Lepton Flavour Violation and Neutrino Masses

Arcadi Santamaria

IFIC/Universitat de València-CSIC

Flavour Physics at LHC Run II Centro de Ciencias de Benasque Pedro Pascual, 21-27 May 2017

<ロト <回ト < 国ト < 国ト = 国

Outline

Participation Playour Violation

Conclusions

Arcadi Santamaria (IFIC/U. València-CSIC)

3

• We have already seen it! v's change flavour

- We have already seen it! v's change flavour
- We have not seen, yet, "direct" LFV in charged leptons, WHY?

- We have already seen it! v's change flavour
- We have not seen, yet, "direct" LFV in charged leptons, WHY?

 $m_v \Longrightarrow \text{LFV} \quad (\ell_a \to \ell_b \gamma)$

$$M_{\nu} \stackrel{\text{1loop}}{\Longrightarrow} (\mathscr{A}_{\text{LFV}})_{ab} \propto \frac{1}{(4\pi)^2} \frac{(M_{\nu}^2)_{ab}}{\nu^2}$$

- We have already seen it! v's change flavour
- We have not seen, yet, "direct" LFV in charged leptons, WHY?

 $m_v \Longrightarrow \text{LFV} \quad (\ell_a \to \ell_b \gamma)$

$$M_{\nu} \stackrel{\text{1loop}}{\Longrightarrow} (\mathscr{A}_{\text{LFV}})_{ab} \propto \frac{1}{(4\pi)^2} \frac{(M_{\nu}^2)_{ab}}{\nu^2}$$

$LFV \implies m_v$? Not necessarily!

If Majorana m_v , need for Lepton Number Violation (LNV)

$$\mathscr{L}_k = \overline{e_{aR}^c} g_{ab} e_{bR} k^{++}$$

Tree level LFV ($\mu \rightarrow eee$) without neutrino masses!

A large class of models have (LNV + LFV): $M_v = \mu \frac{v^2}{M^2}$ If $\mu \ll M$ large LFV with small M_v

Higgs Lepton Flavour Violation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$BR(h \to \mu \tau) = (0.84^{+0.39}_{-0.37})\%$$

 $BR(h \to \mu\tau) = (0.84^{+0.39})$ %

$$\mathrm{BR}(h \to \mu \tau) < 10^{-3} \quad ?$$

$$BR(h \rightarrow \mu \tau) < 10^{-3} ?$$

$$-\mathscr{L}_{Y} - \mathscr{L}_{HLFV} = \overline{L} Y_{e} e_{R} \Phi + \frac{C_{Y}}{\Lambda^{2}} \overline{L} e_{R} \Phi (\Phi^{\dagger} \Phi) + \cdots$$

$$\Rightarrow \qquad \overline{e_{L}} \left(\frac{v}{\sqrt{2}} \left(Y_{e} + C_{Y} \frac{v^{2}}{2\Lambda^{2}} \right) + \frac{h}{\sqrt{2}} \left(Y_{e} + 3C_{Y} \frac{v^{2}}{2\Lambda^{2}} \right) + \cdots \right) e_{R} + \cdots$$

Arcadi Santamaria (IFIC/U. València-CSIC)

CCPP, Benasque 2017 2 / 23

$$BR(h \rightarrow \mu \tau) < 10^{-3} ?$$

$$-\mathscr{L}_{Y} - \mathscr{L}_{HLFV} = \overline{L} Y_{e} e_{R} \Phi + \frac{C_{Y}}{\Lambda^{2}} \overline{L} e_{R} \Phi (\Phi^{\dagger} \Phi) + \cdots$$

$$\Rightarrow \qquad \overline{e_{L}} \left(\frac{v}{\sqrt{2}} \left(Y_{e} + C_{Y} \frac{v^{2}}{2\Lambda^{2}} \right) + \frac{h}{\sqrt{2}} \left(Y_{e} + 3C_{Y} \frac{v^{2}}{2\Lambda^{2}} \right) + \cdots \right) e_{R} + \cdots$$

\overline{C}_{Y}	Λ (TeV)
1	5
$m_{ au}/v$	0.4
$1/(4\pi)^2$	0.4
$m_{ au}/(v(4\pi)^2)$	0.04

3

イロン イロン イヨン イヨン

Induced $\tau \rightarrow \mu \gamma$ by HLFV

2

イロン イロン イヨン イヨン

Induced $\tau \rightarrow \mu \gamma$ by HLFV

$$\mathscr{L}_{\rm LFV} = \frac{eC_{ij}^{\gamma}v}{16\pi^2\Lambda^2\sqrt{2}}\bar{e}_i\sigma_{\mu\nu}P_Re_jF^{\mu\nu} + {\rm h.c.}$$

Arcadi Santamaria (IFIC/U. València-CSIC)

