark 3, the characteristic function S given in Definition 4 has
nontangential limits almost everywhere on the real line in the strong topology. Thus, for
a two-component vector function

(
g̃
g

)
taking values in E⊕E, one can consider the integral∫

R

〈(
I S∗(s)

S(s) I

)(
g̃(s)

g(s)

)
,

(
g̃(s)

g(s)

)〉
E⊕E

ds, (4.2)

which is always nonnegative, also due to the contractive properties of S. The space

H := L2

(
E ⊕ E;

(
I S∗

S I

))
(4.3)

is the completion of the linear set of two-component vector functions
(
g̃
g

)
: R → E ⊕ E

in the norm (4.2), factored with respect to vectors of zero norm. Naturally, not every
element of the set can be identified with a pair

(
g̃
g

)
of two independent functions. Still, in
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what follows we keep the notation
(
g̃
g

)
for the elements of this space.

Another consequence of the contractive properties of the characteristic function S is
that for g̃, g ∈ L2(R, E) one has∥∥∥∥(g̃g

)∥∥∥∥
H

≥

{
‖g̃ + S∗g‖L2(R,E) ,

‖Sg̃ + g‖L2(R,E) .

Thus, for every Cauchy sequence {
(
g̃n
gn

)
}∞n=1, with respect to the H-topology, such that

g̃n, gn ∈ L2(R, E) for all n ∈ N, the limits of g̃n + S∗gn and Sg̃n + gn exists in L2(R, E),
so that the objects g̃ + S∗g and Sg̃ + g can always be treated as L2(R, E) functions.

Consider the orthogonal subspaces of H

D− :=

(
0

Ĥ2
−(E)

)
, D+ :=

(
Ĥ2

+(E)
0

)
. (4.4)

We define the space
K := H	 (D− ⊕D+),

which is characterised as follows (see e.g. [51, 52]):

K =

{(
g̃
g

)
∈ H : g̃ + S∗g ∈ Ĥ2

−(E) , Sg̃ + g ∈ Ĥ2
+(E)

}
. (4.5)

The orthogonal projection PK onto the subspace K is given by (see e.g. [47])

PK

(
g̃
g

)
=

(
g̃ − P+(g̃ + S∗g)

g − P−(S g̃ + g)

)
, (4.6)

where P± are the orthogonal Riesz projections in L2(E) onto Ĥ2
±(E).

On the other hand, a completely non-selfadjoint dissipative operator admits [61] a self-
adjoint dilation. According to [58], this dilation for the operator AiI can be constructed
following Pavlov’s procedure [51, 53, 52], i. e., the dilation A = A∗ is defined in the Hilbert
space

H = L2(R−, E)⊕H⊕ L2(R+, E) (4.7)

where H is the original Hilbert space, see Section 2, so that

PH(A− zI)−1 �H= (AiI − zI)−1 , z ∈ C−

and therefore
PH(A− zI)−1 �H= (A∗iI − zI)−1 , z ∈ C+ .

As in the case of additive non-selfadjoint perturbation [48], Ryzhov was able to establish in
[58, Thm. 2.3] that H serves as the functional model for the dilation A, i. e., there exists an
isometry Φ from H onto H such that A is transformed into the operator of multiplication
by the independent variable in H; more precisely,

Φ(A− zI)−1 = (· − z)−1Φ . (4.8)
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Furthermore, under this isometry the space H is mapped onto K:

ΦH = K .

The next theorem generalises [58, Thm. 2.5], and its form is similar to [48, Thm. 3],
which treats the case of additive perturbartions. Its proof blends together the arguments
of [58] and [48] taking advantage of the similarity between the formulae (3.1)–(3.5) and
those of [48, Section 2]. The proof is given in the Appendix for the sake of completeness.

Theorem 4.1. (i) If z ∈ C− ∩ ρ(Aκ) and
(
g̃
g

)
∈ K, then

Φ(Aκ − zI)−1Φ∗
(
g̃

g

)
= PK

1

· − z

(
g̃

g − χ+
κ Θ−1

κ (z)(g̃ + S∗g)(z)

)
. (4.9)

(ii) If z ∈ C+ ∩ ρ(Aκ) and
(
g̃
g

)
∈ K, then

Φ(Aκ − zI)−1Φ∗
(
g̃

g

)
= PK

1

· − z

(
g̃ − χ−κ Θ̂−1

κ (z)(Sg̃ + g)(z)

g

)
. (4.10)

Here, (g̃+S∗g)(z) and (Sg̃+g)(z) denote the values at z of the analytic continuations
of the functions g̃+S∗g ∈ Ĥ2

−(E) and Sg̃+g ∈ Ĥ2
+(E) into the lower half-plane and

upper half-plane.

Following the ideas of Naboko, in the functional model space H consider two subspaces
N κ
± defined as follows:

N κ
± :=

{(
g̃

g

)
∈ H : P±

(
χ+
κ (g̃ + S∗g) + χ−κ (Sg̃ + g)

)
= 0

}
. (4.11)

These subspaces have a characterisation in terms of the resolvent of the operator Aκ,
whose proof, which we provide for completeness in the Appendix, follows the approach of
[48, Thm. 4].

Theorem 4.2. The following characterisation holds:

N κ
± =

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C±

}
. (4.12)

Consider the counterparts of N κ
± in the original Hilbert space H :

Ñκ
± := Φ∗PKN κ

± , (4.13)

which are linear sets albeit not necessarily subspaces. In a way similar to [48], we introduce
the set

Ñκ
e := Ñκ

+ ∩ Ñκ
−

of so-called smooth vectors and its closure Nκ
e := clos(Ñκ

e ). These prove to be suitable
for the model description of the absolutely continuous subspace and, therefore, for the
construction of the wave operators. In Section 5 we prove that Nκ

e coincides with the
absolutely continuous subspace of the operator Aκ, in the case when Aκ = A∗κ and under

11



the additional assumption that ker(α) = {0}. The reason for the choice of the term
“smooth vector” stems from the statement of Theorem 4.2 together with (4.13).

The next assertion is an alternative non-model characterisation of the linear sets Ñκ
±.

The proof is found in the Appendix.

Theorem 4.3. The sets Ñκ
± are as follows:

Ñκ
± =

{
u ∈ H : χ∓καΓ0(Aκ − zI)−1u ∈ H2

±(E)
}
. (4.14)

Corollary 4.4. The right-hand side of (4.14) coincides with {u ∈ H : αΓ0(Aκ−zI)−1u ∈
H2
±(E)} and therefore equivalently one has

Ñκ
± = {u ∈ H : αΓ0(Aκ − zI)−1u ∈ H2

±(E)}. (4.15)

Proof. Indeed, if αΓ0(Aκ − zI)−1u ∈ H2
+(E) then clearly χ−καΓ0(Aκ − zI)−1u ∈ H2

+(E).
Conversely, we write

S(z)χ−καΓ0(Aκ − zI)−1u = (S(z)χ−κ + χ+
κ )αΓ0(Aκ − zI)−1u− χ+

καΓ0(Aκ − zI)−1u
(4.16)

= Θ̂κ(z)αΓ0(Aκ − zI)−1u− χ+
καΓ0(Aκ − zI)−1u (4.17)

= αΓ0(A∗iI − zI)−1u− χ+
καΓ0(Aκ − zI)−1u, (4.18)

where S(z)χ−κ + χ+
κ = (S(z) − I)χ−κ + I = Θ̂κ(z), see (3.5), and in (4.17)–(4.18) we use

the part (iii) of Lemma 3.1.
Further, as we noted in (4.1), one has αΓ0(A∗iI − zI)−1u ∈ H2

+(E), and since S is an
analytic contraction in C+ the function S(z)χ−καΓ0(Aκ − zI)−1u, z ∈ C+, is an element
of H2

+(E) as long as χ−καΓ0(Aκ − zI)−1u ∈ H2
+(E). Recalling (4.16), (4.18), we conclude

that χ+
καΓ0(Aκ − zI)−1u ∈ H2

+(E) and therefore

χ+
καΓ0(Aκ − zI)−1u+ χ−καΓ0(Aκ − zI)−1u = αΓ0(Aκ − zI)−1u ∈ H2

+(E),

as required.
The equality{
u ∈ H : χ+

καΓ0(Aκ − zI)−1u ∈ H2
−(E)

}
=
{
u ∈ H : αΓ0(Aκ − zI)−1u ∈ H2

−(E)
}

is shown in a similar way.

Remark 5. The above corollary together with Theorem 5.5 motivates extending the
notion of the absolutely continuous subspace Hac(Aκ) to the case of non-selfadjoint exten-
sions Aκ of a symmetric operator A, by identifying it with the set Nκ

e . This generalisation
follows in the footsteps of the corresponding definition by Naboko [48] in the case of addi-
tive perturbations. In particular, an argument similar to [48, Corollary 1] shows that for
the functional model image of Ñκ

e the following representation holds:

ΦÑκ
e =

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
∀ z ∈ C− ∪ C+

}
. (4.19)
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(Note that the inclusion of the right-hand side of (4.19) into ΦÑκ
e follows immediately

from Theorem 4.2.) Further, we arrive at equivalent description:

ΦÑκ
e =

{
PK

(
g̃

g

)
: χ+

κ (g̃ + S∗g) + χ−κ (Sg̃ + g) = 0

}
. (4.20)

5. The relationship between the set of smooth vectors and the
absolutely continuous subspace in the self-adjoint setting

The argument of this section is similar to that of [48], subject to appropriate modifica-
tions in order to account for the fact that we deal with extensions of symmetric operators
rather than additive perturbations. The same strategy seems to be applicable in the
“mixed” case that incorporates both extensions and perturbations, which has recently
been studied in [10].

The following proposition is found in [48, Lemma 5]. For reader’s convenience, we
provide its proof in the Appendix.

Proposition 5.1. If the Borel transform of a Borel measure µ∫
R

dµ(s)

s− z

is either an element of H2
+ when z ∈ C+ or an element of H2

− when z ∈ C−, then µ is
absolutely continuous with respect to the Lebesgue measure.

Lemma 5.2. Assume that κ = κ∗, ker(α) = {0} and let PS be the orthogonal projection
onto the singular subspace of Aκ. Then following inclusion holds:

PSÑ
κ
e ⊂

⋂
z∈C\R

ran(A− zI) .

