

SUSY FCNC at the LHC

Siannah Peñaranda-Rivas

Departamento de Física Teórica Universidad de Zaragoza

Flavour Physics at LHC run II

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

Outline

Introduction

- Flavour Changing Neutral Currents
- Flavour-changing interactions in SUSY
- R-parity conserving and violating SUSY models
- Approaches for probing SUSY
- New Physics Beyond the SM at the LHC
 - *B* anomalies and LFV (SUSY)
- Other relevant flavour changing interactions in SUSY
 Direct FCNC production @ LHC
 Higgs FCNC @ LHC

Conclusions

• FCNC are processes in which one up-type (or down-type) quark is converted into another one of the same type.

Effect of mixing: Mass matrix

$$egin{pmatrix} m_K^2 & {m A} \ {m A} & m_K^2 \end{pmatrix} \Rightarrow {\sf Diagonalize} \Rightarrow m_{{\cal K}_{1,2}}^2 = m_K^2 \pm {m A}$$

• Mass difference $\Delta m_K \equiv |m_{K_1} - m_{K_2}|$: signal of FCNC

Standard Model

- FCNC absent at the tree-level
- Produced at one-loop by
 - charged currents
 - Cabibbo-Kobayashi-Maskawa mixing matrix (V)
- GIM Mechanism

$$\Rightarrow$$
 Unitarity of the CKM matrix: $\sum_{q} V_{qs} V_{qd}^{\dagger} = 0$

• Loop induced \oplus GIM \implies FCNC processes have very small rates

A ►

New Physics (NP)

- Ideal place to get indirect evidence of NP
- So far, most of experimental results on flavor observables are consistent with SM expectations and lead to strong indirect constraints on NP models
- Increase the sensitivity of flavour experiments & More precision on theoretical determination
- Here we will focus on some SUSY contributions to flavour observables

New Physics (NP)

- Ideal place to get indirect evidence of NP
- So far, most of experimental results on flavor observables are consistent with SM expectations and lead to strong indirect constraints on NP models
- Increase the sensitivity of flavour experiments & More precision on theoretical determination
- Here we will focus on some SUSY contributions to flavour observables

Flavour-changing interactions in SUSY

- Minimal Flavor Violation (MFV) in the MSSM
 - FC phenomena is analogue to the SM case
 - \rightarrow supersymmetrization of the one-loop SM contributions
 - squarks are assumed to be aligned with quarks
 - originates from CKM matrix as the only source and proceeds via loop-contributions
 - the size is expected to be small
- Non Minimal Flavor Violation (NMFV) in the MSSM
 - Additional FC phenomena is due to misalignment between the rotations that diagonalize quark/squark sectors (beyond CKM)
 - arise at tree level
 - sizeable contributions are expected to occur

SUSY-FCNC @ LHC

A = A = A = A = A = A = A

Flavour-changing interactions in SUSY

- Supersymmetry allows for flavour-mixing terms in the scalar-quark mass matrix
- Squark Mixing:

 $\mathcal{M}_{\tilde{q}}^{2} = \begin{pmatrix} M_{Q}^{2} + m_{q}^{2} + \cos 2\beta (T_{3} - Q_{q} \sin \theta_{W}^{2})M_{Z}^{2} & m_{q}(A - \mu \{\cot \beta, \tan \beta\}) \\ m_{q}(A - \mu \{\cot \beta, \tan \beta\}) & M_{U,D}^{2} + m_{q}^{2} + \cos 2\beta Q_{q} \sin \theta_{W}^{2}M_{Z}^{2} \end{pmatrix}$

 M_Q^2 , A, $M_{U,D}^2$ are 3 × 3 matrices in generation space

• Flavour Mixing parameters

$$\delta_{ij} = \frac{\mathcal{M}_{ij}^2}{\mathcal{M}_{ii}\mathcal{M}_{jj}}$$

⇒ induces strong FCNC interactions!

SUSY-QCD tree-level gluino coupling

$$\tilde{g} = (\tilde{b} + \tilde{s} + \tilde{d})$$

$$\tilde{g} = b$$

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

 $\Rightarrow\,$ extra FCNC induced at one-loop and CKM by extra charged particles: ${\it H}^{\pm}$ and χ^{\pm}

Constraints

Limits from Low Energy Data

F. Gabbiani et. al. Nucl. Phys B 477, 321 (1996)

- $K^0 \overline{K^0} (d\bar{s} \leftrightarrow \bar{d}s): \Delta m_K \Longrightarrow \delta^d_{12}$
- $D^0 \overline{D^0}$ ($c \overline{u} \leftrightarrow \overline{c} u$): $\Delta m_D \Longrightarrow \delta^u_{12}$
- $B^0 \bar{B^0} (b\bar{d} \leftrightarrow \bar{b}d)$: $\Delta m_B \Longrightarrow \delta^d_{13}$
- New B-data from Belle, Babar, LHC: additional constraints
- The Flavour-Changing terms are communicated from the up- to the down-sector by CKM e.g. M.Misiak *et. al.*, hep-ph/9703442

Due to $SU(2)_L$ gauge invariance

⇒ the bounds are transfered to the up-quark sector

⇒ top-charm FCNC are constrained by b-sector measurements.