イロト 不得 トイヨト イヨト 二日

Tree-level Topologies

Representations

Topology	Particles	Representations	Coefficient $\frac{C_{\gamma}}{\Lambda^2}$
A	1 S	S = (2, -1/2)	$\frac{Y\lambda}{m_S^2}$
В	2 S	$(2,-1/2)_{\mathcal{S}} \oplus (1,0)_{\mathcal{S}}, (3,0)_{\mathcal{S}}, (3,1)_{\mathcal{S}}$	$\frac{Y\mu_{1}\mu_{2}}{m_{S_{1}}^{2}m_{S_{2}}^{2}}$
<i>C</i> ₁	1 F,1 S	$(2,-1/2)_F \oplus (1,0)_S, (3,0)_S$	$\frac{Y_F Y_F^S \mu}{m_F m_S^2}$
<i>C</i> ₂	1 F,1 S	$(2,-3/2)_F\oplus(3,1)_S$	$\frac{Y_F Y_F^S \mu}{m_F m_S^2}$
<i>C</i> ₃	1 F,1 S	$(1,-1)_F \oplus (1,0)_S, (3,-1)_F \oplus (3,0)_S$	$\frac{Y_F Y_F^S \mu}{m_F m_S^2}$
C_4	1 F,1 S	$(3,0)_{F}\oplus(3,1)_{S}$	$\frac{Y_F Y_F^S \mu}{m_F m_S^2}$
D ₁	2 F	$(2,-1/2)_F \oplus (3,0)_F, (1,0)_F$	$\frac{Y_{F_1} Y_{12} Y_{F_2}}{m_{F_1} m_{F_2}}$
D_2	2 F	$(2,-1/2)_F \oplus (1,-1)_F, (3,-1)_F$	$\frac{Y_{F_1} \dot{Y}_{12} \dot{Y}_{F_1}}{m_{F_1} m_{F_2}}$
D_3	2 F	$(2,-3/2)_F \oplus (1,-1)_F, (3,-1)_F$	$\frac{Y_{F_1} \dot{Y}_{12} \dot{Y}_{F_2}}{m_{F_1} m_{F_2}}$

2

• Topology A: type III 2HDM can give large HLFV

- Topology A: type III 2HDM can give large HLFV
- Topology B: also contains a second doublet

A I = A I = A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Topology A: type III 2HDM can give large HLFV
- Topology B: also contains a second doublet
- Topologies C and D contain VL fermions (strongly disfavoured)

- Topology A: type III 2HDM can give large HLFV
- Topology B: also contains a second doublet
- Topologies C and D contain VL fermions (strongly disfavoured)
- Most of one-loop topologies also proportional to m_{τ} or contain VL fermions

- Topology A: type III 2HDM can give large HLFV
- Topology B: also contains a second doublet
- Topologies C and D contain VL fermions (strongly disfavoured)
- Most of one-loop topologies also proportional to m_{τ} or contain VL fermions
- Most of neutrino mass models give HLFV at one loop and suppressed by m_{τ}

- Topology A: type III 2HDM can give large HLFV
- Topology B: also contains a second doublet
- Topologies C and D contain VL fermions (strongly disfavoured)
- Most of one-loop topologies also proportional to *m_τ* or contain VL fermions
- Most of neutrino mass models give HLFV at one loop and suppressed by m_{τ}
- v-mass models with two Higgs doublets, can give large HLFV
 - Extended Zee model
 - Left-right symmetric models

3

Neutrino mass models and LFV

Neutrino mass models and LFV

 $M_v = UD_v U^T$, with $D_v = \text{diag}(m_1, m_2, m_3)$, U: PMNS

 $(M_v)_{ab} \propto g_{ab}$, depend on $s_{12}, s_{13}, \Delta_{21}, \Delta_{31}, s_{23}, \delta, m_{\text{ligth}}, \alpha_1, \alpha_2$