Proof. We first demonstrate the validity of the claim for κ = 0.
We decompose the smooth vector u into its projections onto the absolutely continuous

and singular subspaces of A0, that is, u = uac +us, where uac ∈ Hac(A0) and us ∈ Hs(A0),
so uac ⊥ us and us ∈ PSÑκ

e .
Consider an arbitrary w ∈ K and note that, due to the surjectivity of Γ1, there exists

a vector v ∈ dom(A∗) such that αw = Γ1v, and therefore〈
Γ0(A0 − zI)−1u, αw

〉
K =

〈
Γ0(A0 − zI)−1u,Γ1v

〉
K (5.1)

=
〈
Γ0(A0 − zI)−1u,Γ1v

〉
K −

〈
Γ1(A0 − zI)−1u,Γ0v

〉
K (5.2)

=
〈
(A0 − zI)−1u,A∗v

〉
H −

〈
A∗(A0 − zI)−1u, v

〉
H (5.3)

=

∫
R

1

t− z
dµu,A∗v(t)−

∫
R

t

t− z
dµu,v(t) =

∫
R

1

t− z
dµ̂(t). (5.4)

Here

µu,A∗v(δ) := 〈EA0(δ)u,A∗v〉H , µu,v(δ) := 〈EA0(δ)u, v〉H ∀Borel δ ⊂ R,
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where EA0 is the spectral resolution of the identity for the operator A0, and µ̂(t) :=
µu,A∗v(t)− tµu,v(t). Furthermore, the measure µ̂ admits the decomposition into its abso-
lutely continuous and singular parts with respect to the Lebesgue measure. Its singular
part is equal to µus,A∗v(t) − tµus,v(t) =: µ̂s(t), see e.g. [6]. The equality (5.1)–(5.2) is
due to the observation that Γ1 vanishes on dom(A0), and the equality (5.2)–(5.3) is a
consequence of the “Green formula” (2.3) and the fact that A ⊂ A0.

At the same time, it follows from Corollary 4.4 that the scalar analytic function〈
Γ0(A0 − zI)−1u, αw

〉
K is an element of H2

+ and also of H2
−. Therefore, by Lemma 5.1 we

infer from (5.1)–(5.4) that the measure µ̂ is absolutely continuous, which implies that its
singular part µ̂s is the zero measure.

Finally, we invoke (5.1)–(5.4) once again, having replaced u by us and µ̂ by µ̂s, and
conclude that 〈

Γ0(A0 − zI)−1us, αw
〉
K = 0 ∀ z ∈ C \ R. (5.5)

Now, by virtue of the facts that w ∈ K in (5.5) is arbitrary and ker(α) = {0}, it
follows that Γ0(A0 − zI)−1us = 0, and since (A0 − zI)−1us ∈ dom(A0) and therefore
Γ1(A0 − zI)−1us = 0 automatically, we obtain (A0 − zI)−1us ∈ dom(A). Finally, since
A0 ⊃ A, we conclude that us ∈ ran(A− zI) for all z ∈ C \ R, as claimed.

In order to treat the case of an arbitrary κ ∈ B(K) such that κ = κ∗, we define
“shifted” boundary operators Γ̂0 := Γ0, Γ̂1 := Γ1 −BκΓ0. Notice that (cf. (2.5))

dom(Aκ) = {u ∈ H : Γ1u = BκΓ0u} = {u ∈ H : Γ̂1u = 0},

i.e. the operator Aκ plays the rôle of the operator A0 in the triple (K, Γ̂0, Γ̂1). Further,
note that the change of the triple results in a change of the operator that needs to play
the rôle of AiI , the dissipative extension used to construct the functional model, which in
terms of the “old” triple (K,Γ0,Γ1) should be the extension AB with B = α(i + κ)α/2.
Repeating the above argument in this new functional model and bearing in mind that the
characterisation of Ñκ

e in Corollary 4.4 holds for all κ, yields the stated result.

An immediate consequence of this result and the criterion of complete non-selfadjoint-
ness (2.1) is the following assertion.

Corollary 5.3. Let κ and α be as in the preceding lemma. If A is completely non-
selfadjoint, then

Ñκ
e ⊂ Hac(Aκ) .

We now proceed to the proof of the opposite inclusion.

Lemma 5.4 (Modified Rosenblum lemma, cf. [57]). Let β be a self-adjoint operator in
a Hilbert space H1. Suppose that the operator T , defined on dom(β) and taking values
in a Hilbert space H2, is such that T (β − z0I)−1 is a Hilbert-Schmidt operator for some
z0 ∈ ρ(β). Then there exists a set D, dense in Hac(β), such that∫

R
‖T exp(−iβt)u‖2 dt <∞

for all u ∈ D.
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Proof. Let x ∈ R and ε > 0. By Hilbert’s first identity

T (β − (x+ iε)I)−1 = ((x+ iε)− z0)T (β − z0I)−1(β − (x+ iε)I)−1 + T (β − z0I)−1

Consider the first term on the right-hand side of this last equation. By [49], for every f
in H1 the limit

lim
ε→0

T (β − z0I)−1(β − (x+ iε)I)−1f

exists for almost all x ∈ R (the convergence set actually depends on f). It follows that
the limit

lim
ε→0

T
(
(β − (x+ iε)I)−1 − (β − (x− iε)I)−1

)
f =: F (x)

exists for all f ∈ H1 and almost all x ∈ R.
Now, define the set

X (n) :=
{
x ∈ R : |x| < n, ‖F (x)‖ < n

}
If Eβ denotes the spectral measure of the operator β, then the set

D :=
⋃
n∈N

Eβ
(
X (n)

)
Hac(β)

is dense in Hac(β). Consider an orthonormal basis {φk} in H2 and an arbitrary element
f ∈ D, then, for all k,

〈T exp(−iβt)f, φk〉 =

∫
X (n)

e−ixt d

dx
〈Eβ(x)f, T ∗φk〉 dx

=

∫
X (n)

e−ixt 〈F (x), T ∗φk〉 dx ,

where in the last equality we have used the fact that by the spectral theorem

lim
ε→0

〈(
(β − (x+ iε)I)−1 − (β − (x− iε)I)−1

)
f, φ
〉

=
d

dx
〈Eβ(x)f, φ〉

for all f ∈ Hac(β) and for all φ ∈ H1.
By the Parseval identity one has∫

R
|〈T exp(−iβt)f, φk〉|2 dt = 2π

∫
X (n)
|〈F (x), φk〉|2 dx

for all k, which immediately implies that∫
R
‖T exp(−iβt)u‖2 dt = 2π

∫
X (n)
‖F (x)‖2 dx ≤ 4πn3 < +∞ .

Combining the above statements yields the following result.
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Theorem 5.5. Assume that κ = κ∗, ker(α) = {0} and let αΓ0(Aκ − zI)−1 be a Hilbert-
Schmidt operator for at least one point z ∈ ρ(Aκ). If A is completely non-selfadjoint,
then

Nκ
e = Hac(Aκ) .

Proof. By applying the Fourier transform to the functions 1±(t)αΓ0e
iAκte∓εtu, t ∈ R,

where 1± is the characteristic function of R± and ε > 0 is arbitrarily small, one obtains∥∥αΓ0(Aκ − zI)−1u
∥∥2

H2
−

+
∥∥αΓ0(Aκ − zI)−1u

∥∥2

H2
+

= 2π

∫
R
‖αΓ0 exp(iAκt)u‖2 dt

which by Lemma 5.4 is finite for all u in a dense subset of Hac(Aκ). Hence, in view
of Corollary 4.4 and performing closure, one has Hac(Aκ) ⊂ Nκ

e . Taking into account
Corollary 5.3 completes the proof.

Remark 6. Alternative conditions, which are less restrictive in general, that guarantee
the validity of the assertion of Theorem 5.5 can be obtained along the lines of [50].

6. Wave and scattering operators

The results of the preceding sections allow us to calculate the wave operators for any
pair Aκ1 , Aκ2 , where Aκ1 and Aκ2 are operators in the class introduced in Section 2,
under the additional assumption that the operator α (see (2.6)) has a trivial kernel. For
simplicity, and bearing in mind the application of the abstract construction to the problem
described in Sections 8 and 9, in what follows we set κ2 = 0 and write κ instead of κ1.
Note that A0 is a self-adjoint operator, which is convenient for presentation purposes.

We begin by establishing the model representation for the function exp(iAκt), t ∈ R,
of the operator Aκ, evaluated on the set of smooth vectors Ñκ

e .

Proposition 6.1. ([48, Prop. 2]) For all t ∈ R and all
(
g̃
g

)
such that Φ∗PK

(
g̃
g

)
∈ Ñκ

e one
has

Φ exp(iAκt)Φ
∗PK

(
g̃

g

)
= PK exp(ikt)

(
g̃

g

)
.

Proof. We use the definition

exp(iAκt) := s-lim
n→+∞

(
I − iAκt

n

)−n
, t ∈ R,

giving in general an unbounded operator (see [27]). Due to Theorem 4.2, if
(
g̃
g

)
∈ N κ

+∩N κ
− ,

i.e. Φ∗PK
(
g̃
g

)
∈ Ñκ

e , then(
I − iAκt

n

)−n
Φ∗PK

(
g̃

g

)
= Φ∗PK

(
1− ikt

n

)−n(g̃
g

)
, t ∈ R.

Thus, to complete the proof it remains to show that∥∥∥∥∥
(

exp(ikt)−
(

1− ikt

n

)−n)(g̃
g

)∥∥∥∥∥ −−−→n→∞
0, t ∈ R,
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which follows directly from Lebesgue’s dominated convergence theorem.

Proposition 6.2. ([48, Section 4]) If Φ∗PK
(
g̃
g

)
∈ Ñκ

e and Φ∗PK
(
ĝ
g

)
∈ Ñ0

e (with the same

element1 g), then∥∥∥∥exp(−iAκt)Φ
∗PK

(
g̃

g

)
− exp(−iA0t)Φ

∗PK

(
ĝ

g

)∥∥∥∥ −−−−→t→−∞
0.