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

 $\begin{array}{lll} \delta_{12} &\lesssim & .1 \sqrt{m_{\widetilde{u}} \, m_{\widetilde{c}}} / 500 \, \mathrm{GeV} \\ \delta_{13} &\lesssim & .098 \sqrt{m_{\widetilde{u}} \, m_{\widetilde{t}}} / 500 \, \mathrm{GeV} \\ \delta_{23} &\lesssim & 8.2 \, m_{\widetilde{c}} \, m_{\widetilde{t}} / (500 \, \mathrm{GeV})^2 \end{array}$

Flavour-changing interactions in SUSY

- R-parity conserving SUSY models: MFV and NMFV
 - Provides elegant solutions to the dark matter and hierarchy problems.
 - Leads to natural GUT
- R-parity violating (RPV) SUSY:
 - RPV terms are allowed in the superpotential:

 $W = W_{MSSM} + \lambda_{ijk}L_iL_j\bar{E}_k + \lambda_{ijk}'L_iQ_j\bar{D}_k + k_iL_iH_u + \lambda_{ijk}''\bar{U}_i\bar{D}_j\bar{D}_k$

Lepton number violating

Baryon number viol.

- Resonant/associated single SUSY particle production is possible
- Could explain large mixing angles and hierarchical masses of neutrinos
- The lightest SUSY particle (LSP) is no longer stable
- No dark matter candidate :-(
- Other non-minimal extensions exist, e.g. one extra Higgs (NMSSM), extra U(1) groups (Z'), extra neutrinos (see-saw models), etc.

Approaches for probing SUSY

Most common approaches for probing SUSY:

- Concrete models: e.g. mSUGRA/CMSSM, GMSB:
 - easy interpretability as a full theory
 - but, rigid relationships of parameters, not necessarily realistic: all masses related to few parameters: m_0 , $m_{\frac{1}{2}}$, μ
- Simplified models: very reduced, accessible spectrum
 - focus on decay chains to which LHC is sensitive, easier to reinterpret
 - not a full SUSY model