Process	BR upper bound	Couplings limit
$\mu^- \to e^+ e^- e^-$	1.0×10^{-12}	$ g_{e\mu}g^*_{ee} <$ 2.3 $ imes$ 10 ⁻⁵ $\left(rac{m_k}{ ext{TeV}} ight)^2$
$\tau^- \to e^+ e^- e^-$	2.7×10^{-8}	$ g_{e au}g_{ee}^* $ $<$ 0.009 $\left(rac{m_k}{ ext{TeV}} ight)^2$
$\tau^- \to e^+ e^- \mu^-$	1.8×10^{-8}	$ g_{e au}g_{e\mu}^* $ $<$ 0.005 $\left(rac{m_k}{ ext{TeV}} ight)^2$
$\tau^- \to e^+ \mu^- \mu^-$	1.7×10^{-8}	$ g_{e au}g^*_{\mu\mu} < 0.007 \left(rac{m_k}{ ext{TeV}} ight)^2$
$\tau^- \rightarrow \mu^+ e^- e^-$	1.5×10^{-8}	$ g_{\mu au}g^*_{ee} < 0.007 \left(rac{m_k}{ ext{TeV}} ight)^2$
$\tau^- \to \mu^+ e^- \mu^-$	2.7×10^{-8}	$ g_{\mu au}g_{e\mu}^* < 0.007 \left(rac{m_k}{ ext{TeV}} ight)^2$
$\tau^- \to \mu^+ \mu^- \mu^-$	2.1×10^{-8}	$ g_{\mu au}g_{\mu\mu}^* <$ 0.008 $\left(rac{m_k}{ ext{TeV}} ight)^2$
$\mu \to e\gamma$	$4.2\!\times\!10^{-13}$	$ g_{ee}^*g_{e\mu} + g_{e\mu}^*g_{\mu\mu} + g_{e\tau}^*g_{\mu\tau} < 3 imes 10^{-4} \ (m_k/{ m TeV})^2$
$ au ightarrow oldsymbol{ heta}\gamma$	$\textbf{3.3}\times\textbf{10^{-8}}$	$ g^*_{ heta e}g_{e au}+g^*_{e\mu}g_{\mu au}+g^*_{e au}g_{ au au} <$ 0.2 $(m_k/{ m TeV})^2$
$\tau \to \mu \gamma$	4.4×10^{-8}	$ g^*_{ heta\mu}g_{ heta au}+g^*_{\mu\mu}g_{\mu au}+g^*_{\mu au}g_{ au au} <0.2(m_k/{ m TeV})^2$
$\mathit{Cr}(\mu ightarrow e)_{\mathrm{Au}}$	$7 imes 10^{-13}$	$ g_{ee}^*g_{e\mu}+g_{e\mu}^*g_{\mu\mu}+g_{e\tau}^*g_{\mu\tau} <4 imes 10^{-4}(m_k/{ m TeV})^2$
		・ロト・(四)・(国)・(国)・(国)

Arcadi Santamaria (IFIC/U. València-CSIC)

The See-Saw type II (tree level)

Y = 1 scalar triplet χ

$$\mathscr{L}_{\chi} = -\left(\overline{\tilde{L}}_{L}Y_{\chi}\chi L_{L} - \mu\,\tilde{\Phi}^{\dagger}\chi^{\dagger}\Phi + \text{h.c.}\right), \quad M_{v} \approx Y_{\chi}v_{\chi}, \quad v_{\chi} \approx \frac{\mu}{m_{\chi}^{2}}\langle\Phi\rangle^{2}$$

LFV processes controlled by $Y_{\chi}^2/m_{\chi}^2 \approx M_v^2/(v_{\chi}m_{\chi})^2 \ell_a^- \rightarrow \ell_b^+ \ell_c^- \ell_d^-$: tree, χ^{++} , $\ell_a^- \rightarrow \ell_b^- \gamma$: 1-loop, χ^+, χ^{++}

Limit on $v_{\chi}m_{\chi}$ (Fukuyama, Sugiyama, Tsumura. '10, Dev, Miralles, Rodejohann, '17)

Arcadi Santamaria (IFIC/U. València-CSIC)

Minimal Zee Model (one loop)

Adds to the SM a scalar singlet h^+ and a new doublet Φ' $h^+ \sim (1,1), \qquad \Phi' \sim (2,\frac{1}{2})$

$$-\mathscr{L}_{\text{Zee}} = \overline{L_L} Y_e^{\dagger} \Phi e_R + \overline{\widetilde{L_L}} f L_L h^+ + \mu h^+ \Phi^{\dagger} \widetilde{\Phi}' + \cdots$$

Minimal Zee Model (one loop)

Adds to the SM a scalar singlet h^+ and a new doublet Φ' $h^+ \sim (1,1), \qquad \Phi' \sim (2,\frac{1}{2})$

$$-\mathscr{L}_{\text{Zee}} = \overline{L_L} Y_e^{\dagger} \Phi e_R + \tilde{L}_L f L_L h^+ + \mu h^+ \Phi^{\dagger} \tilde{\Phi}' + \cdots$$

Simplest version gives

$$(M_v)_{ab} \approx \frac{1}{(4\pi)^2} \frac{\mu}{M_h^2} f_{ab} (m_a^2 - m_b^2)$$

Minimal Zee Model (one loop)

Adds to the SM a scalar singlet h^+ and a new doublet Φ' $h^+ \sim (1,1), \qquad \Phi' \sim (2,\frac{1}{2})$

$$-\mathscr{L}_{\text{Zee}} = \overline{L_L} Y_e^{\dagger} \Phi e_R + \overline{\tilde{L}_L} f L_L h^+ + \mu h^+ \Phi^{\dagger} \tilde{\Phi}' + \cdots$$

Simplest version gives

$$(M_v)_{ab} \approx \frac{1}{(4\pi)^2} \frac{\mu}{M_h^2} f_{ab} (m_a^2 - m_b^2)$$

- "Too predictive": excluded
- Type III 2HDM versions OK (Balaji, Grimus, Schwetz '01)
- $H \rightarrow \tau \mu$ linked to v masses? (Herrero-Garcia, Rius, AS, '16)

Generalized Zee Model (one loop)