Proof. Clearly, g̃ − ĝ ∈ L2(E) since
(
g̃−ĝ

0

)
∈ H. Therefore, for all t ∈ R, we obtain∥∥∥∥exp(−iAκt)Φ

∗PK

(
g̃

g

)
− exp(−iA0t)Φ

∗PK

(
ĝ

g

)∥∥∥∥ =

∥∥∥∥PKe−it·(g̃g
)
− PKe−it·

(
ĝ

g

)∥∥∥∥
=

∥∥∥∥PK(e−it·(g̃ − ĝ)

0

)∥∥∥∥
=

∥∥∥∥PK(P−e−it·(g̃ − ĝ)

0

)∥∥∥∥
≤
∥∥P−e−it·(g̃ − ĝ)

∥∥
L2(E)

.

The third equality above follows from the observation that, for all
(
ǧ
0

)
∈ H, one has

PK

(
ǧ

0

)
− PK

(
P−ǧ

0

)
=

(
0

P−SP+ǧ

)
= 0 ,

since S(z), z ∈ C+, is an analytic contraction in the upper half-plane, while in the in-
equality we use the fact that∥∥∥∥PK(ǧ0

)∥∥∥∥2

=

∫
R

(
‖P−ǧ(s)‖2 − ‖P−S(s)ǧ(s)‖2

)
ds .

Finally, since exp(−it·) ∈ H∞+ for t ≥ 0 yields the convergence (see e.g. [32])

∥∥P−e−it·(g̃ − ĝ)
∥∥2

L2(E)
=

∫ t

−∞
‖F(g̃ − ĝ)(τ)‖2e dτ −−−−→t→−∞

0 ,

where F(g̃ − ĝ) stands for the Fourier transform of the function g̃ − ĝ.

It follows from Proposition 6.2 that whenever Φ∗PK
(
g̃
g

)
∈ Ñκ

e and Φ∗PK
(
ĝ
g

)
∈ Ñ0

e

(with the same second component g), formally one has

lim
t→−∞

eiA0te−iAκtΦ∗PK

(
g̃

g

)
= Φ∗PK

(
ĝ

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
,

1Despite the fact that
(
g̃
g

)
∈ H is nothing but a symbol, still g̃ and g can be identified with vectors in

certain L2(E) spaces with operators “weights”, see details below in Section 7. Further, we recall that even
then for

(
g̃
g

)
∈ H, the components g̃ and g are not, in general, independent of each other.
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where in the last equality we use the inclusion Φ∗PK
(
ĝ
g

)
∈ Ñ0

e , which by Remark 5 (cf.
(4.20)), yields ĝ+S∗g+Sĝ+g = 0. In view of the classical definition of the wave operator
of a pair of self-adjoint operators, see e.g. [27],

W±(A0, Aκ) := s-lim
t→±∞

eiA0te−iAκtPκ
ac,

where Pκ
ac is the projection onto the absolutely continuous subspace of Aκ, we obtain that,

at least formally, for Φ∗PK
(
g̃
g

)
∈ Ñκ

e one has

W−(A0, Aκ)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
. (6.1)

By an argument similar to that of Proposition 6.2 (i.e. considering the case t→ +∞),
one also obtains

W+(A0, Aκ)Φ∗PK

(
g̃

g

)
= lim

t→+∞
eiA0te−iAκtΦ∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−(I + S∗)−1(I + S)g̃

)
(6.2)

again for Φ∗PK
(
g̃
g

)
∈ Ñκ

e .
Further, the definition of the wave operators W±(Aκ, A0)∥∥∥∥e−iAκtW±(Aκ, A0)Φ∗PK

(
g̃

g

)
− e−iA0tΦ∗PK

(
g̃

g

)∥∥∥∥ −−−−→t→±∞
0

yields, for all Φ∗PK
(
g̃
g

)
∈ Ñ0

e ,

W−(Aκ, A0)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
−(I + χ−κ (S − I))−1(I + χ+

κ (S∗ − I))g

g

)
(6.3)

and

W+(Aκ, A0)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−(I + χ+
κ (S∗ − I))−1(I + χ−κ (S − I))g̃

)
, (6.4)

where we have used the fact that Φ∗PK
(
g̃
g

)
∈ Ñκ

e and the corresponding criterion provided
by Remark 5, cf. (4.20).

In order to rigorously justify the above formal argument, i.e. in order to prove the
existence and completeness of the wave operators, one needs to first show that the right-
hand sides of the formulae (6.1)–(6.4) make sense on dense subsets of the corresponding
absolutely continuous subspaces. Noting that (6.1)–(6.4) have the form identical to the
expressions for wave operators derived in [48, Section 4], [50], the remaining part of this
justification is a modification of the argument of [50], as follows.

Let S(z) − I be of the class S∞(C+), i.e. a compact analytic operator function in
the upper half-plane up to the real line. Then so is (S(z)− I)/2, which is also uniformly
bounded in the upper half-plane along with S(z). We next use the result of [50, Theorem
3] about the non-tangential boundedness of operators of the form (I + T (z))−1 for T (z)
compact up to the real line. We infer that, provided (I + (S(z0) − I)/2)−1 exists for
some z0 ∈ C+ (and hence, see [9], everywhere in C+ except for a countable set of points
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accumulating only to the real line), one has non-tangential boundedness of (I + (S(z) −
I)/2)−1, and therefore also of (I + S(z))−1, for almost all points of the real line.

On the other hand, the latter inverse can be computed in C+:(
I + S(z)

)−1
=

1

2

(
I + iαM(z)−1α/2

)
. (6.5)

Indeed, one has(
I + iαM(z)−1α/2

)
(I + S(z))

= 2I + iαM(z)−1α+ iα
(
B∗iI −M(z)

)−1
α− iαM(z)−1B∗iI

(
B∗iI −M(z)

)−1
α = 2I

and the second similar identity for the multiplication in the reverse order proves the claim.
It follows from (6.5) and the analytic properties of M(z) that the inverse (I +S(z))−1

exists everywhere in the upper half-plane. Thus, Theorem 3 of [50] is indeed applicable,
which yields that (I + S(z))−1 is R-a.e. nontangentially bounded and, by the operator
generalisation of the Calderon theorem (see [60]), which was extended to the operator con-
text in [50, Theorem 1], it admits measurable non-tangential limits in the strong operator
topology almost everywhere on R. As it is easily seen, these limits must then coincide
with (I + S(k))−1 for almost all k ∈ R.

The same argument obviously applies to (I + S∗(z̄))−1 for z ∈ C−, where the invert-
ibility follows from the identity(

I + S∗(z̄)
)−1

=
1

2

(
I − iαM(z)−1α/2

)
(6.6)

obtained exactly as (6.5), by taking into account analytic properties of M(z).
Finally, the identities

(I + χ−κ (S(z)− I))−1 = I − iχ−κα(Bκ −M(z))−1α (6.7)

for z ∈ C+ and

(I + χ+
κ (S∗(z̄)− I))−1 = I + iχ+

κα(Bκ −M(z))−1α (6.8)

for z ∈ C− are used, again by an application of Theorem 3 of [50], to ascertain the
existence of bounded (I + χ−κ (S(k)− I))−1 and (I + χ+

κ (S∗(k)− I))−1 almost everywhere
on R, provided that the operator Aκ has at least one regular point in each half-plane of
the complex plane, see Proposition 2.2. Under the assumptions on S specified above, this
latter condition immediately implies that the non-real spectrum of Aκ is countable and
accumulates to R only. (Nevertheless, it could still accumulate to all points of the real
line simultaneously.)

The presented argument allows one to verify the correctness of the formulae (6.1)–(6.4)
for the wave operators. Indeed, for the first of them one considers 1n(k), the indicator of
the set {k ∈ R : ‖(I + S(k))−1‖ ≤ n}. Clearly, 1n(k)→ 1 as n→∞ for almost all k ∈ R.
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Next, suppose that PK(g̃, g) ∈ Ñκ
e . Then PK1n(g̃, g) is also a smooth vector and(

−(I + S)−1
1n(I + S∗)g

1ng

)
∈ H.

Indeed, for any (g̃, g) ∈ H one has(
−1n(1 + S)−1(1 + S∗)g

1ng

)
−
(
1ng̃

1ng

)
=

(
−1n(1 + S)−1[(g̃ + S∗g) + (Sg̃ + g)]

0

)
∈
(
L2(E)

0

)
∈ H,

whereas the inclusion in the set of smooth vectors follows directly from Remark 5. It fol-
lows, by the Lebesgue dominated convergence theorem, that the set of vectors PK1n(g̃, g)
is dense in Nκ

e . The remaining three wave operators are treated in a similar way. Fi-
nally, the density of the range of the four wave operators follows from the density of their
domains, by a standard inversion argument, see e.g. [71].

We have thus proved the following theorem.

Theorem 6.3. Let A be a closed, symmetric, completely nonselfadjoint operator with
equal deficiency indices and consider its extension Aκ, as described in Section 2, under the
assumptions that ker(α) = {0} (see (2.6)) and that Aκ has at least one regular point in C+

and in C−. If S−I ∈ S∞(C+), then the wave operators W±(A0, Aκ) and W±(Aκ, A0) exist
on dense sets in Nκ

e and Hac(A0), respectively, and are given by the formulae (6.1)–(6.4).
The ranges of W±(A0, Aκ) and W±(Aκ, A0) are dense in Hac(A0) and Nκ

e , respectively.2

Remark 7. 1. The identities (6.5)–(6.6) can be used to replace the condition S(z)− I ∈
S∞(C+) by the following equivalent condition: αM(z)−1α is nontangentially bounded
almost everywhere on the real line, and αM(z)−1α ∈ S∞(C+) for =z ≥ 0. In order to do
so, one notes that (I + T )−1 − I = −(I + T )−1T ∈ S∞(C+) as long as T ∈ S∞(C+) and
(I + T )−1 is bounded.

2. The latter condition is satisfied [22], as long as the scalar function ‖αM(z)−1α‖Sp

is nontangentially bounded almost everywhere on the real line for some p <∞, where Sp,
p ∈ (0,∞] are the standard Schatten – von Neumann classes of compact operators.

3. An alternative sufficient condition is the condition α ∈ S2 (and therefore Bκ ∈ S1),
or, more generally, αM(z)−1α ∈ S1, see [49] for details.