SUSY searches in simplified models

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	MSUGRACMSSM 49. 6-44 ² (1) 49. 7-44 ² (1) 49. 8-44 ² (1) 88. 8-444 ² (1) 88. 8-444 ² (1) 88. 8-444 ² (1) GMM (1) 64. MILSP) GGM (1) GGM ($\begin{array}{c} 0.3 \ e, \mu/1+2 \ r \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1+2 \ r + 0.1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \left(Z\right) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 1 b 2 jets 2 jets mono-jet	 Ves Ves	20.3 36.1 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	4.2 2 606 GwV 2 8 2 8 2 8 2 8 2 8 2 8 3 8 4 8 4 8 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	1.85 TeV 1.57 TeV 2.01 TeV 1.825 TeV 1.81 TeV 2.0 TeV 1.8 TeV 1.8 TeV 1.8 TeV	$\begin{split} m_{0,1}^{(2)} &= m_{0,1}^{(2)} (\log G_{0,1}^{(1)} + \log G_{0,1}^{(2)} + \log G_{0,1}^{($	1450 0485 ATU-5-004F-031 702 1404.0773 ATU-5-004F-031 702 ATU-5-004F-031 702 ATU-5-004F-031 703 1407 0597 1507 05983 ATU-5-004F-031 606 1503.03590 1503.03590 1503.03590
3rd gen. § med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{k}_{1}^{D} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{k}_{1}^{D} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{k}_{1}^{D} \end{array}$	0 0-1 e,μ 0-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2 2 1	1.92 TeV 1.97 TeV .37 TeV	m(k ⁸)<600 GeV m(k ⁸)<200 GeV m(k ⁸)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3rd gen, squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\xi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\xi}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{b}_1 \rightarrow b \tilde{\xi}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow b \tilde{\xi}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow b \tilde{\xi}_1^0 \\ \tilde{h}_1^{\dagger}(n) (a \text{that} a \text{GMSB}) \\ \tilde{h}_1^{\dagger}(n) (a \text{that} a \text{GMSB}) \\ \tilde{h}_2^{\dagger} \tilde{h}_2 \tilde{h}_2 \rightarrow \tilde{h}_1 + Z \\ \tilde{h}_2^{\dagger} \tilde{h}_2 h \tilde{h}_1 + h \end{split} $	0 $2 e, \mu$ (SS) $0.2 e, \mu$ $0.2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1.2 e, \mu$	2 b 1 b 1-2 b 1-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	1 990 GeV 1 171-170 GeV 2076-700 GeV 7 90-198 GeV 205-950 GeV 7 90-198 GeV 205-950 GeV 7 90-323 GeV 150-600 GeV 7 320-880 GeV 130-600 GeV		m($\tilde{\xi}_1^0$)=420 GeV m($\tilde{\xi}_1^0$)=420 GeV, m($\tilde{\xi}_1^0$)=n($\tilde{\xi}_1^0$)=100 GeV m($\tilde{\xi}_1^0$)=m($\tilde{\xi}_1^0$)=6 GeV m($\tilde{\xi}_1^0$)=1 GeV m($\tilde{\xi}_1^0$)=1 GeV m($\tilde{\xi}_1^0$)=0 GeV m($\tilde{\xi}_1^0$)=0 GeV	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1202-2102, ATLAS-CONF-2017-020 1506.08616, ATLAS-CONF-2017-020 1604.07773 1400.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{split} \tilde{t}_{1,k} \tilde{t}_{1,k}, \tilde{t} \rightarrow \tilde{t}_{1}^{l'} \\ \tilde{t}_{1,k}^{l} \tilde{t}_{1,k}, \tilde{t} \rightarrow \tilde{t}_{1}^{l'} \\ \tilde{t}_{1}^{l'} \tilde{t}_{1,k}^{l'} \tilde{t}_{1}^{l'} \rightarrow \tilde{t}_{1}^{l'} (\tilde{t}_{1}^{l'}) \\ \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \rightarrow \tilde{t}_{1}^{l'} (\tilde{t}_{1}^{l'}) \\ \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \rightarrow \tilde{t}_{1}^{l'} (\tilde{t}_{1}^{l'}), \tilde{t}_{1}^{l'} (\tilde{t}_{1}^{l'}) \\ \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \rightarrow W_{1}^{l'} \tilde{t}_{1}^{l'} \\ \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \rightarrow \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \\ \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \rightarrow \tilde{t}_{1}^{l'} \tilde{t}_{1}^{l'} \\ \tilde{t}_{1}^{l'} \tilde{t}_$	2 ε.μ 2 ε.μ 2 τ 3 ε.μ 2·3 ε.μ ε.μ.γ 4 ε.μ +γĜ 1 ε.μ + γ *γΘ 2 γ	0 0 0-2 jets 0-2 b 0 - -	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 20.3	2 99-440 GeV 2 700 GeV 2 760 GeV 2 78 780 GeV 2 78 780 GeV 2 780 GeV 1.16 T 78 787 2 70 GeV 9 80 GeV 9 80 GeV	eV m(ξ ² ₁)+r m(ξ ² ₂)+r	$\begin{split} m[\hat{\xi}_1^2] &= 0 \\ m[\hat{\xi}_1^2] &= 0, \\ m[\hat$	ATLAS.DONF.8017.039 ATLAS.ODMF.8017.039 ATLAS.COMF.9017.035 ATLAS.COMF.9017.035 ATLAS.COMF.9017.039 1501.07110 1405.5086 1107.05480 1107.05480
Long-lived particles	$\begin{array}{l} \label{eq:constraints} & \operatorname{Direct} \hat{X}_1^T \mathrm{prod.}, \log_2 \mathrm{ived} \hat{X}_1^T \\ & \operatorname{Direct} \hat{X}_1^T \hat{X}_1^T \mathrm{prod.}, \log_2 \mathrm{ived} \hat{X}_1^T \\ & \operatorname{Stable}, stoped \ R-hadron \\ & \operatorname{Stable}, stoped \ R-hadron \\ & \operatorname{Stable}, \hat{X}_1^T + \alpha A \\ & \operatorname{GMSB}, stable \ R^T + \alpha A \\ & \operatorname{GMSB}, \hat{X}_1^T + \alpha A \\ & GMS$	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 µ 2 y displ. ee/eµ/µ displ. vtx + jet	1 jet 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes Yes Yes	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	2* 430 GeV 2* 485 GeV 2 855 GeV 2* 537 GeV 2* 537 GeV 2* 1.0 TeV 3* 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} m_{1}^{(2)}_{1} + m_{1}^{(2)}_{1}_{1} &= 160 \text{ MeV}, \ \pi_{1}^{(2)}_{1}_{2} &= 0.2 \text{ ns} \\ m_{1}^{(2)}_{1}_{1}_{1} = 160 \text{ MeV}, \ \pi_{1}^{(2)}_{1}_{1}_{2}_{1} &> 150 \text{ ns} \\ m_{1}^{(2)}_{1}_{1}_{2}_{1}_{2}_{1}_{2}_{1}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2$	ATLAS-CONF-097-017 1508.05532 1310.6584 1606.65129 1604.6450 1411.8786 1604.6562 1504.65162
RPV	$ \begin{array}{l} LFV pp \rightarrow \theta_\tau + X, \theta_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Blinear RPV OMSSM \\ RPV CMSSM \\ RP(x, \overline{k}) \rightarrow WP(x, \overline{k}) \rightarrow CPV, ev, \mu\mu\tau \\ \mathcal{R}(x, \overline{k}) \rightarrow WR(x, \overline{k}) \rightarrow CPV, ev, \mu\mu\tau \\ \mathcal{R}(x, \overline{k}) \rightarrow WR(x, \overline{k}) \rightarrow CPV, ev, \mu\mu\tau \\ \mathcal{R}(x, \overline{k}) \rightarrow WR(x, \overline{k}) \rightarrow CPV, ev, \mu\mu\tau \\ \mathcal{R}(x, \overline{k}) \rightarrow WR(x, \overline{k}) \rightarrow CPV, ev, \mu\mu\tau \\ \mathcal{R}(x, \mu\mu\tau) \rightarrow CPV, ev, \mu\mu\tau \end{pmatrix} $	$e\mu, er, \mu \tau$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ 0 4 $1 e, \mu 8$ $1 e, \mu 8$ $1 e, \mu 8$ 0 $2 e, \mu$	- 0-3 b - 5 large-R jc 5 large-R jc -10 jets/0-4 -10 jets/0-4 2 jets + 2 b 2 b	· Yes Yes Yes its its its its · ·	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	5. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1.9 TeV 1.45 TeV eV 1.55 TeV 1.55 TeV 1.65 TeV -1.45 TeV	$\begin{split} \lambda_{111}^{i} &= 0.11, \lambda_{212(11)(220)} = 0.07 \\ m_{111}^{i} &= 0.000, e_{122,162} < 1 \mathrm{mm} \\ m_{111}^{i} &= 0.000, m_{111}^{i} &= 1.2, \mathrm{m} \\ m_{111}^{i} &= 0.000, \mathrm{com} \\ m_{111}^{i} &= 1.100, \lambda_{1121} < 0 \\ \mathrm{BR}(i_{111} \rightarrow 0, m_{111}) < 20\% \end{split}$	1607.68779 1404.2500 ATLAS-CONF-2016.075 1405.5088 ATLAS-CONF-2016.607 ATLAS-CONF-2016.607 ATLAS-CONF-2016.607 ATLAS-CONF-2017.013 ATLAS-CONF-2017.013 ATLAS-CONF-2016.022, ATLAS-CONF-2016.028 ATLAS-CONF-2017.038
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	2 c	Yes	20.3	2 510 GeV		m(ℓ ⁰ ₁)<200 GeV	1501.01325
*Only . phen	a selection of the available m omena is shown. Many of the	ass limits on r limits are ba	new state sed on	s or	1	0-1 1		Mass scale [TeV]	