Zee with type III 2HDM (the two doublets coupled to charged leptons)

$$-\mathscr{L}_{\text{Zee}} = \overline{L_L} (Y_1^{\dagger} \Phi_1 + Y_2^{\dagger} \Phi_2) \boldsymbol{e}_R + \overline{\tilde{L}_L} f L_L h^+ + \mu h^+ \Phi_1^{\dagger} \tilde{\Phi}_2 + \cdots$$
$$M_v \approx \frac{1}{(4\pi)^2} \frac{\mu}{M_h^2} \left(\left(f M_E^2 + M_E^2 f^T \right) - \frac{v}{\sqrt{2} s_\beta} \left(f M_E Y_2 + Y_2^T M_E f^T \right) \right)$$

A I = A I = A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Generalized Zee Model (one loop)

Zee with type III 2HDM (the two doublets coupled to charged leptons)

$$-\mathscr{L}_{\text{Zee}} = \overline{L_L}(Y_1^{\dagger}\Phi_1 + Y_2^{\dagger}\Phi_2)e_R + \overline{\widetilde{L}_L}fL_Lh^+ + \mu h^+\Phi_1^{\dagger}\widetilde{\Phi}_2 + \cdots$$
$$M_v \approx \frac{1}{(4\pi)^2}\frac{\mu}{M_h^2}\left(\left(fM_E^2 + M_E^2f^T\right) - \frac{v}{\sqrt{2}s_\beta}\left(fM_EY_2 + Y_2^TM_Ef^T\right)\right)$$

HLFV – LFV correlations

(Herrero-García, Ohlsson, Riad, Wirén, '17)

Arcadi Santamaria (IFIC/U. València-CSIC)

LFV and Neutrino Masses

The Zee-Babu Model (two loops)

Two scalar singlets h^+, k^{++} (Zee '86, Babu '88, Babu, Macesanu '03) (Aristizabal, Hirsch '06, Nebot, Oliver, Palao, AS '08, Ohlsson, Schwetz, Zhang '09, Schmidt, Schwetz, Zhang '14)

$$\mathscr{L}_{ZB} = \overline{\widetilde{L}_L} f L_L h^+ + \overline{e_R^c} g e_R k^{++} + \mu (h^-)^2 k^{++} + \cdots$$

 $\ell_a^- \rightarrow \ell_b^+ \ell_c^- \ell_d^-$: limits on g_{ab}

$$M_{
m v}\sim rac{\mu}{(4\pi)^4M_k^2}f\,M_Eg^\dagger M_Ef^T$$

- Lightest v is massless
- $f_{e\tau}/f_{\mu\tau}, f_{e\mu}/f_{\mu\tau}$ fixed from mixings

 $\ell_a \rightarrow \ell_b v \bar{v}$: limits on f_{ab}

LFV and Neutrino Masses

The Zee-Babu Model (two loops)

Two scalar singlets h^+, k^{++} (Zee '86, Babu '88, Babu, Macesanu '03) (Aristizabal, Hirsch '06, Nebol, Oliver, Palao, AS '08, Ohlsson, Schwetz, Zhang '09, Schmidt, Schwetz, Zhang '14)

$$\mathscr{L}_{ZB} = \overline{\widetilde{L}_L} f L_L h^+ + \overline{e_R^c} g e_R k^{++} + \mu (h^-)^2 k^{++} + \cdots$$

$$M_{v}\sim rac{\mu}{(4\pi)^{4}M_{k}^{2}}fM_{E}g^{\dagger}M_{E}f^{T}$$

•
$$f_{e\tau}/f_{\mu\tau}, f_{e\mu}/f_{\mu\tau}$$
 fixed from mixings

 $\ell^-_a
ightarrow \ell^-_b \gamma$: bounds g_{ab} and f_{ab}

Constrained Parameter Space

(Nebot, Oliver, Palao, AS '08, Herrero-Garcia, Nebot, Rius, AS '14)

Arcadi Santamaria (IFIC/U. València-CSIC)

LFV and Neutrino Masses

CCPP, Benasque 2017 12 / 23

э

Lepton Number Violation and neutrino masses

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - のへで

$0\nu\beta\beta$ and Majorana m_{ν}

Majorana $m_v \Longrightarrow 0 \nu \beta \beta$ $\langle \phi \rangle \qquad \langle \phi \rangle$ $\downarrow \\ \downarrow \\ \nu_L \qquad \nu_L$

э

A I = A I = A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

< □ > < □ > < □ > < □ > < □ >

э

イロト イポト イヨト イヨト

э

A B > A B >

How tight is this connection?

What if $(M_v)_{ee} < 10^{-3} \text{ eV}$?