4. Following from the analysis above, the existence and completeness of the wave
operators for the par Aκ, A0 is closely linked to the condition of α having a “relative
Hilbert-Schmidt property” with respect to M(z). Recalling that Bκ = ακα/2, this is not
always feasible to expect. Nevertheless, by appropriately modifying the boundary triple,
the situation can often be rectified. For example, if Cκ = C0 +ακα/2, where C0 and κ are
bounded and α ∈ S2, replaces the operator Bκ in (2.6), then one “shifts” the boundary
triple (cf. the proof of Lemma 5.2): Γ̂0 = Γ0, Γ̂1 = Γ1−C0Γ0. One thus obtains that in the
new triple (K, Γ̂0, Γ̂1) the operator Aκ coincides with the extension corresponding to the

2In the case when Aκ is self-adjoint, or, in general, the named wave operators are bounded, the claims of
the theorem are equivalent (by the classical Banach-Steinhaus theorem) to the statement of the existence
and completeness of the wave operators for the pair A0, Aκ . Sufficient conditions of boundedness of these
wave operators are contained in e.g. [48, Section 4], [50] and references therein.
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boundary operator Bκ = ακα/2, whereas the Weyl-Titchmarsh function M(z) undergoes
a shift to the function M(z)−C0. The proof of Theorem 6.1 remains intact, while Part 3
of this remark yields that the condition α(M(z)− C0)−1α ∈ S1 guarantees the existence
and completeness of the wave operators for the pair AC0 , ACκ . The fact that the operator
A0 here is replaced by the operator AC0 reflects the standard argument that the complete
scattering theory for a pair of operators requires that the operators forming this pair are
“close enough” to each other.

Finally, the scattering operator Σ for the pair Aκ, A0 is defined by

Σ = W−1
+ (Aκ, A0)W−(Aκ, A0).

The above formulae for the wave operators lead (cf. [48]) to the following formula for the
action of Σ in the model representation:

ΦΣΦ∗PK

(
g̃

g

)
= PK

(
−(I + χ−κ (S − I))−1(I + χ+

κ (S∗ − I))g

(I + S∗)−1(I + S)(I + χ−κ (S − I))−1(I + χ+
κ (S∗ − I))g

)
, (6.9)

whenever Φ∗PK
(
g̃
g

)
∈ Ñ0

e . In fact, as explained above, this representation holds on a

dense linear set in Ñ0
e within the conditions of Theorem 6.3, which guarantees that all the

objects on the right-hand side of the formula (6.9) are correctly defined.

7. Spectral representation for the absolutely continuous part of the
operator A0

The identity ∥∥∥∥PK(g̃g
)∥∥∥∥2

H
=
〈
(I − S∗S)g̃, g̃

〉
which is derived in the same way as in [48, Section 7] for all PK

(
g̃
g

)
∈ Ñ0

e and is equivalent
to the condition (g̃ + S∗g) + (Sg̃ + g) = 0, see (4.20), allows us to consider the isometry
F : ΦÑ0

e 7→ L2(E; I − S∗S) defined by the formula

FPK

(
g̃

g

)
= g̃. (7.1)

Here L2(E; I − S∗S) is the Hilbert space of K-valued functions on R square summable
with the matrix “weight” I − S∗S, cf. (4.3). Similarly, the formula

F∗PK

(
g̃

g

)
= g

defines an isometry F∗ from ΦÑ0
e to L2(E; I − SS∗).

Lemma 7.1. Suppose that the assumptions of Theorem 6.3 hold. Then the ranges of the
operators F and F∗ are dense in the spaces L2(E; I−S∗S) and L2(E; I−SS∗), respectively.

Proof. Indeed, for all g̃ ∈ L2(E; I−S∗S) and g = −Sg̃ one has (g̃, g) ∈ H with ‖(g̃, g)‖H =
‖g̃‖L2(E;I−S∗S). By repeating the proof of Theorem 6.3, the operator I + S∗ is boundedly
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invertible almost everywhere on R.
Further, consider 1n(k), the indicator of the set {k ∈ R : ‖(I + S∗(k))−1‖ ≤ n}. For

g̃ ∈ L2(E; I − S∗S) and, as above, g = −Sg̃, one has 1n(g̃,−(I + S∗)−1(I + S)g̃) ∈ H,
since

1n

(
g̃

−(I + S∗)−1(I + S)g̃

)
− 1n

(
g̃

g

)
=

(
0

−1n(I + S∗)−1
[
(Sg̃ + g) + (g̃ + S∗g)

]) ∈ ( 0

L2(E)

)
.

Finally, the set {1ng̃} is dense in L2(E; I −S∗S) by the Lebesgue dominated convergence
theorem, whereas PK1n(g̃,−(I + S∗)−1(I + S)g̃) ∈ Ñ0

e by direct calculation.

Corollary 7.2. The operator F, respectively F∗, admits an extension to the unitary map-
ping between ΦN0

e and L2(E; I − S∗S), respectively L2(E; I − SS∗).

It follows that the operator (A0−z)−1 (see notation (2.7)) considered on Ñ0
e acts as the

multiplication by (k−z)−1, k ∈ R, both in L2(E; I−S∗S) and L2(E; I−SS∗). In particular,
if one considers the absolutely continuous “part” of the operator A0, namely the operator

A
(e)
0 := A0|N0

e
, then FΦA

(e)
0 Φ∗F ∗ and F∗ΦA

(e)
0 Φ∗F ∗∗ are the operators of multiplication by

the independent variable in the spaces L2(E; I − S∗S) and L2(E; I − SS∗), respectively.
In order to obtain a spectral representation from the above result, it is necessary to

diagonalise the weights in the definitions of the above L2-spaces. This diagonalisation is
straightforward when α =

√
2I. (This choice of α satisfies the conditions of Theorem 6.3

e.g. when the boundary space K is finite-dimensional, which is the case we deal with in the
application discussed in Sections 8, 9. The corresponding diagonalisation in the general
setting will be treated elsewhere.) In this particular case one has

S = (M − iI)(M + iI)−1, (7.2)

and consequently

I − S∗S = −2i(M∗ − iI)−1(M −M∗)(M + iI)−1 (7.3)

and
I − SS∗ = 2i(M + iI)−1(M∗ −M)(M∗ − iI)−1.

Introducing the unitary transformations

G : L2(E; I − S∗S) 7→ L2(E;−2i(M −M∗)), (7.4)

G∗ : L2(E; I − SS∗) 7→ L2(E;−2i(M −M∗)) (7.5)

by the formulae g 7→ (M + iI)−1g and g 7→ (M∗ − iI)−1g respectively, one arrives at

the fact that GFΦA
(e)
0 Φ∗F ∗G∗ and G∗F∗ΦA

(e)
0 Φ∗F ∗∗G

∗
∗ are the operators of multiplication

by the independent variable in the space L2(E;−2i(M −M∗)). We show next that this
amounts to the spectral representation in particular in the case of (non-compact) quantum
graphs.
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8. Quantum graphs and their scattering matrices

We remark, that the result of the previous section only pertains to the absolutely
continuous part of the self-adjoint operator A0, unlike e.g. the passage to the classical
von Neumann direct integral, under which the whole of the self-adjoint operator gets
mapped to the multiplication operator in a weighted L2-space (see e.g. [6, Chapter 7]).
Nevertheless, our consideration proves to be useful in scattering theory, since it yields an
explicit expression for the scattering matrix Σ̂ for the pair Aκ, A0, which is the image of
the scattering operator Σ in the spectral representation of the operator A0 described in
the previous section. Namely, we prove the following statement.

Theorem 8.1. In the case α =
√

2I (and hence E = K) the following formula holds:

Σ̂ = GFΣ(GF )∗ = (M − κ)−1(M∗ − κ)(M∗)−1M, (8.1)

where the right-hand side represents the operator of multiplication by the corresponding
function.

Proof. Using the definition (7.1) of the isometry F along with the relationship (4.20)
between g̃ and g whenever PK

(
g̃
g

)
∈ ΦÑκ

e with κ = 0, we obtain from (6.9):

FΣF ∗ =
(
I + χ−κ (S − I)

)−1(
I + χ+

κ (S∗ − I)
)
(I + S∗)−1(I + S), (8.2)

where the right-hand side represents the operator of multiplication by the corresponding
function.

Furthermore, substituting the expression (7.2) for S in terms of M implies that FΣF ∗

is the operator of multiplication by

(M + iI)(M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)

in the space L2(E; I − S∗S). Using (7.3), we now obtain the following identity for all
f, g ∈ L2(E; I − S∗S) :

〈FΣF ∗f, g〉L2(E;I−S∗S) =
〈
(I − S∗S)(M + iI)(M −κ)−1(M∗ −κ)(M∗)−1M(M + iI)f, g

〉
=
〈
−2i(M∗−iI)−1(M−M∗)(M+iI)−1(M+iI)(M−κ)−1(M∗−κ)(M∗)−1M(M+iI)f, g

〉
=
〈
−2i(M −M∗)(M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)f, (M + iI)g

〉
,

which is equivalent to (8.1), in view of the definition of the operator G.

In applications to quantum graphs it may turn out that the operator weight −2i(M −
M∗) (see (7.4), (7.5)) is degenerate: more precisely, M(s) − M(s)∗ = 2i

√
sPe, s ∈ R,

where Pe is the orthogonal projection onto the subspace of K corresponding to the set
of “external” vertices of the graph, i.e. those vertices to which semi-infinite edges are
attached. Next, we describe the notation pertaining to the quantum graph setting.

In what follows, we denote by G = G(E , σ) a finite metric graph, i.e. a collection
of a finite non-empty set E of compact or semi-infinite intervals ej = [x2j−1, x2j ] (for
semi-infinite intervals we set x2j = +∞), j = 1, 2, . . . , n, which we refer to as edges,
and of a partition σ of the set of endpoints V := {xk : 1 ≤ k ≤ 2n, xk < +∞} into
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N equivalence classes Vm, m = 1, 2, . . . , N, which we call vertices: V =
⋃N
m=1 Vm. The

degree, or valence, deg(Vm) of the vertex Vm is defined as the number of elements in Vm,
i.e. card(Vm). Further, we partition the set V into the two non-overlapping sets of internal
V(i) and external V(e) vertices, where a vertex V is classed as internal if it is incident to
no non-compact edge and external otherwise. Similarly, we partition the set of edges
E = E(i) ∪ E(e), into the collection of compact (E(i)) and non-compact (E(e)) edges. We
assume for simplicity that the number of non-compact edges incident to any graph vertex
is not greater than one.