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

ATLAS Preliminary

12/42

pMSSM: 19 parameters (*R_p*-conserving)

MSUGRA	pMSSM		
$m_{ ilde{g}} > 1.85 ~{ m TeV}$	50% of models with $m_{\tilde{g}} > 1.4$ TeV allowed		
$m_{\tilde{q}} > 1.85 \text{ TeV}$	50% of models with $m_{\tilde{q}} > 0.6$ TeV allowed		
$m_{\chi_1^+} > 0.71 \; { m TeV}$	50% of models with $m_{\chi_1^+}$ > 0.1 TeV allowed		

pMSSM scans provide powerful way to reinterpret existing searches in context of full SUSY models

Siannah Peñaranda-Rivas (Univ.Zaragoza)

There are few anomalies show in data hinting the need of new physics

$B_s \rightarrow \mu^+ \mu^-$	\sim	2σ
$B ightarrow D^{(*)} au u$	\sim	4σ
$B_{s} ightarrow K^{*} l^{+} l^{-} \left(R_{K^{*}} ight)$	\sim	$2.1 - 2.5\sigma$
$h ightarrow \mu au$	\sim	2σ (Run1) - No excess any more

(B anomalies - See talks by Mescia, Martinez-Vidal, Kosnik and Capdevila on Wednesday, May 24)

(LFV - See talk by Fiorini on Monday, May 22)

How SUSY could accomodate these results?

SUSY-FCNC @ LHC

$B_s \rightarrow \mu^+ \mu^-$

ATLAS, Eur. Phys. J. C 76 (2016) 513, arXiv:1604.04263

- ATLAS is consistent with the LHCb and CMS
- ATLAS consistency with SM is 2.0
- Room for NP destructively interfering with the SM

• CMS and LHCb observation: $BR(B_d^0 \to \mu^+\mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}, BR(B_s^0 \to \mu^+\mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$

• ATLAS:
$$BR(B_d^0 \to \mu^+\mu^-) < 4.2 \times 10^{-10}, 95\% C.L.,$$

 $BR(B_s^0 \to \mu^+\mu^-) < 3 \times 10^{-9}, 95\% C.L.,$
 $BR(B_s^0 \to \mu^+\mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$

Rare decays: $B_s \rightarrow \mu^+ \mu^-$

• SM prediction accurate: Bobeth, arXiv:1405.4907

 $BR(B^0_s o \mu^+ \mu^-) = (3.65 \pm 0.23) imes 10^{-9}$

SUSY

- Enhancement by a factor of order $\tan^6 \beta$
- Implications on the viability of SUSY (constrained and unconstrained models): Arbey, Battaglia, et al.
 - BR in the MSSM does not deviate from its SM prediction
 - LHC results remove 10% of the scan points in the CMSSM and a few % in the pMSSM
- Room for NP (SUSY) opened