< A

4 3 > 4 3

$0v\beta\beta$ and Majorana m_v

Majorana v :
$$v_L v_L$$
, $0v\beta\beta$:

$$\begin{cases}
e_Le_L\\
e_Le_R\\
e_Re_R
\end{cases}$$
Break different quantum numbers, only linked by m_e

Arcadi Santamaria (IFIC/U. València-CSIC)

LFV and Neutrino Masses

Contributions to $0\nu\beta\beta$ (del Aguila, Aparici, Bhattacharya, AS, Wudka '12)

$$\begin{split} \mathscr{O}^{(5)} &= \\ \widetilde{L}_L \Phi \end{pmatrix} \begin{pmatrix} \tilde{\Phi}^{\dagger} L_L \end{pmatrix} \qquad \qquad \mathscr{A}^{(5)}_{0\nu 2\beta} \sim \frac{C^{(5)}_{ee}}{\Lambda \rho_{\text{eff}}^2 v^2} \end{split}$$

$$\begin{pmatrix} \mathscr{O}^{(7)} = \\ \left(\Phi^{\dagger} \mathcal{D}_{\mu} \tilde{\Phi} \right) \left(\Phi^{\dagger} \overline{\mathbf{e}_{\mathsf{R}}} \gamma^{\mu} \tilde{\mathcal{L}}_{L} \right) \quad \mathscr{A}_{0v2\beta}^{(7)} \sim \frac{C_{ee}^{(7)}}{\Lambda^{3} p_{\mathrm{eff}} v}$$

$$\begin{aligned} \mathscr{O}^{(9)} &= \\ \overline{e_{\mathrm{R}}} e_{\mathrm{R}}^{\mathrm{c}} \left(\Phi^{\dagger} D_{\mu} \tilde{\Phi} \right) \left(\Phi^{\dagger} D^{\mu} \tilde{\Phi} \right) \qquad \mathscr{A}^{(9)}_{0\nu 2} \end{aligned}$$

Arcadi Santamaria (IFIC/U. València-CSIC)

LFV and Neutrino Masses

èe

Contributions to v Masses

3

Contributions to v Masses

Need models: C.S. Chen, C.Q. Geng, J.N. Ng, J.M.S. Wu; del Aguila, Aparici, Bhattacharya, AS, Wudka; M. Gustafsson, J.M. No, M.A. Rivera

Arcadi Santamaria (IFIC/U. València-CSIC)

LFV and Neutrino Masses

CCPP, Benasque 2017 15 / 23

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

Arcadi Santamaria (IFIC/U. València-CSIC)

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

● No new fermions → No see-saw I-III

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

- No new fermions → No see-saw I-III
- No $\chi L_L L_L$ coupling (Z_2 symmetry) \implies No see-saw II

イロト 不得 トイヨト イヨト ニヨー のなる

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

- No new fermions → No see-saw I-III
- No $\chi L_L L_L$ coupling (Z_2 symmetry) \implies No see-saw II

イロト 不得 トイヨト イヨト ニヨー のなる

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

- No new fermions → No see-saw I-III
- No $\chi L_L L_L$ coupling (Z_2 symmetry) \implies No see-saw II

Scalar spectrum contains: κ^{++} , *S* (DM), *A*, *H*, χ^+ , χ^{++} Highly constrained by

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

- No new fermions → No see-saw I-III
- No $\chi L_L L_L$ coupling (Z_2 symmetry) \implies No see-saw II

Scalar spectrum contains: κ^{++} , *S* (DM), *A*, *H*, χ^+ , χ^{++} Highly constrained by

• The structure of the potential (sum rules)

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

- No new fermions → No see-saw I-III
- No $\chi L_L L_L$ coupling (Z_2 symmetry) \implies No see-saw II

Scalar spectrum contains: κ^{++} , *S* (DM), *A*, *H*, χ^+ , χ^{++} Highly constrained by

- The structure of the potential (sum rules)
- The ρ parameter (small charged-neutral splittings)

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

- No new fermions → No see-saw I-III
- No $\chi L_L L_L$ coupling (Z_2 symmetry) \implies No see-saw II

Scalar spectrum contains: κ^{++} , *S* (DM), *A*, *H*, χ^+ , χ^{++} Highly constrained by

- The structure of the potential (sum rules)
- The ρ parameter (small charged-neutral splittings)
- The scale of neutrino masses and LFV

3 new scalars $\kappa^{++} \sim$ (1,2,+), $\chi \sim$ (3,1,-), $\sigma \sim$ (1,0,-) with Z_2

The relevant couplings

$$\mathscr{L} = \overline{e_{aR}^{c}} f_{ab} e_{bR} \kappa^{++} - \mu_{\kappa} \kappa^{++} \operatorname{Tr} \left\{ \chi^{\dagger} \chi^{\dagger} \right\} - \lambda_{6} \sigma \Phi^{\dagger} \chi \tilde{\Phi} + \cdots$$

- No new fermions → No see-saw I-III
- No $\chi L_L L_L$ coupling (Z_2 symmetry) \implies No see-saw II

Scalar spectrum contains: κ^{++} , *S* (DM), *A*, *H*, χ^+ , χ^{++} Highly constrained by