For a finite metric graph G, we consider the Hilbert spaces L2(G) :=
⊕n

j=1 L
2(ej) and

W 2,2(G) :=
⊕n

j=1W
2,2(ej). (Notice that these spaces do not feel the graph connectivity,

as each of them is the same for different graphs with the same number of edges of the
same lengths.) Further, for a function f ∈ W 2,2(G), we define the normal derivative at
each vertex along each of the adjacent edges, as follows:

∂nf(xj) :=

{
f ′(xj), if xj is the left endpoint of the edge,

−f ′(xj), if xj is the right endpoint of the edge.
(8.3)

In the case of semi-infinite edges we only apply this definition at the left endpoint of the
edge.

Definition 5. For f ∈ W 2,2(G) and am ∈ C (below referred to as the “coupling con-
stant”), the condition of continuity of the function f through the vertex Vm (i.e. f(xj) =
f(xk) if xj , xk ∈ Vm) together with the condition∑

xj∈Vm

∂nf(xj) = amf(Vm)

is called the δ-type matching at the vertex Vm.

Remark 8. Note that the δ-type matching condition in a particular case when am = 0
reduces to the standard Kirchhoff matching condition at the vertex Vm, see e.g. [2].

Definition 6. The graph Laplacian Aa, a := (a1, ..., aN ), on a graph G with δ-type match-
ing conditions is the operator of minus second derivative −d2/dx2 in the Hilbert space
L2(G) on the domain of functions that belong to the Sobolev space W 2,2(G) and satisfy
the δ-type matching conditions at every vertex Vm, m = 1, 2, . . . , N. The Schrödinger op-
erator on the same graph is defined likewise on the same domain in the case of summable
edge potentials (cf. [14]).

If all coupling constants am, m = 1, . . . , N , are real, it is shown that the operator Aa is a
proper self-adjoint extension (see (2.5)) of a closed symmetric operator A in L2(G) [17, 34].
Note that, without loss of generality, each edge ej of the graph G can be considered to be
an interval [0, lj ], where lj := x2j − x2j−1, j = 1, . . . , n is the length of the corresponding
edge. Throughout the present paper we will therefore only consider this situation.

In [14], the following result is obtained for the case of finite compact metric graphs.

Proposition 8.2 ([14]). Let G be a finite compact metric graph with δ-type coupling at all
vertices. There exists a closed densely defined symmetric operator A and a boundary triple
such that the operator Aa is an almost solvable extension of A, for which the parametrising
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matrix B (see (2.5)) is given by B = diag{a1, . . . , aN}, whereas the Weyl function is an
N ×N matrix with elements

mjk(z) =


−
√
z

( ∑
ep∈Ek

cot
√
zlp − 2

∑
ep∈Lk

tan

√
zlp
2

)
, j = k,

√
z
∑

ep∈Cjk

1

sin
√
zlp

, j 6= k; Vj , Vk adjacent,

0, j 6= k; Vj , Vk non-adjacent.

(8.4)
Here the branch of the square root is chosen so that =

√
z ≥ 0, lp is the length of the edge

ep, Ek is the set of non-loop graph edges incident to the vertex Vk, Lk is the set of loops
at the vertex Vk, and Cjk is the set of graph edges connecting vertices Vj and Vk.

It is easily seen that the rationale of [14] is applicable to the situation of non-compact
metric graphs. Indeed, denote by G(i) the compact part of the graph G, i.e. the graph
G with all the non-compact edges removed. Proposition 8.2 yields an expression for the
Weyl function M (i) pertaining to the graph G(i). A simple calculation then implies the
following representation for the M -matrix pertaining to the original graph G.

Lemma 8.3. The matrix functions M, M (i) described above are related by the formula

M(z) = M (i)(z) + i
√
zPe, z ∈ C+, (8.5)

where Pe is the orthogonal projection in the boundary space K onto the set of external

vertices V
(e)
G , i.e. the matrix Pe such that (Pe)ij = 1 if i = j, Vi ∈ V (e)

G , and (Pe)ij = 0
otherwise.

Proof. Note first that Weyl function of the graph G for the triple described in Proposition
8.2 coincides with the sum of the matrices Mj(z), j = 1, 2, . . . , n, that are obtained by the
formulae

Γ1f = Mj(z)Γ0f, f ∈ ker(A∗ − zI), f ≡ 0 on G \ ej .

In order words, the matrix functions Mj describe the Dirichlet-to-Neumann mappings for
the data supported on each individual edge ej , j = 1, 2, . . . , n, where A is as in Proposition
8.2.

Furthermore, functions f ∈ ker(A∗ − zI) that vanish on all edges of the graph G but
one non-compact edge e∞, satisfy

−f ′′(x) = zf(x), x ∈ [0,+∞), f ∈W 2,2(0,+∞), (8.6)

where we identify e∞ and the semi-infinite line [0,+∞), as well as f and its restriction to
e∞. Next, all non-trivial solutions to (8.6) have the form

f(x) = f(0) exp(i
√
zx), x ∈ [0,+∞), f(0) 6= 0,

for which the value of the co-derivative (8.3) at x = 0 is clearly given by ∂nf(0) = i
√
zf(0).

Therefore, the corresponding (additive) contribution to the M -matrix, see Definition 3,
is given by the matrix all of whose elements except the diagonal element corresponding
to the vertex from which e∞ emanates are zero, while the only non-zero element equals
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(f(0))−1∂nf(0) = i
√
z. Repeating this argument for all non-compact edges of G and using

the additivity property for the M -matrix discussed above yields the claim.

The formula (8.5) leads to M(s) −M∗(s) = 2i
√
sPe a.e. s ∈ R, and the expression

(8.1) for Σ̂ leads to the classical scattering matrix Σ̂e(k) of the pair of operators A0 (which
is the Laplacian on the graph G with standard Kirchhoff matching at all the vertices) and
Aκ, where κ = B = diag{a1, . . . , aN} :

Σ̂e(s) = Pe(M(s)− κ)−1(M(s)∗ − κ)(M(s)∗)−1M(s)Pe, s ∈ R,

which acts as the operator of multiplication in the space L2(PeK; 4
√
sds).

Remark 9. The concrete choice of boundary triple in accordance with Proposition 8.2
leads to the fact that the “unperturbed” operator A0 is fixed as the Laplacian on the graph
with Kirchhoff matching conditions at the vertices. On the other hand, in applications it
may be more convenient to consider a formulation where the operator A0 corresponds to
some other matching conditions, which would motivate another choice of the triple. This
is readily facilitated by the analysis carried out in the preceding sections. In particular,
we point out that the formula (8.2) is written in a triple-independent way.

Furthermore, Part 4 of Remark 7 suggests one particular way of “shifting” the unper-
turbed operator A0. Another feasible choice for the unperturbed operator would be the
operator of Dirichlet decoupling on the graph G. This possibility can attained by passing
to the new triple: Γ̂1 = Γ0, Γ̂0 = −Γ1.

In the remaining part of the paper we will consider the first choice above, postponing
the discussion of other possibilities to future work.

We reiterate that the analysis above pertains not only to the cases when the cou-
pling constants are real, leading to self-adjoint operators Aa, but also to the case of
non-selfadjoint extensions, cf. Theorem 6.3.

In what follows we often drop the argument s ∈ R of the Weyl function M and the
scattering matrices Σ̂, Σ̂e. Since

(M − κ)−1(M∗ − κ) = I + (M − κ)−1(M∗ −M) = I − 2i
√
s(M − κ)−1Pe (8.7)

and
(M∗)−1M = I + 2i

√
s(M∗)−1Pe,

a factorisation of Σ̂e into a product of κ−dependent and κ−independent factors (cf. (8.1))
still holds in this case in PeK, namely

Σ̂e =
[
Pe(M − κ)−1(M∗ − κ)Pe

][
Pe(M

∗)−1MPe

]
. (8.8)

The reason why the explicit expression (8.1) for Σ̂ in the higher-dimensional space K
is useful in applications is that, compared to the lower-dimensional setting of Σ̂e, the
matrices M and κ are decoupled (cf. Pe(M − κ)−1(M∗ − κ)Pe just above, where the
pieces of information contained in M and κ are mixed together after matrix multiplication
and sandwiching between two projectors) and the named two matrices admit an explicit,
easily analysed, form.
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9. Inverse scattering problem for graphs with δ-coupling

We will now exploit the above approach in the analysis of the inverse scattering problem
for Laplace operators on finite metric graphs, whereby the scattering matrix Σ̂e(s), defined
by (8.8), is assumed to be known for almost all positive “energies” s ∈ R, along with the
graph G itself. The data to be determined is the set of coupling constants {aj}Nj=1.
For simplicity, in what follows we treat the inverse problem for graphs with real coupling
constants, which corresponds to self-adjoint operators, leaving the non-selfadjont situation
to be addressed elsewhere.

First, given Σ̂e(s) for almost all s > 0, we reconstruct the meromorphic matrix-function
Pe(M

(i)(z) − κ)−1Pe for all complex z, excluding the poles. This is an explicit calcula-
tion based on the second resolvent identity (see e.g. [70, Thm. 5.13]). Namely, almost
everywhere on the positive half-line one has

(M − κ)−1 = (M (i) − κ)−1 − (M − κ)−1(M −M (i))(M (i) − κ)−1

=
[
I − (M − κ)−1(M −M (i))

]
(M (i) − κ)−1,

and hence

Pe(M − κ)−1Pe =
[
Pe − i

√
sPe(M − κ)−1Pe

]
Pe(M

(i) − κ)−1Pe. (9.1)

Further, the first factor on the right-hand side of (9.1) is invertible for almost all s > 0.
Indeed, we note first that Σ̂κ

e := Pe(M(s)−κ)−1(M(s)∗−κ) is unitary in PeK for almost
all s > 0, since

(M − κ)(M∗ − κ)−1(M −M∗)(M − κ)−1(M∗ − κ)

= (M − κ)(M∗ − κ)−1
[
(M − κ)− (M∗ − κ)

]
(M − κ)−1(M∗ − κ)

= (M − κ)− (M∗ − κ) = M −M∗

and M −M∗ = 2i
√
sPe. Now, since

Pe − i
√
sPe(M − κ)−1Pe =

(
I + Σ̂κ

e

)
/2

it suffices to show that −1 is not an eigenvalue of Σ̂κ
e (s) for almost all s > 0. Assume the

opposite, i.e. for some s > 0 one has

(M(s)∗ − κ)−1us = −(M(s)− κ)−1us, us ∈ PeK \ {0}.