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

 $B \rightarrow D^{(*)} \tau \nu$

$$R(D) = \frac{BR(\bar{B}^0 \to D^+ \tau^- \bar{\nu}_{\tau})}{BR(\bar{B}^0 \to D^+ l^- \bar{\nu}_l)}, \ R(D^*) = \frac{BR(\bar{B}^0 \to D^* + \tau^- \bar{\nu}_{\tau})}{BR(\bar{B}^0 \to D^* + l^- \bar{\nu}_l)}$$

PRL 115, 111803 (2015)

- The combined results disagree with the SM expectations at ~ 4σ
- In the SM, the only difference between the numerator and the denominator is the lepton mass
- Sensitive test to NP at tree level
- Inconsistent with Type II THDM ...
- SUSY has the potential to explain recent data

Boubaa et al, 1604.0341

$B ightarrow D^{(*)} au u$

What needed to solve the anomaly? (Xiao-Gang He, SUSY 2016)

- Exp: More precise measurements!
- Theor: New Physics modify charged current interaction... in a way that
 - a) The first two and third generations interact differently;
 - b) Have P-parity conserving and violating ones differently! THDM-II cannot explain both SUSY OK (clear signal), Boubaa et al, 1604.0341.
- This is a striking hint of violation of the lepton flavour universality which clearly needs also to be checked in other modes.

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

$B ightarrow K^* l^+ l^- \left(R_{K^*} ight)$

• Experimental: At present no serious problems at colliders Deviations $2 - 3\sigma$ appear from time to time:

• LHCb: CERN seminar 18/04/2017:

$$\begin{aligned} \mathcal{R}_{\mathcal{K}^{*0}} &= \frac{\mathcal{B}(\mathcal{B}^0 \to \mathcal{K}^{*0} \mu^+ \mu^-)}{\mathcal{B}(\mathcal{B}^0 \to \mathcal{K}^{*0} \theta^+ \theta^-)} = \\ \begin{pmatrix} 0.660^{+0.110}_{-0.070} \pm 0.024 & \text{low } q^2 \\ 0.685^{+0.113}_{-0.069} \pm 0.047 & \text{central } q^2 \end{pmatrix} \end{aligned}$$

- SM prediction: 1 (Lepton Flavour Universality)
- Papers explanation: NP: Z['], leptoquarks

• ? SUSY with RPV:

 R_p -violation superpotential: $W = ... + \lambda'_{ijk} L_i Q_j \overline{D}_k + ...$

???... sfermions behave as leptoquarks... (Work in progress)

LFV Higgs decay $h \rightarrow \mu \tau$?

• The CMS and ATLAS collaborations reported the first signal of LFV Higgs $h \rightarrow \mu \tau$ (Run1)

$${\it BR}(h o \mu au) = 8.4^{+3.9}_{3.7} imes 10^{-3}~{
m (CMS)}$$
 ${\it BR}(h o \mu au) = (7.7\pm6.2) imes 10^{-3}~{
m (ATLAS)}$

- The SM predicts no tree-level LFV Higgs coupling
- MSSM: loop processes mediated by charginos or neutralinos.

- However, SUSY models with non-zero family mixing in the sleptons also result in enhancement in other LFV processes such as μ → eγ, τ → eγ, and τ → μγ ⇒ Important correlation between observables
- Run2: The limits can be used to constrain the corresponding flavour violating Yukawa couplings, absent in the standard model.

SUSY-FCNC @ LHC

ト 4 三 ト 4 三 ト 三 三 9 Q C

Model Setup

- Generic Minimal Supersymmetric Standard Model
- Scan over the parameters space:
 - ⇒ works done some years ago
 - ⇒ similar to present pMSSM scenarious
 - ⇒ updated
- Flavour violation terms only in the Left-Left sector
 - ⇒ Naturally generated by Renormalization Group Equations
 - ⇒ (results similar with Right-Right and Left-Right mixing)

 $B(b
ightarrow s \gamma)$

Borzumati **ZPC63** (1994) 291, hep-ph/9310212; Borzumati, Greub, Hurt, Wyler, **PRD62** (2000) 075005, hep-ph/9911245. [True for Left-Left mixing only!]