- The structure of the potential (sum rules)
- The ρ parameter (small charged-neutral splittings)
- The scale of neutrino masses and LFV
- The DM requirement (small mixings large singlet-triplet splittings)

A B > A B >

Neutrinoless double beta decay

3 > 4 3

Neutrinoless double beta decay

The effective $\kappa^{--}WW$ vertex

Neutrinoless double beta decay

The effective $\kappa^{--}WW$ vertex

The amplitude

$$\begin{split} \mathscr{L}_{0\nu\beta\beta} &= 2 \frac{f_{ee}^*}{16\pi^2} \frac{\mu_{\kappa}\lambda_6^2}{m_{\kappa}^2 m_A^2} I_{\beta} \left(\overline{u_L} \gamma^{\mu} d_L \right) \left(\overline{u_L} \gamma_{\mu} d_L \right) \overline{e_R} e_R^c \\ & 4 \times 10^{-10} < \frac{m_{\rho}}{2G_F^2} \frac{f_{ee}^*}{16\pi^2} \frac{\mu_{\kappa}\lambda_6^2}{m_{\kappa}^2 m_A^4} I_{\beta} < 4 \times 10^{-9} \end{split}$$

Arcadi Santamaria (IFIC/U. València-CSIC)

Neutrino mass in the unitary gauge

< ロ > < 同 > < 回 > < 回 >

The neutrino masses

э

The neutrino masses

The neutrino mass matrix

$$M_{ab} = \frac{8\mu_{\kappa}\lambda_6^2}{(4\pi)^6} I_{\nu} m_a f_{ab} m_b = U D_{\nu} U^T$$

Arcadi Santamaria (IFIC/U. València-CSIC)

CCPP, Benasque 2017 18 / 23

イロト イロト イヨト イヨト

Structure of the v Mass Matrix

- M_{ee} highly suppressed by the factor m_e^2
- $M_{e\mu}$ also suppressed because the $\mu
 ightarrow 3e$ bound on $f_{e\mu}$
- $M_{ee}, M_{e\mu} \ll M_{e\tau}, M_{\mu\mu}, M_{\mu\tau}, M_{\tau\tau} \sim 0.02 \, \text{eV}$ M_{ν} strongly constrained

$$M_{\nu} = \begin{pmatrix} < 10^{-4} & < 10^{-4} & \sim 0.01 \\ < 10^{-4} & \sim 0.02 & \sim 0.02 \\ \sim 0.01 & \sim 0.02 & \sim 0.02 \end{pmatrix} \text{ eV}$$

- Only NH allowed
- $\sin^2 \theta_{13}$ cannot be zero
- Predicction for $m_{
 m light} \sim 0.005\,{
 m eV}$
- Prediction for Majorana phases: fixed by δ

The Sec. 74

Structure of the v Mass Matrix

- M_{ee} highly suppressed by the factor m_e^2
- $M_{e\mu}$ also suppressed because the $\mu
 ightarrow 3e$ bound on $f_{e\mu}$
- $M_{ee}, M_{e\mu} \ll M_{e\tau}, M_{\mu\mu}, M_{\mu\tau}, M_{\tau\tau} \sim 0.02 \, \mathrm{eV}$ M_v strongly constrained

$$M_{\rm v} = \begin{pmatrix} <10^{-4} & <10^{-4} & \sim 0.01 \\ <10^{-4} & \sim 0.02 & \sim 0.02 \\ \sim 0.01 & \sim 0.02 & \sim 0.02 \end{pmatrix} \, \rm eV$$

- Only NH allowed
- $\sin^2 \theta_{13}$ cannot be zero
- Predicction for $m_{
 m light} \sim 0.005\,{
 m eV}$
- Prediction for Majorana phases: fixed by δ

Structure of the v Mass Matrix

- M_{ee} highly suppressed by the factor m_e^2
- $M_{e\mu}$ also suppressed because the $\mu
 ightarrow 3e$ bound on $f_{e\mu}$
- $M_{ee}, M_{e\mu} \ll M_{e\tau}, M_{\mu\mu}, M_{\mu\tau}, M_{\tau\tau} \sim 0.02 \, \text{eV}$ M_v strongly constrained

$$M_{\rm V} = \begin{pmatrix} <10^{-4} & <10^{-4} & \sim 0.01 \\ <10^{-4} & \sim 0.02 & \sim 0.02 \\ \sim 0.01 & \sim 0.02 & \sim 0.02 \end{pmatrix} \, \rm eV$$

- Only NH allowed
- $\sin^2 \theta_{13}$ cannot be zero
- Predicction for $m_{
 m light} \sim 0.005\,{
 m eV}$
- Prediction for Majorana phases: fixed by δ

 $\delta \sim 260^\circ$ and $s_{23}^2 \sim 0.44$

19/23

The fit (preliminary)

Arcadi Santamaria (IFIC/U. València-CSIC)

