Hints of lepton universality violation in semileptonic B decays

Patrick Owen

Benasque Workshop Flavour Physics at LHC run II

26/05/17

Flavour physics and lepton universality

- Flavour physics is the study of the different generations of fermions.
- In the SM these different generations interact in a very specific way.
 - The generations of quarks interact via the CKM matrix

• The generations of the charged leptons are identical copies of each other with regards to their electroweak couplings.

Lepton universality

 Of course, one could say that we have already seen violation of lepton universality.

• Differences due to masses can be large.

$$\mathcal{B}(Z \to e^+ e^-) = \mathcal{B}(Z \to \mu^+ \mu^-) = \mathcal{B}(Z \to \tau^+ \tau^-)$$

$$\mathcal{B}(\psi(2S) \to e^+e^-) = \mathcal{B}(\psi(2S) \to \mu^+\mu^-) = \mathcal{B}(\psi(2S) \to \tau^+\tau^-)/0.3885$$

We have searched for violations of lepton universality in various systems (Z, W, π decays ..), no evidence so far*.

* Apart from a small tension in W decays (e.g. https://arxiv.org/abs/1603.03779)

Patrick Owen

Why look in B decays

If one assumes O(1) couplings, can get large NP contributions to mixing diagrams.

B-physics becomes most powerful in this case.

An example

- Consider the decay $B \to \tau \nu$
- Mediated by a W boson coupling to third generation fermions at both vertices.
 - Highly sensitive to a charged Higgs boson.
 - In which case, expect violation of lepton universality for decays involving a τ or muon
- Can naturally explain why we wouldn't have seen it before in e.g. kaon decays.
- Can find it even if mass > LHC energy.

Why semi-leptonic decays?

• A decay is semi-leptonic if its products are part leptons and part hadrons.

- These decays can be **factorised** into the weak and strong parts, greatly simplifying theoretical calculations.
- Lepton universality ratios further cancel theoretical uncertainties.

Types of semi-leptonic decay

Two types of semi-leptonic B decay

Can proceed via tree level -large O(%) branching fractions.

NP sensitivity up to about 1 TeV

Forbidden at tree level - low O(10⁻⁶) branching fractions.

NP sensitivity up to about 100 TeV

$R(D^*)$

• Large rate of charged current decays allow for measurement in semi-tauonic decays.

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

- Form ratio of decays with different lepton generations.
- Cancel QCD/expt uncertainties.
- R(D*) sensitive to any physics model favouring 3rd generation leptons (e.g. charged Higgs).

Who has made measurements

• Three experiments have made measurements

	BaBar	Belle	LHCb
#B's produced	O(400M)	O(700M)	O(800B)*
Production mechanism	$\Upsilon(4S) \to B\bar{B}$	$\Upsilon(4S) \to B\bar{B}$	$pp \to gg \to b\overline{b}$
Publications	Phys.Rev.Lett 109, 101802 (2012) Phys. Rev. D 88, 072012 (2013)	Phys.Rev.D 92, 072014 (2015) Phys. Rev. D 94, 072007 (2016) arXiv:1612.00529	Phys.Rev.Lett.115, 111803 (2015)

Experimental challenges

- Three neutrinos in the final state (using $au
 ightarrow \mu
 u
 u$).
 - No sharp peak to fit in any distribution.
- At B-factories, can control this using 'tagging' technique.

 More difficult at LHCb, compensate using large boost (flight information) and huge B production.

Latest result from Belle

arXiv:1612.00529, submitted to PRL

• First result to use hadronic $\tau \to \pi \nu$ decays.

patrick Owen 5, Martin Camalich, SW, 2017]

 Also first measurement to measure τ polarisation.

Combination

• All experiments see an excess of signal w.r.t. SM prediction.

QCD uncertainties very small - unlikely to be explanation.