A straightforward calculation then yields

(M(s)∗ − κ)−1(M (i)(s)− κ)(M(s)− κ)−1us = 0,

from where
(M(s)− κ)−1us ∈ ker

(
M (i)(s)− κ

)
.

The latter kernel is non-trivial only at the points s which belong to the (discrete) spectrum
of the Laplacian on the compact part G(i) of the graph G. It follows that (M(s)−κ)−1us
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is zero for almost all s > 0, which is a contradiction with us 6= 0.
Note that, for a given graph G, the expression Pe(M − κ)−1Pe is found by combining

(8.7) and (8.8):

Pe(M − κ)−1Pe =
1

2i
√
s

(
Pe − Σ̂e[Pe(M

∗)−1MPe]
−1
)
, (9.2)

where we treat both [Pe(M
∗)−1MPe]

−1 and, as before, Σ̂e as operators in PeK.
It follows from (9.1) and (9.2) that for given M, Σ̂e the expression Pe(M

(i) − κ)−1Pe

is determined uniquely for almost all s > 0 :

Pe(M
(i) − κ)−1Pe =

[
Pe − i

√
sPe(M − κ)−1Pe

]−1
Pe(M − κ)−1Pe

=
1

i
√
s

(
Pe + Σ̂e[Pe(M

∗)−1MPe]
−1
)−1(

Pe − Σ̂e[Pe(M
∗)−1MPe]

−1
)

=
1

i
√
s

(
2
(
Pe + Σ̂e[Pe(M

∗)−1MPe]
−1
)−1 − I

)
Pe. (9.3)

In particular, due to the property of analytic continuation, the expression Pe(M
(i)−κ)−1Pe

is determined uniquely in the whole of C with the exception of a countable set of poles,

which coincides with the set of eigenvalues of the self-adjoint Laplacian A
(i)
κ on the compact

part G(i) of the graph G with matching conditions at the graph vertices given by the matrix
κ, cf. Proposition 8.2.

Definition 7. Given a partition V1 ∪ V2 of the set of graph vertices, for z ∈ C consider
the linear set U(z) of functions that satisfy the differential equation −u′′z = zuz on each
edge, subject to the conditions of continuity at all vertices of the graph and the δ-type
matching conditions at the vertices in the set V2. For each function f ∈ U(z), consider the
vectors

ΓV11 uz :=
{ ∑
xj∈Vm

∂nf(xj)
}
Vm∈V1

, ΓV10 uz :=
{
f(Vm)

}
Vm∈V1 .

The Delta-to-Dirichlet map of the set V1 maps the vector (ΓV11 −κV1ΓV10 )uz to ΓV10 uz, where
κV1 := diag{am : Vm ∈ V1}. (Note that the function uz ∈ U(z) is determined uniquely
by (ΓV11 − κV1ΓV10 )uz for all z ∈ C except a countable set of real points accumulating to
infinity).

Remark 10. The above definition is a natural generalisation of the corresponding defi-
nitions of Dirichlet-to-Neumann and Neumann-to-Dirichlet maps pertaining to the graph
boundary, considered in e.g. [2], [40].

We argue that the matrix Pe(M
(i) − κ)−1Pe is the Delta-to-Dirichlet map for the

set V(e). Indeed, assuming φ := Γ1uz − κΓ0uz and φ = Peφ, where the latter condition
ensures the correct δ-type matching on the set V(i), one has Peφ = (M (i) − κ)Γ0uz and
hence Γ0uz = (M (i) − κ)−1Peφ. Applying Pe to the last identity yields the claim, in
accordance with Definition 7.

We have thus proved the following theorem.

Theorem 9.1. The Delta-to-Dirichlet map for the vertices V(e) is determined uniquely by
the scattering matrix Σ̂e(s), s ∈ R, via the formula (9.3).
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The following definition, required for the formulation of the next theorem, is a gener-
alisation of the procedure of graph contraction well studied in the algebraic graph theory,
see e.g. [66].

Definition 8 (Contraction procedure for graphs and associated graph Laplacians). For a
given graph G vertices V and W connected by an edge e are “glued” together to form a
new vertex (VW ) of the contracted graph G̃ while simultaneously the edge e is removed,
whereas the rest of the graph remains unchanged. We do allow the situation of multiple
edges, when V and W are connected in G by more than one edge, in which case all such
edges but the edge e become loops of their respective lengths attached to the vertex (VW ).
The corresponding graph Laplacian Aa defined on G is contracted to the graph Laplacian
Ãã by the application of the following rule pertaining to the coupling constants: a coupling
constant at any unaffected vertex remains the same, whereas the coupling constant at the
new vertex (VW ) is set to be the sum of the coupling constants at V and W. Here it is
always assumed that all graph Laplacians are described by Definition 6.

The matrix κ of the coupling constants is now determined as part of an iterative
procedure based on the following result.

Theorem 9.2. Suppose that the edge lengths of the graph G(i) are rationally independent.
The element3 (1, 1) of the Delta-to-Dirichlet map described above yields the element (1, 1)
of the “contracted” graph G̃(i) obtained from the graph G(i) by removing a non-loop edge e
emanating from V1. The procedure of passing from the graph G(i) to the contracted graph
G̃(i) is given in Definition 8.

Proof. Due to the assumption that the edge lengths of the graph G(i) are rationally in-
dependent, the element (1,1), which we denote by f1, is given explicitly as a function of√
z and all the edge lengths lj , j = 1, 2, . . . , n, in particular, of the length of the edge e,

which we assume to be l1 without loss of generality. This is an immediate consequence
of the explicit form of the matrix M (i). Again without loss of generality, we also assume
that the edge e connects the vertices V1 and V2.

Further, consider the expression liml1→0 f1(
√
z; l1, . . . , ln; a). On the one hand, this

limit is known from the mentioned explicit expression for f1. On the other hand, f1 is
the ratio of the determinant D(1)(

√
z; l1, . . . , ln; a) of the principal minor of the matrix

M (i)(z)− κ obtained by removing its first row and and first column and the determinant
of M (i)(z)− κ itself:

f1(
√
z; l1, . . . , ln; a) =

D(1)(
√
z; l1, . . . , ln; a)

det
(
M (i)(z)− κ

)
Next, we multiply by −l1 both the numerator and denominator of this ratio, and pass to
the limit in each of them separately:

lim
l1→0

f1(
√
z; l1, . . . , ln; a) =

lim
l1→0

(−l1)D(1)(
√
z; l1, . . . , ln; a)

lim
l1→0

(−l1)det
(
M (i)(z)− κ

) (9.4)

3By renumbering if necessary, this does not lead to loss of generality.
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The numerator of (9.4) is easily computed as the determinant D(2)(z; l1, . . . , ln; a) of the
minor of M (i)(z)− κ obtained by removing its first two rows and first two columns.

As for the denominator of (9.4), we add to the second row of the matrix M (i)(z)−κ its
first row multiplied by cos(

√
zl1), which leaves the determinant unchanged. This operation,

due to the identity

− cot(
√
zl1) cos(

√
zl1) +

1

sin(
√
zl1)

= sin(
√
zl1),

cancels out the singularity of all matrix elements of the second row at the point l1 = 0. We
introduce the factor −l1 (cf. 9.4) into the first row and pass to the limit as l1 → 0. Clearly,
all rows but the first are regular at l1 = 0 and hence converge to their limits as l1 → 0.
Finally, we add to the second column of the limit its first column, which again does not
affect the determinant, and note that the first row of the resulting matrix has one non-zero
element, namely the (1, 1) entry. This procedure reduces the denominator in (9.4) to the
determinant of a matrix of the size reduced by one. As in [15], it is checked that this

determinant is nothing but det(M̃ (i) − κ̃), where M̃ (i) and κ̃ are the Weyl matrix and
the (diagonal) matrix of coupling constants pertaining to the contracted graph G̃(i). This
immediately implies that the ratio obtained as a result of the above procedure coincides
with the entry (1,1) of the matrix (M̃ (i) − κ̃)−1, i.e.

lim
l1→0

f1(
√
z; l1, . . . , ln; a) = f

(1)
1 (
√
z; l2, . . . , ln; ã), (9.5)

where f
(1)
1 is the element (1,1) of the Delta-to-Dirichlet map of the contracted graph G̃(i),

and ã is given by Definition 8.

The main result of this section is the theorem below, which is a corollary of Theorems
9.1 and 9.2. We assume without loss of generality that V1 ∈ V(e) and denote by f1(

√
z) the

(1,1)-entry of the Delta-to-Dirichlet map for the set V(e). We set the following notation.
Fix a spanning tree T (see e.g. [66]) of the graph G(i). We let the vertex V1 to be the
root of T and assume, again without loss of generality, that the number of edges in the
path γm connecting Vm and the root is a non-decreasing function of m. Denote by N (m)

the number of vertices in the path γm, and by
{
l
(m)
k

}
, k = 1, . . . , N (m)− 1, the associated

sequence of lengths of the edges in γm, ordered along the path from the root V1 to Vm.

Note that each of the lengths l
(m)
k is clearly one of the edge lengths lj of the compact part

of the original graph G.

Theorem 9.3. Assume that the graph G is connected and the lengths of its compact
edges are rationally independent. Given the scattering matrix Σ̂e(s), s ∈ R, the Delta-
to-Dirichlet map for the set V(e) and the matrix of coupling constants κ are determined
constructively in a unique way. Namely, the following formulae hold for l = 1, 2, . . . , N
and determine am, m = 1, . . . , N :

∑
m:Vm∈γl

am = lim
τ→+∞

{
−τ
( ∑
Vm∈γl

deg(Vm)− 2(N (l) − 1)
)
− 1

f
(l)
1 (iτ)

}
,
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where
f

(l)
1 (
√
z) := lim

l
(l)

N(l)−1
→0

. . . lim
l
(l)
2 →0

lim
l
(l)
1 →0

f1(
√
z), (9.6)

where in the case l = 1 no limits are taken in (9.6).