CCPP, Benasque 2017 20 / 23

LFV and LHC

LFV ($\ell_a^- \to \ell_b^+ \ell_c^- \ell_d^-, \, \ell_a^- \to \ell_b^- \gamma, \, ...$): limits on f_{ab}

Experimental Data (90% CL)	Bounds (90% CL)	Bounds assuming Eq. (28)
${\rm BR}(\mu^- \to e^+ e^- e^-) < 1.0 \times 10^{-12}$	$ f_{e\mu}f_{ee}^* < 2.3 \times 10^{-5} \left(\frac{m_{e^{++}}}{\text{TeV}}\right)^2$	
${\rm BR}(\tau^- \to e^+ e^- e^-) < 2.7 \times 10^{-8}$	$ f_{e\tau}f_{ee}^{*} < 0.009 \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^{2}$	$ f_{ee}^*f_{\tau\tau} \lesssim 7.8 \times 10^{-6} \left(\frac{m_{\kappa++}}{\text{TeV}}\right)^2$
${\rm BR}(\tau^- \to e^+ e^- \mu^-) < 1.8 \times 10^{-8}$	$ f_{e\tau}f^*_{e\mu} < 0.005 \left(\frac{m_{s^{++}}}{\text{TeV}}\right)^2$	$ f_{e\mu}^*f_{\tau\tau} \lesssim 4.3 \times 10^{-6} ~ \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^2$
${\rm BR}(\tau^- \to e^+ \mu^- \mu^-) < 1.7 \times 10^{-8}$	$ f_{e\tau}f^*_{\mu\mu} < 0.007 ~ \left(\frac{m_{\kappa^{++}}}{{\rm TeV}}\right)^2$	$ f_{\tau\tau} \lesssim 1.4 \times 10^{-4} \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)$
${\rm BR}(\mu \to e \gamma) < 5.7 \times 10^{-13}$	$ \begin{array}{c} f_{ee}^*f_{e\mu}+f_{e\mu}^*f_{\mu\mu}+f_{e\tau}^*f_{\mu\tau} ^2 \\ <1\times 10^{-7}(\frac{m_{e^{\pm\pm}}}{\rm TeV})^4 \end{array}$	$ f_{\tau\tau} \lesssim 1.2 \times 10^{-4} \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)$

LFV and LHC

LFV ($\ell_a^- \to \ell_b^+ \ell_c^- \ell_d^-, \, \ell_a^- \to \ell_b^- \gamma, \, ...$): limits on f_{ab}

Experimental Data (90% CL)	Bounds (90% CL)	Bounds assuming Eq. (28)
${\rm BR}(\mu^- \to e^+ e^- e^-) < 1.0 \times 10^{-12}$	$ f_{e\mu}f_{ee}^* < 2.3 \times 10^{-5} \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^2$	
${\rm BR}(\tau^- \to e^+ e^- e^-) < 2.7 \times 10^{-8}$	$ f_{e\tau}f_{ee}^{*} < 0.009 \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^{2}$	$ f_{ee}^* f_{\tau\tau} \lesssim 7.8 \times 10^{-6} \ \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^2$
${\rm BR}(\tau^- \to e^+ e^- \mu^-) < 1.8 \times 10^{-8}$	$ f_{e\tau}f^*_{e\mu} < 0.005 \left(\frac{m_{s^{++}}}{\text{TeV}}\right)^2$	$ f_{e\mu}^*f_{\tau\tau} \lesssim 4.3 \times 10^{-6} ~ \left(\frac{m_{e^{++}}}{\text{TeV}}\right)^2$
${\rm BR}(\tau^- \to e^+ \mu^- \mu^-) < 1.7 \times 10^{-8}$	$ f_{e\tau}f^*_{\mu\mu} < 0.007 ~ \left(\frac{m_{\kappa^{++}}}{{\rm TeV}}\right)^2$	$ f_{\tau\tau} \lesssim 1.4 \times 10^{-4} ~ \left(\frac{m_{e^{++}}}{\rm TeV}\right)$
${\rm BR}(\mu \to e \gamma) < 5.7 \times 10^{-13}$	$\begin{array}{c} f_{ee}^*f_{e\mu}+f_{e\mu}^*f_{\mu\mu}+f_{e\tau}^*f_{\mu\tau} ^2 \\ <1\times 10^{-7}(\frac{m_{\mathrm{s}++}}{\mathrm{TeV}})^4 \end{array}$	$ f_{\tau\tau} \lesssim 1.2 \times 10^{-4} \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)$

Corrrelations of BR fixed by v oscillation data

Arcadi Santamaria (IFIC/U. València-CSIC)

イロト 不得下 イヨト イヨト 二日

LFV and LHC

LFV ($\ell_a^- \to \ell_b^+ \ell_c^- \ell_d^-, \, \ell_a^- \to \ell_b^- \gamma, \, ...$): limits on f_{ab}