Leading, Double insertion

Sub-Leading, Single insertion

• The Feynman Amplitude:

$$A^{SUSY-QCD}(b
ightarrow s \gamma) \sim \delta_{23} rac{m_b (A_b - \mu an eta)}{M_{SUSY}^2} imes rac{1}{m_{ ilde g}}$$

- Similar coupling structure in pp → tc̄ (~ m_t(A_t − μ/ tan β)) but different in Hqq' (~ μ)
- Relevant interplay between observables

Direct FCNC production @ LHC

Some previous works

J.J. Lui *et al.*, Nucl. Phys. B 705 (2005) 3, hep-ph/0404099
 G. Eilam, M. Frank, I. Turan, Phys.Rev.D74 (2006) 035012, hep-ph/0601253
 J. Guasch, W. Hollik, S.P., J. Sola, Nucl. Phys. Proc. Suppl. 157 (2006) 152, hep-ph/0601218

• Leading terms from Left-Left sector: similar structure to $b \rightarrow s\gamma$

$$A(gg
ightarrow tar{c}) \sim \delta_{23} rac{m_t (A_t - \mu/ aneta)}{M_{SUSY}^2} imes rac{1}{m_{ ilde{g}}}$$

• Large rates \implies Large δ_{23} and Large $(A_t - \mu/\tan\beta)$

high sensitivity to A_t

 $pp[gg]
ightarrow tar{c}$

$$\sigma(pp[gg]
ightarrow t\bar{c}) \sim (\delta_{23})^2 rac{m_l^2 (A_l - \mu / \tan eta)^2}{M_{SUSY}^4} rac{1}{m_{ ilde{g}}^2}$$

 For small tan β there are no restrictions from b→ sγ and σ increases as ~ A²_t

⇒ $\sigma^{max}(pp[gg] \rightarrow t\bar{c} + \bar{t}c) \simeq 1$ pb and ~ 10⁵ events for 100 fb^{-1}

- Cross-section decay significantly with M_{SUSY} and very fast with $M_{\tilde{g}}$
 - ⇒ For $M_{ ilde{g}} \sim$ 500 GeV: $\sigma^{max}(pp[gg] \rightarrow tc) \simeq 0.04 ext{ pb}$
 - \Rightarrow Cross-sections \sim 0.5 pb possible
 - $\Rightarrow \sim 100,000 \text{ events}/100 \text{ fb}^{-1} \text{ for} \\ t\bar{c} + \bar{t}c \text{ processes}$

 $\sigma^{SM}(pp[gg] \rightarrow t\bar{c}) \sim 3.6 \times 10^{-7} \text{ pb} \rightarrow 6 \text{ orders of magnitude larger than SM!}$

SUSY-FCNC @ LHC

• Take parameters of maximum $\sigma(pp \rightarrow h \rightarrow t c)$: Large M_{SUSY} and $m_{\tilde{g}}$

$$M_{SUSY} \simeq m_{\tilde{g}} \simeq 880 \, {
m GeV}, \mu \simeq -700 \, {
m GeV}, \delta_{23} \simeq 10^{-0.1} \simeq 0.79$$

$$\sigma(pp \rightarrow H^0 \rightarrow t\bar{c} + \bar{t}c) \simeq 2.5 \times 10^{-3} \text{ pb} \text{ [tan } \beta = 5]$$

 $\sigma(pp[gg] \rightarrow t\bar{c}) \simeq 1.8 \times 10^{-3} \text{ pb}$

⇒ Same order of magnitude as Higgs-mediated FCNC !?

(日)

Higgs FCNC @ LHC

$$\begin{array}{rcl} \sigma(pp \to h \to q \, q') &\equiv & \sigma(pp \to hX) B(h \to q \, q') \\ &\equiv & \sigma(pp \to hX) \frac{\Gamma(h \to q \, \bar{q'} + \bar{q} \, q')}{\sum_i \Gamma(h \to X_i)} & (qq' \equiv bs \text{ or } tc) \,. \end{array}$$

Computation:

• $\sigma(pp \rightarrow hX)$: HIGLU and HQQ packages

M. Spira, hep-ph/9510347; http://people.web.psi.ch/~spira/higlu/, and ...~spira/hqq/.

• $\Gamma(h \rightarrow X)$: FCNC FCHDECAY

S. Béjar, J. Guasch; http://fchdecay.googlepages.com

• $\Gamma(h ightarrow q ar q')$: SUSY-QCD contributions

- Don't assume alignment
- Exact diagonalization of 6 × 6 squark mass matrix
- Assume mixing only in the LL sector

• SM values:

 $\begin{array}{c|c} BR(H^{SM} \rightarrow b\bar{s}) &\lesssim 10^{-7} & (m_H < 2M_W) \\ \lesssim & 10^{-10} & (m_H > m_t) \end{array} \mid BR(H^{SM} \rightarrow t\bar{c}) &\lesssim 10^{-13} \\ \end{array}$

26/42

Leading contributions

Diagrams with a chirality flip are enhanced by m_{g̃}: mass-insertion approximation

 $H \rightarrow tc$

Leading contributions

• We can write an effective Lagrangian:

$$G_{Hqq'} \sim \delta_{23} \frac{m_{\tilde{g}} \mu}{M_{SUSY}^2} \left\{ \begin{array}{cc} \cos(\beta - \alpha_{\rm eff}) & (h^0) & M_{A^0} \gg M_Z & 0 & (h^0) \\ \sin(\beta - \alpha_{\rm eff}) & (H^0) & \Longrightarrow \Longrightarrow \implies 1 & (H^0) \\ 1 & (A^0) & \alpha_{\rm eff} \rightarrow \beta - \pi/2 & 1 & (A^0) \end{array} \right\}$$

D. A. Demir, Phys. Lett. B571, 193-208 (2003), hep-ph/0303249.

Different coupling structure in Hqq' (~ μ) and bsγ (~ A_b − μ tan β)

⇒ Possibility of small contribution to $A(b \rightarrow s\gamma)$ and large contribution to $BR(H \rightarrow qq')$

• Numerical results $BR(h \rightarrow qq')$

Find the maximum BR: MSSM parameter space scan:

 $BR(h \rightarrow bs) \lesssim 10^{-3}$

$$BR(h \rightarrow tc) \sim 10^{-3}$$

⇒ several orders of magnitude larger than in the SM!!