Proof. We first apply Theorem 9.1 to determine the Delta-to-Dirichlet map for the vertices
V(e). Next, we notice that the knowledge of the (1,1)-element f1 of the Delta-to-Dirichlet
map for the set V(e), i.e. of the matrix Pe(M

(i) − κ)−1Pe, together with the asymptotic
expansion for M (i)(z) as

√
z → +i∞, yields the element (1,1) of the matrix κ, which is

the coupling constant a1 at the vertex V1, see Proposition 8.2. Indeed, setting
√
z = iτ,

τ → +∞, one has (cf. (8.4))

1

f1
= iτ

(
−
∑
ep∈E1

cot(iτ lp) + 2
∑
ep∈L1

tan
iτ lp

2

)
− a1 + o

(
τ−K

)
(9.7)

= −τ deg(V1)− a1 + o
(
τ−K

)
, τ → +∞ (9.8)

for all K > 0, where the first sum in (9.7) is taken over all non-loop edges ep of G(i)

emanating from the vertex V1 and the second over all loops ep attached to V1. The coupling
constant a1 is then recovered directly from (9.8).

In order to determine the coupling constant a2, we apply Theorem 9.2. In order to do

so we note that the the vertex V2 is connected to V1 by the edge of the length l
(2)
1 and

apply the contraction procedure along this edge. In particular, the formula (9.5), together
with asymptotics (9.8) re-written for the first diagonal element of the contracted graph,
yields the coupling constant pertaining to the vertex Ṽ1 := (V1V2) of the contracted graph,
which, by Theorem 9.2, is equal to a1 + a2 :

a1 + a2 = lim
τ→+∞

{
iτ

(
−
∑
ep∈Ẽ1

cot(iτ lp) + 2
∑
ep∈L̃1

tan
iτ lp

2

)
− 1

f
(1)
1

}

= lim
τ→+∞

{
−τ
(
deg(V1) + deg(V2)− 2

)
− 1

f
(1)
1

}
, (9.9)

where Ẽ1 is the set of all non-loop edges of the contracted graph G̃(i) emanating from the

vertex Ṽ1, L̃1 is the set of loops attached to this same vertex, and f
(1)
1 , explicitly given

by (9.5), is the element (1,1) of the Delta-to-Dirichlet map of the contracted graph. Thus
we recover the value of the coupling constant a2, as a result of consequent evaluations of
indeterminate forms of two different types: “0/0” (see (9.5)) and “∞−∞” (see (9.9)).

Since the graph G is connected, the above procedure is iterated until the only remaining
vertex of the contracted graph is V1, at which point the last coupling constant aN is
determined. The claim of the theorem follows.

Remark 11. 1. Notice that each step of the above iterative process generates a set of
loops, which is treated according to the formula (9.7). Alternatively, these loops can be
discarded by an elementary recalculation of the corresponding element of the Delta-to-
Dirichlet map in the application of Theorem 9.2.
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2. From the proof of Theorem 9.3 it actually follows that the inverse problem of
determining matching conditions based on the Delta-to-Dirichlet map pertaining to any
subset of graph vertices for any finite and compact graph G has a unique and constructive
solution. As in the theorem, the graph is assumed connected and its edge lengths rationally
independent. More than that, for the solution of the named inverse problem it suffices to
know any one diagonal element of the Delta-to-Dirichlet map.
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Appendix

Proof of Theorem 4.1.
We prove Theorem 4.1(i). The proof of Theorem 4.1(ii) is carried out along the same

lines.
For any (v−, u, v+) in the space H given in (4.7), consider the mappings F± : H →

L2(R, E) introduced in [58, Sec. 2.1] following the corresponding definitions in [48] and
given by

F+(v−, u, v+) = − 1√
2π

lim
ε↘0

αΓ0(AiI − (· − iε)I)−1u+ S∗v̂− + v̂+ (A.10)

F−(v−, u, v+) = − 1√
2π

lim
ε↘0

αΓ0(A∗iI − (·+ iε)I)−1u+ v̂− + Sv̂+ , (A.11)

where v̂± are the Fourier transforms of v± ∈ L2(R±, E) extended by zero to L2(R, E).
Note that the limits exist almost everywhere due to (4.1).

According to [58, Thm. 2.3], if
(
g̃
g

)
= Φh, then

F+h = g̃ + S∗g , F−h = Sg̃ + g . (A.12)

Therefore, for proving Theorem 4.1(i), one should establish the validity of the identities:

F±(Aκ − zI)−1Φ−1

(
g̃

g

)
= F±Φ−1PK

1

· − z

(
g̃

g − χ+
κ Θ−1

κ (z)(g̃ + S∗g)(z)

)
(A.13)

for z ∈ C− ∩ ρ(Aκ). First we compute the left-hand-side of (A.13). It follows from
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Lemma 3.1(i), (ii) that, for z, λ ∈ C− ∩ ρ(Aκ) and h ∈ H,

αΓ0(AiI − zI)−1(Aκ − λI)−1h

= Θκ(z)αΓ0(Aκ − zI)−1(Aκ − λI)−1h

=
1

z − λ
Θκ(z)αΓ0

[
(Aκ − zI)−1 − (Aκ − λI)−1

]
h

=
1

z − λ
[
αΓ0(AiI − zI)−1 −Θκ(z)αΓ0(Aκ − λI)−1

]
h

=
1

z − λ
[
αΓ0(AiI − zI)−1 −Θκ(z)Θ−1

κ (λ)αΓ0(AiI − λI)−1
]
h .

Let z = k − iε with k ∈ R, then it follows from the computation above that

lim
ε↘0

αΓ0(AiI − (k − iε)I)−1(Aκ − λI)−1h

= lim
ε↘0

1

(k − iε)− λ
[
αΓ0(AiI − (k − iε)I)−1 −Θκ(k − iε)Θ−1

κ (λ)αΓ0(AiI − λI)−1
]
h .

Substituting (A.10) into the last equality, one has

F+(Aκ − λI)−1h =
1

· − λ
[
F+h−Θκ(·)Θ−1

κ (λ)F+h(λ)
]
.

Hence, in view of (A.12), one concludes

F+(Aκ − λI)−1Φ−1

(
g̃

g

)
=

1

· − λ
[
g̃ + S∗g −Θκ(·)Θ−1

κ (λ)(g̃ + S∗g)(λ)
]
. (A.14)

On the basis of Lemma 3.1(iii), (iv) and reasoning in the same fashion as was done to
obtain (A.14), one verifies

F−(Aκ − λI)−1Φ−1

(
g̃

g

)
=

1

· − λ

[
Sg̃ + g − Θ̂κ(·)Θ−1

κ (λ)(g̃ + S∗g)(λ)
]
. (A.15)

Let us focus on the right hand side of (A.13). Note that

PK
1

· − z

(
g̃

g − χ+
κ Θ−1

κ (z)(g̃ + S∗g)(z)

)

=

( g̃
·−z − P+

1
·−z [g̃ + S∗g − S∗χ+

κ Θ−1
κ (z)(g̃ + S∗g)(z)]

1
·−z (g − χ+

κ Θ−1
κ (z)(g̃ + S∗g)(z))− P− 1

·−z [Sg̃ + g − χ+
κ Θ−1

κ (z)(g̃ + S∗g)(z)]

)

=
1

· − z

(
g̃ − (g̃ + S∗g)(z) + S∗(z)χ+

κ Θ−1
κ (z)(g̃ + S∗g)(z)

g − χ+
κ Θ−1

κ (z)(g̃ + S∗g)(z)

)
(A.16)

where (4.6) is used in the first equality and in the second the fact that if f is a function
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in Ĥ2
−, then, for any z ∈ C−,

P+

(
f

· − z

)
= P+

(
f + f(z)− f(z)

· − z

)
= P+

(
f(z)

· − z

)
=
f(z)

· − z
. (A.17)

Now, apply F+Φ−1 to (A.16) taking into account (A.12):

F+Φ−1 1

· − z

(
g̃ − (g̃ + S∗g)(z) + S∗(z)χ+

κ Θ−1
κ (z)(g̃ + S∗g)(z)

g − χ+
κ Θ−1

κ (z)(g̃ + S∗g)(z)

)
=

1

· − z
[g̃ + S∗g − (g̃ + S∗g)(z) + (S∗(z)− S∗)χ+

κ Θ−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[g̃ + S∗g − (Θκ(z)− (S∗(z)− S∗)χ+

κ )Θ−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[g̃ + S∗g −Θ(·)Θ−1

κ (z)(g̃ + S∗g)(z)].

By combining the last equality with (A.14), we have established the first identity in (A.13).
Now, if one applies F−Φ−1 to (A.16), then, in view of (A.12), one has

F−Φ−1 1

· − z

(
g̃ − (g̃ + S∗g)(z) + S∗(z)χ+

κ Θ−1
κ (z)(g̃ + S∗g)(z)

g − χ+
κ Θ−1

κ (z)(g̃ + S∗g)(z)

)
=

1

· − z
[Sg̃ + g − S(g̃ + S∗g)(z)− (I − SS∗(z))χ+

κ Θ−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[Sg̃ + g − (SΘκ(z) + χ+

κ − SS∗(z)χ+
κ )Θ−1

κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[Sg̃ + g − (Sχ−κ + χ−κ )Θ−1

κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[Sg̃ + g − Θ̂κ(·)Θ−1

κ (z)(g̃ + S∗g)(z)]

Thus, after comparing this last equality with (A.15), we arrive at the second identity in
(A.13).