Latest HFAG average [1] quotes **3.9** from SM prediction

[1] <u>http://www.slac.stanford.edu/xorg/hfag/semi/</u> <u>winter16/winter16_dtaunu.html</u>

Benasque workshop

Remarks

- Because this measurement is so difficult, it has received a fairly healthy level of scepticism by the theory community.
- People are worried about backgrounds from $B \to D^{**} \ell \nu$ decays where the charm spectrum is not so well measured.
- This is unlikely to be the issue:
 - Rely on data for control of background.
 - B-factories/LHCb have very different background levels

$$BF(D^{(*)}l^{\overline{v}}l) + BF(D^{(*)}\pi l^{\overline{v}}l) \rightarrow BF(D^{(*)}\pi \pi l^{\overline{v}}l) + BF(D^{(*)}\pi \pi l^{\overline{v}}l) + BF(D^{(*)}\pi \pi l^{\overline{v}}l) \rightarrow BF(D^{(*)}\pi \pi l^{\overline{v}}l) \rightarrow BF(X_{c}l^{\overline{v}}l) \rightarrow BF(X_{c}l^{\overline{v}}l)$$

Constraining models

calar particle, constraints from B_c disfavour /:1611.06676).

Benasque workshop

16

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}$$

Plots liberally borrowed from Simone Bifani's recent CERN seminar: https://indico.cern.ch/event/ 580620/

 $B \to K^{(*)}\ell\ell$

• The decay $B \to K^{(*)}\ell\ell$ is a semileptonic b—>s transition.

• q² is the four-momentum transferred to the di-leptons.

JHEP 11 (2016) 047, JHEP 04 (2017) 142

• The branching fraction of the muonic mode has been well measured and is slightly below the SM prediction.

 $R_{K(*)}$

• Here take ratio of light leptons,

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}$$

- Muon and electron masses small compared to b-quark.
 - R_K is essentially unity in SM, with no uncertainty.
- QED effects can be large but this is accounted for in the measurements.

Measurement at LHCb-PAPER-2017-013, arXiv:1705.05802

- Most precise measurements of $R_{K^{(*)}}$ from LHCb.
- Results use run 1 data 3fb⁻¹ of luminosity.

• Measure the double ratio with the resonant mode $B \to K^{(*)}(J/\psi \to \ell^+ \ell^-)$

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

- Use normalisation channel to correct simulation and signal mass shapes.
- Fit B mass in low and central q² regions:

'low' region $0.045 < q^2 < 1.1 {\rm GeV}^2/{\rm c}^4$

'central' region $1.1 < q^2 < 6.0 {\rm GeV}^2/{\rm c}^4$

Bremsstrahlung issues

- Electrons more difficult than muons due to bremsstrahlung.
- Get background from the J/ ψ and ψ (2S) leaking into signal region.

Bremsstrahlung issues

Correcting for efficiency

• The double ratio means that only efficiency differences due to kinematics can affect the result.

- Simulation is also corrected for using control samples.
 - If these corrections are not used, the result only changes by 5%.
- Split data depending on how event was triggered.
 - Important for cross-checks.

$$\begin{array}{l} Cross-checks \\ r_{J/\psi} = \frac{\mathcal{B}(B^0 \rightarrow K^{*0}J/\psi (\rightarrow \mu^{\mu}\mu^{\mu}))}{\mathcal{B}(B^0 \rightarrow K^{*0}J/\psi (\rightarrow e^+e^-))} \\ \end{array}$$
Most powerful cross-check for for the J/ ψ modes.

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))} = 1.043 \pm 0.006 \text{ (stat)} \pm 0.045 \text{ (syst)}$$

Other cross-checks include other double ratios who's precision is known.

$$\mathcal{R}_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \left/ \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} \right.$$

$$r_{\gamma} = \frac{\mathcal{B}(B^0 \to K^{*0} \gamma (\to e^+ e^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))}$$

Both of which are found to be compatible with expectations.

Patrick Owen

Cross-checks (II)

• Compare bremsstrahlung/trigger categories between data and simulation.