Combination with production

Combined analysis $\sigma(pp \rightarrow h \rightarrow tc)$

- Only H^0/A^0 possible
- Large at small $\tan \beta$
- differences at small M_{A⁰}:
 - Near threshold for $H^0
 ightarrow { ilde q}_1 { ilde q}_1$
 - not possible for A⁰

The best situation

- Maximum at maximal δ_{23}
- Maximum at maximal M_{SUSY}

 $M_{A0} = 300 \,\mathrm{GeV}, \tan \beta = 5$

h	H ⁰	A ⁰		
$\sigma(pp \rightarrow h \rightarrow t c)$	$2.4 imes10^{-3}$ pb	$5.8 imes10^{-4} \text{ pb}$		
events/100 fb ⁻¹	240	<mark>58</mark>		
$B(h \rightarrow tc)$	1.9×10^{-3}	5.7×10^{-4}		
$\Gamma(h o X)$	0.41 GeV	0.39 GeV		
δ ₂₃	0.79	0.83		
m _{q̃}	880 GeV	850 GeV		
A_t	$-2590\mathrm{GeV}$	2410 GeV		
μ	-700 GeV	-930 GeV		
$B(b ightarrow s \gamma)$	4.13×10^{-4}	$4.47 imes 10^{-4}$		

tan β	4	3	2
$\sigma(pp \rightarrow H^0 \rightarrow tc)$	5 fb	9 fb	20 fb
events/100 fb ⁻¹	500	900	2000

- \Rightarrow increases fast at low tan β
- several thousand events could be produced

문 돈

• Not taking parameters of maximum $\sigma(pp \rightarrow h \rightarrow t c)$: small $m_{\tilde{g}}$ $m_{\tilde{g}} \simeq 200 \,\text{GeV}, M_{SUSY} \simeq 800 \,\text{GeV}, |\mu| \simeq 700 \,\text{GeV}, \delta_{23} \simeq 0.7$

$$\sigma(pp \to H^0 \to t\bar{c} + \bar{t}c) \simeq 10^{-3} \text{ pb} \ [\tan \beta = 5]$$

$$\sigma(pp[gg] \to t\bar{c}) \simeq 0.5 \text{ pb}$$

 \Rightarrow 2-3 orders of magnitude larger than Higgs-mediated FCNC

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

SUSY FCNC at the LHC

- Effects at LHC: $\sigma(pp[gg] \rightarrow t\bar{c})$, $\sigma(pp \rightarrow h \rightarrow t\bar{c})$
- Direct production is competitive to Higgs-mediated processes

 \Rightarrow Direct process can give much larger rates

Parameter	Higgs-mediated	Direct production
$\tan \beta$	Decreases fast	insensitive
M_{A^0}	Decreases fast	insensitive
M _{SUSY}	Prefers large	Decreases fast
A_t	insensitive	very sensitive
δ_{23}	Moderate	Moderate

- Left-Left flavour mixing gives large rates
- Experimental issues:
 - Signal: single top-quark + light c-jet
 - \Rightarrow Evidence of new physics

FCNC processes can be a helpful signature of SUSY physics at the LHC

- FCNCs are part of SUSY
- Constrained by low energy data
- Constrained by B-anomalies and LFV at the LHC
 - $\bullet\,$ The results remove ONLY between 10% 2% of the scan points in general SUSY models
- Room for NP (SUSY) opened
- Run II data expected to increase precisions ...

通 と く ヨ と く ヨ と

• $H \rightarrow bs$, $H \rightarrow tc$ MSSM

A. M. Curiel, M. J. Herrero, W. Hollik, F. Merz, S. P., Phys. Rev. D 69 (2004) 075009 [hep-ph/0312135].
 A. M. Curiel, M. J. Herrero, D. Temes, Phys. Rev. D 67 (2003) 075008 [hep-ph/0210335].