Proof of Theorem 4.2.
Let us first show that the following inclusion holds

N κ
± ⊂

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C±

}
Consider z ∈ C− ∩ ρ(Aκ). By (4.6) and Theorem 4.1, one has

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= Φ(Aκ − zI)−1Φ−1

(
g̃ − P+(g̃ + S∗g)

g − P−(S g̃ + g)

)

=
PK
s− z

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)− χ+
κ Θ−1

κ (z) [g̃ − P+(g̃ + S∗g) + S∗(g − P−(Sg̃ + g))] (z)

)
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where
[g̃ − P+(g̃ + S∗g) + S∗(g − P−(Sg̃ + g))] (z)

is to be understood as the analytic continuation into the lower half-plane of the function

g̃ − P+(g̃ + S∗g) + S∗(g − P−(Sg̃ + g)) ∈ Ĥ2
−(E) . (A.18)

The fact that (A.18) holds follows from (4.5) and (4.6). Now, one rewrites the expression
for this function using the fact that IL2(E) − P− = P+ (i. e., Ĥ2

+(E) is the orthogonal

complement of Ĥ2
−(E) in L2(R, E)):

g̃ − P+(g̃ + S∗g) + S∗(g − P−(Sg̃ + g)) = (IL2(E) − P+)(g̃ + S∗g)− S∗P−(Sg̃ + g)

= P−(g̃ + S∗g)− S∗P−(Sg̃ + g) .

Note that this equality makes evident (A.18). Thus,

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= PK

1

· − z

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)− γ(z)

)
(A.19)

where
γ(z) := χ+

κ Θ−1
κ (z)

(
P−(g̃ + S∗g)(z)− S∗P−(Sg̃ + g)(z)

)
. (A.20)

The following lemma is needed to simplify the form of γ(z).

Lemma A.1. For all
(
g̃
g

)
∈ H the following identity holds:

γ(z) = −P−(Sg̃ + g)(z) ∀z ∈ C−.

Proof.
χ+
κ Θ−1

κ (z)
(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
= χ+

κ
(
I + iα(Bκ −M(z))−1αχ+

κ
)(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
=
(
I + iχ+

κα(Bκ −M(z))−1α
)
χ+
κ
(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
=
(
I + χ+

κ (S∗(z)− I)
)−1(

χ+
κP−(g̃ + S∗g)(z)− χ+

κS
∗(z)P−(Sg̃ + g)(z)

)
=
(
I + χ+

κ (S∗(z)− I)
)−1(−χ−κP−(Sg̃ + g)(z)− χ+

κS
∗(z)P−(Sg̃ + g)(z)

)
=
(
I + χ+

κ (S∗(z)− I)
)−1(−χ−κ − χ+

κS
∗(z)

)
P−(Sg̃ + g)(z) = −P−(Sg̃ + g)(z),

where we use the fact that

I + iχ+
κα(Bκ −M(z))−1α =

(
I + χ+

κ (S∗(z)− I)
)−1

,

proved in a similar way to (3.9).
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Therefore, for
(
g̃
g

)
∈ N κ

− the expression (A.19) can be re-written as

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= PK

1

· − z

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g) + P−(Sg̃ + g)(z)

)
= PK

1

· − z

[(
g̃

g

)
−
(

P+(g̃ + S∗g)

P−(Sg̃ + g)− P−(Sg̃ + g)(z)

)]
One completes the proof by observing that

P+(g̃ + S∗g)

· − z
∈ H2

+(E),
P−(Sg̃ + g)− P−(Sg̃ + g)(z)

· − z
∈ H2

−(E).

We have thus shown that

N κ
− ⊂

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C−

}
.

The inclusion

N κ
+ ⊂

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C+

}
is proved analogously.

To prove the converse inclusion, i.e.{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C±

}
⊂ N κ

±

one again follows the arguments of [48, Thm. 4]. According to (A.19), for all z ∈ C− ∩
ρ(Aκ), one has

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= PK

1

· − z

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)− γ(z)

)
,

where γ(z) is defined in (A.20). Thus

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
− PK

1

· − z

(
g̃

g

)
= PK

(
0

−γ(z)(· − z)−1

)
= PK

(
P+(S∗γ(z)(· − z)−1)

−γ(z)(· − z)−1 + P−(γ(z)(· − z)−1)

)
But in view of (A.17), one has

P+

[
S∗γ(z)

· − z

]
=
S∗(z)γ(z)

· − z
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and, clearly,

P−

[
γ(z)

· − z

]
= 0 .

Therefore

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
− PK

1

· − z

(
g̃

g

)
=

(
S∗(z)γ(z)(· − z)−1

−γ(z)(· − z)−1

)
.

If

Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C− ,

then (
S∗(z)γ(z)(· − z)−1

−γ(z)(· − z)−1

)
= 0

which in its turn implies (
S∗ − S∗(z)

)
γ(z)(· − z)−1 = 0 .

From this equality, by virtue of the fact that the operator AiI is completely non-self-
adjoint, one obtains that γ(z) = 0 for any z ∈ C− ∩ ρ(Aκ) (see details in the proof of [47,
Lem. 4]). Taking into account (A.20) one arrives at

χ−κP±(S g̃ + g) + χ+
κP±(g̃ + S∗g) = 0 .

The inclusion{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C+

}
⊂ N κ

+

is proved in a similar way.

Proof of Theorem 4.3.
To prove the inclusion

Ñκ
− ⊂

{
u ∈ H : χ+

καΓ0(Aκ − zI)−1u ∈ H2
−(E)

}
,

one has to show that u ∈ Φ∗PKN κ
− implies χ+

καΓ0(Aκ − zI)−1u ∈ H2
−(E). By (4.6), if

u = Φ∗PK
(
g̃
g

)
, then

Φu =

(
g̃ − P+(g̃ + S∗g)
g − P−(S g̃ + g)

)
.

Thus, in view of the inclusion
(
g̃
g

)
∈ K, it follows from (A.12) that

F+u = g̃ − P+(g̃ + S∗g) + S∗g − S∗P−(Sg̃ + g)

= (I − P+)(g̃ + S∗g)− S∗P−(Sg̃ + g)

= P−(g̃ + S∗g)− S∗P−(Sg̃ + g) .

By analytic continuation of F+u into the lower half-plane, taking into account (A.10), one
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arrives at

αΓ0(AiI − zI)−1u = −
√

2π
(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
∀z ∈ C−.

Combining this with Lemma 3.1(ii), we write

αΓ0(Aκ − zI)−1u = −
√

2πΘ−1
κ (z)

(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
.

Finally, using Lemma A.1 from the proof of Theorem 4.2 above, we obtain

χ+
καΓ0(Aκ − zI)−1u =

√
2πP−(Sg̃ + g)(z),

To demonstrate the converse inclusion{
u ∈ H : χ+

καΓ0(Aκ − zI)−1u ∈ H2
−(E)

}
⊂ Ñκ

−,

we show that, whenever χ+
καΓ0(Aκ − zI)−1u ∈ H2

−(E), the vector(
g̃

g

)
= Φu− 1

2π

(
0

αΓ0(Aκ − zI)−1u

)
satisfies

P−
(
χ+
κ (g̃ + S∗g) + χ−κ (Sg̃ + g)

)
= 0,

and hence u = Φ∗PK
(
g̃
g

)
∈ Φ∗PKN κ

− = Ñκ
e . Indeed, introducing the notation

Φu =:

(
g̃0

g0

)
, h− :=

1

2π
αΓ0(AiI − zI)−1u,

we have
P−
(
χ+
κ (g̃0 + S∗(g0 + h−)) + χ−κ (Sg̃0 + g0 + h−)

)
(A.21)

= χ+
κ (g̃0 + S∗g0)− P+χ

+
κ (g̃0 + S∗g0) + P−χ

−
κ (Sg̃0 + g0) +

(
I + χ+

κ (S∗ − I)
)
h−

= χ+
κF+u+

(
I + χ+

κ (S∗ − I)
)
h−,

By the analytic continuation into the lower half-plane and using Lemma 3.1(i), it follows
that (A.21) represents the boundary value on the real line of the function

− 1

2π
χ+
καΓ0(AiI − zI)−1u+

(
I + χ+

κ (S∗(z)− I)
)
h−(z)

= − 1

2π
χ+
κ Θκ(z)αΓ0(Aκ − zI)−1u+

(
I + χ+

κ (S∗(z)− I)
)
h−(z) (A.22)

=
(
I + χ+

κ (S∗(z)− I)
)(
h−(z)− 1

2π
χ+
καΓ0(Aκ − zI)−1u

)
= 0, (A.23)

where in order to pass from (A.22) to (A.23) we have used the fact that (see (3.1))

χ+
κ Θκ(z) =

(
I − iχ+

κα(BiI −M(z))−1α
)
χ+
κ =

(
I + χ+

κ (S∗(z)− I)
)
χ+
κ , z ∈ C−.
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Hence, the expression (A.21) vanishes, which concludes the proof.
The property

Ñκ
+ =

{
u ∈ H : χ−καΓ0(Aκ − zI)−1u ∈ H2

+(E)
}

is proved in a similar way.

Proof of Proposition 5.1.
Suppose that z ∈ C+. If ∫

R

dµ(s)

s− z
∈ H2

+ ,

then, by [57, Thm. 5.19], there exists a function f ∈ L2(R) such that∫
R

f(s)ds− dµ(s)

s− z
= 0 .

Fix a z0 ∈ C+, then

0 =

∫
R

f(s)ds− dµ(s)

s− z
−
∫
R

f(s)ds− dµ(s)

s− z0

=(z − z0)

∫
R

f(s)ds− dµ(s)

(s− z)(s− z0)
.

Thus, one has ∫
R

1

s− z
f(s)ds− dµ(s)

s− z0
= 0 , for all z ∈ C+ \ {z0} ,

where now (s− z0)−1(f(s)ds− dµ(s)) is a complex measure on R. Further, we invoke to
the upper half-plane counterpart of the theorem by F. and M. Riesz obtained by applying
the conformal mapping from the unit circle onto the upper half plane [32, Chap. 2, Sec. A].
This theorem implies that (s−z0)−1(f(s)dt−dµ(s)) is absolutely continuous with respect
to the Lebesgue measure and, therefore, the same applies to dµ(s).

The case of H2
− is treated likewise.
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[3] M. Š. Birman. On the theory of self-adjoint extensions of positive definite operators.
Math. Sb. N. S., 38(80):431–450, 1956.

39
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[5] M. Š. Birman, M. G. Krĕın. On the theory of wave operators and scattering operators.
(Russian) Dokl. Akad. Nauk SSSR 144:475–478, 1962.
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