$Cross-ch^{\text{s}}_{\text{o}} = \frac{1}{B^0 \to K^{*0} \mu^* \mu^-}$

Also compare kinematic distribution

0.5

 $q^2 \,[{\rm GeV}^2/c^4]$

 $0.045 < q^2 < 1.1 [\text{GeV}^2/c^4]$

M Data - Simulation

Data — Simulation

0.5

0.4

0.35

0.3 0.25 0.2 0.2

0.15 0.1

0.04

0.45

LHCb

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

 $B^0 \rightarrow K^{*0} e^+ e^-$

[%]

Fraction of candidates

Benasque workshop

 $q^2 \,[{\rm GeV}^2/c^4]$

 $1.1 < q^2 < 6.0 [\text{GeV}^2/c^4]$

M Data - Simulation

Mata — Simulation

Cross-checks (IV)

What about the signal yield?

LHCb Part. recep background controlled in two ways: Combinatorial $\overline{A}_{b}^{0} \rightarrow K^{*}\overline{p}J/\psi(\rightarrow e^{+}e^{-})$ $\overline{B}_{s}^{0} \rightarrow K^{*}0J/\psi(\rightarrow sing)$ $B \rightarrow K^{*}(J/\psi \rightarrow e^{+}e^{-})$ $B \rightarrow K\pi\pi\mu^{+}\mu^{-}$ $K^{+}\pi_{+}^{+}+ K^{+}+ K^{+}+$

Results

• Take ratio of signal yields and correct for efficiency to get $R_{K^{(*)}}$.

- LHCb results are 2.6 (R_K), 2.4 and 2.2σ from the SM predictions and all in the same direction.
- Error dominated by the statistical uncertainty.

Remarks I

- All of the muonic b—>sll branching fractions tend to be below the SM prediction. See Fernando's talk for more details.
- If NP doesn't couple (strongly) to first generation, one would naively expect R_K to be less than unity.

• Its not particularly significant, but at least things are consistent.

Patrick Owen

Remarks II

• We are also seeing something strange in the angular distribution of the muonic decay, $B \to K^* \mu \mu$. See Fernando's talk for more details.

 The global significance here is about 3.5, although now the theoretical uncertainty is not negligible.

Remarks III

- Global fits suggest a mostly vector like contribution is destructively interfering with muonic amplitude can cause such a discrepancy.
 - This matches with low BFs and angular analysis of K*μμ.

Remarks IV

If we assume NP is heavy, its hard to accommodate the truck in the first q² bin.

- At low q², the decay amplitude is dominated by the photon diagram - must be lepton universal!
- There are models which get around this with light mediators (see e.g. Sala, Straub, arXiv:1704.06188).

Summary and outlook

- Tests of lepton universality are excellent ways of looking for new physics.
 - In B decays, one is naturally sensitive to models coupling more strongly to the 2nd or 3rd generations.
- We have two anomalies in both tree- and loop-level semileptonic B decays.

Summary and outlook

- Updates from LHCb are coming soon so there's no need to make your mind up yet.
 - All these results are based on run I data, the LHC has already produced the same number of B hadrons in our detector.
 - Expect improved precision on $R(D^*,D^0)$ and R_K .
 - Measurement of R(D*) with hadronic tau decays expected very soon.
 - Can also compare the angular distribution of these decays between the electronic and muonic versions.
- Next one should be very soon.

Back-ups

R(D*) control samples

Anti-isolate signal to enrich particular backgrounds.

R(D*) 3D fit

3D fit used to discriminate signal from backgrounds

Good agreement seen everywhere

K*mm decay distribution

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K \\ + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_l \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \Big]$$

$$P_{1} = \frac{2 S_{3}}{(1 - F_{L})} = A_{T}^{(2)},$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{(1 - F_{L})},$$

$$P_{3} = \frac{-S_{9}}{(1 - F_{L})},$$

$$P_{4,5,8}^{\prime} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}},$$

$$P_{6}^{\prime} = \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}}.$$

Patrick Owen

Benasque workshop

The decay $B^0 \to K^{*0} \ell^+ \ell^-$

- Now we move to a P—>VV decay.
 - Rich angular structure.

- Angular analysis desirable because:
 - Partially cancel QCD uncertainty.
 - Probe the helicity structure of NP.

NP.

$$P'_5 = \sqrt{2} \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})}{\sqrt{|A_0|^2(|A_{\perp}|^2 + |A_{\parallel}|^2)}}$$

Patrick Owen