• $H \rightarrow bs + b \rightarrow s\gamma$

S. Béjar, F. Dilmé, J. Guasch and J. Solà, JHEP 0408 (2004) 018 [hep-ph/0402188].

T. Hahn, W. Hollik, J.I. Illana, S. P., hep-ph/0512315.

•
$$pp \rightarrow H + H \rightarrow bs + H \rightarrow tc + b \rightarrow s\gamma$$

S. Béjar, J. Guasch, J. Solà, JHEP 0510 (2005) 113, hep-ph/0508043

Typical behavior of the cross-section

$$(\sigma \sim |A(pp[gg] \to t\overline{c})|^2)$$

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

⇒ only the presence of new physics could be an explanation for these events, if they are ever detected

Combination with production

 At large tan β the main production channel for h⁰ is associated production: σ(pp-> h⁰bb̄)

Combined analysis $\sigma(pp \rightarrow h \rightarrow qq')$

- Maximized production rates for h⁰
- $M_{A^0} < 300 \, {
 m GeV}$: enhancement of $\sigma(pp \rightarrow h^0)$ dominates
- $M_{A^0} > 300 \, {
 m GeV}$: supression of $\Gamma(h^0 o X)$ dominates

▲ 글 ▶ _ 글 | 날

Combined analysis $\sigma(pp \rightarrow h \rightarrow bs)$

- h⁰: Maximum attained for small δ₂₃, M_{SUSY} ~ 700 GeV
 - $\Rightarrow \text{ Larger } \delta_{23} \Rightarrow \text{ smaller } \mu \ (b \rightarrow s\gamma)$
 - ⇒ Small M_{SUSY} ⇒ small δ_{23} ($b \rightarrow s\gamma$)
- H^0/A^0 : Maximum at large M_{SUSY}
 - \Rightarrow Large $M_{SUSY} \Longrightarrow$ small $B(b \rightarrow s\gamma) \Longrightarrow$ larger δ_{23} allowed
 - Large $\delta_{23} \Rightarrow \mu$ has to decrease to obtain acceptable
 - $B(b \rightarrow s\gamma) \Rightarrow BR(H^0/A^0 \rightarrow bs)$ can not grow.
- Maximun values: $\sigma(pp \rightarrow h \rightarrow bs) \sim 0.4pb$ and 10^4 events/100 fb^{-1}

Finding the maximum

- Define: $\delta_{33}^{LR} = \frac{m_t(A_t \mu/\tan\beta)}{M_{SUSY}^2}$ $\sigma = (\delta_{23})^2 (\delta_{33}^{LR})^2$ =constant defines an hyperbola in the $\delta_{23} \delta_{33}^{LR}$ plane
- Mass (approximation):

$$m_{\tilde{q}}^{2} = M_{SUSY}^{2} \begin{pmatrix} c_{L} & t_{L} & t_{R} \\ \hline c_{L} & 1 & \delta_{23} & 0 \\ t_{L} & \delta_{23} & 1 & \delta_{33}^{LR} \\ t_{R} & 0 & \delta_{33}^{LR} & 1 \end{pmatrix}$$

Iightest mass:

$$m_q^2 = M_{SUSY}^2 \left(1 - \sqrt{(\delta_{23})^2 + (\delta_{33}^{LR})^2} \right) > M_{\text{limit}}^2 \; .$$

Experimental limit defines a circle in $\delta_{23} - \delta_{33}^{LR}$ plane:

$$(\delta_{23})^2 + (\delta_{33}^{LR})^2 < \left(1 - \frac{M_l^2}{M_{SUSY}^2}\right)^2 \equiv R^2$$

$$\begin{array}{l} \text{Maximum at:} \\ \delta_{23} = \delta_{33}^{LR} = \frac{R}{\sqrt{2}} = \\ \frac{1}{\sqrt{2}} \left(1 - \frac{M_l^2}{M_{SUSY}^2} \right) \rightarrow \frac{1}{\sqrt{2}} \\ M_{SUSY} \rightarrow \infty \end{array}$$

Siannah Peñaranda-Rivas (Univ.Zaragoza)

SUSY-FCNC @ LHC

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

non-colour breaking vacua: $|A_t| \sim < 3M_{SUSY}$

$$|\delta_{33}^{LR}| < \sim rac{3m_t}{M_{SUSY}}$$

The maximum is obtained when:

- the diagonal: $\delta_{23} = \delta_{33}^{LR}$
- the limit mass circle
- the limit from A_t

cross in a single point

通 と く ヨ と く ヨ と

Exact equations

$$\delta_{23} = \delta_{33}^{LR}$$

$$\delta_{33}^{LR} = \frac{m_t (3M_{SUSY} - \mu/\tan\beta)}{M_{SUSY}^2}$$

$$(\delta_{23})^2 + (\delta_{33}^{LR})^2 = \left(1 - \frac{M_l^2}{M_{SUSY}^2}\right)^2$$

setting: $m_t = 175 \,\text{GeV}, \, M_l = 150 \,\text{GeV}, \, \mu = 400 \,\text{GeV}, \, \tan \beta = 5 \, (\text{by } b \to s\gamma)$ $\delta_{33}^{LR} = \delta_{23} = 0.678525$ $M_{SUSY} = 746.082 \,\text{GeV}$ $A_t = 2238.25 \,\text{GeV}$

Siannah Peñaranda-Rivas (Univ.Zaragoza)

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● 의 ۹ ()