Experimental Data (90% CL)	Bounds (90% CL)	Bounds assuming Eq. (28)
${\rm BR}(\mu^- \to e^+ e^- e^-) < 1.0 \times 10^{-12}$	$ f_{e\mu}f_{ee}^{*} < 2.3 \times 10^{-5} \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^{2}$	
${\rm BR}(\tau^- \to e^+ e^- e^-) < 2.7 \times 10^{-8}$	$ f_{e\tau}f_{ee}^{*} < 0.009 \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^{2}$	$ f_{ee}^* f_{\tau\tau} \lesssim 7.8 \times 10^{-6} \ \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)^2$
${\rm BR}(\tau^- \to e^+ e^- \mu^-) < 1.8 \times 10^{-8}$	$ f_{e\tau}f^*_{e\mu} < 0.005 \left(\frac{m_{s^{++}}}{\text{TeV}}\right)^2$	$ f_{e\mu}^*f_{\tau\tau} \lesssim 4.3 \times 10^{-6} ~ \left(\frac{m_{e^{++}}}{\text{TeV}}\right)^2$
${\rm BR}(\tau^- \to e^+ \mu^- \mu^-) < 1.7 \times 10^{-8}$	$ f_{e\tau}f^*_{\mu\mu} < 0.007 ~ \left(\frac{m_{\kappa^{++}}}{{\rm TeV}}\right)^2$	$ f_{\tau\tau} \lesssim 1.4 \times 10^{-4} ~ \left(\frac{m_{e^{++}}}{\rm TeV}\right)$
${\rm BR}(\mu \to e \gamma) < 5.7 \times 10^{-13}$	$ \begin{array}{l} f_{ee}^*f_{e\mu}+f_{e\mu}^*f_{\mu\mu}+f_{e\tau}^*f_{\mu\tau} ^2 \\ <1\times 10^{-7}(\frac{m_{\pi^{\pm\pm}}}{\rm TeV})^4 \end{array}$	$ f_{\tau\tau} \lesssim 1.2 \times 10^{-4} \left(\frac{m_{\kappa^{++}}}{\text{TeV}}\right)$

Corrrelations of BR fixed by v oscillation data

LHC

- $\kappa^{--} \rightarrow \ell_a \ell_b$ Easily produced and detected. BR fixed by v oscilaton data
- χ⁻⁻, χ⁻ easily produced.
 Interesting phenomenology because the discrete symmetry; have to decay into DM.

Dark Matter (Singlet-triplet scalar Higgs portal)

Arcadi Santamaria (IFIC/U. València-CSIC)

CCPP, Benasque 2017 22 / 23

э

Dark Matter (Singlet-triplet scalar Higgs portal)

Adjust the relic density with the mixing singlet-triplet

Connection with neutrino masses

$$\lambda_6 = \frac{\sin 2\alpha}{\sqrt{2}\nu^2} \left(m_H^2 - m_S^2 \right)$$

Arcadi Santamaria (IFIC/U. València-CSIC)

イロト イポト イヨト イヨト

• LFV compulsory from v data

3

イロン イロン イヨン イヨン

Conclusions

- LFV compulsory from v data
- Large HLFV difficult in v mass models but possible if they contain two Higgs doublets

Conclusions

- LFV compulsory from v data
- Large HLFV difficult in v mass models but possible if they contain two Higgs doublets
- HLFV strongly constrained by neutrino data and LFV

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
- LFV compulsory from v data
- Large HLFV difficult in v mass models but possible if they contain two Higgs doublets
- HLFV strongly constrained by neutrino data and LFV
- Large LFV natural in a large class of v mass models

- LFV compulsory from v data
- Large HLFV difficult in v mass models but possible if they contain two Higgs doublets
- HLFV strongly constrained by neutrino data and LFV
- Large LFV natural in a large class of v mass models
- LFV with BR correlated to oscillation parameters

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- LFV compulsory from v data
- Large HLFV difficult in v mass models but possible if they contain two Higgs doublets
- HLFV strongly constrained by neutrino data and LFV
- Large LFV natural in a large class of v mass models
- LFV with BR correlated to oscillation parameters
- Charged scalars could be seen at the LHC with decay BR predicted by v-mass parameters

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- LFV compulsory from v data
- Large HLFV difficult in v mass models but possible if they contain two Higgs doublets
- HLFV strongly constrained by neutrino data and LFV
- Large LFV natural in a large class of v mass models
- LFV with BR correlated to oscillation parameters
- Charged scalars could be seen at the LHC with decay BR predicted by *v*-mass parameters
- In 3loop models new contributions to $0v\beta\beta$ and DM candidate

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- LFV compulsory from v data
- Large HLFV difficult in v mass models but possible if they contain two Higgs doublets
- HLFV strongly constrained by neutrino data and LFV
- Large LFV natural in a large class of v mass models
- LFV with BR correlated to oscillation parameters
- Charged scalars could be seen at the LHC with decay BR predicted by *v*-mass parameters
- In 3loop models new contributions to $0\nu\beta\beta$ and DM candidate

BACKUP SLIDES

An example of HLFV–LFV correlations

э

イロト イポト イヨト イヨト