| Pat | terns of New Physics in $b 	o s \ell^+ \ell^-$ transitions in the light of recent data |
|-----|----------------------------------------------------------------------------------------|
|     | Bernat Capdevila                                                                       |
|     | Institut do Errico d'Altos Enorgios (IEAE)                                             |

May 24, 2017

#### Flavour Physics at LHC run II (Benasque)

In collaboration with: Andreas Crivellin, S. Descotes-Genon, L. Hofer, J. Matias & J. Virto Based on 1605.03156 JHEP (2016), 1701.08672 JHEP (2017) & 1704.05340 (2017)

| Outline |  |  |
|---------|--|--|

- 1. Review of the theoretical framework
- 2. New global fit results
- 3. Future opportunities for LFUV
- 4. Conclusions

Bernat Capdevila

Institut de Física d'Altes Energies (IFAE)

< □ > < □ > < □ > < □ > < □ > < □ >

Global Fits

## Review of the theoretical framework

・ロ・・聞・・聞・・曰・ むくろ

Bernat Capdevila Patterns of New Physics in  $b \to s \ell^+ \ell^-$  transitions in the light of recent data

#### Effective Hamiltonian Approach



 $\mathcal{A} \sim C_i$  (short dist.)  $\times$  Hadronic Matrix Elements (long dist.)

 $b 
ightarrow s \gamma^{(*)}$  Effective Ham<u>iltonian</u>

$$\begin{aligned} \mathcal{H}_{\Delta F=1}^{\text{SM}} \propto V_{ts}^* V_{tb} \sum_i C_i \mathcal{O}_i \\ \bullet \quad \mathcal{O}_7 &= \frac{\alpha}{4\pi} m_b (\bar{s} \sigma_{\mu\nu} P_R b) F^{\mu\nu} \\ \bullet \quad \mathcal{O}_9 &= \frac{\alpha}{4\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell) \\ \bullet \quad \mathcal{O}_{10} &= \frac{\alpha}{16\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell) \\ C_7^{\text{SM}}(\mu_b) &= -0.29 \qquad C_9^{\text{SM}}(\mu_b) = 4.1 \\ C_{10}^{\text{SM}}(\mu_b) &= -4.3 \qquad (\mu_b = m_b) \end{aligned}$$

 $\Rightarrow\,$  In this picture, New Physics (NP) effects can enter through two mechanisms:

Extra contributions to the WCs.

Additional effective operators:  $\mathcal{O}'_i$ ,  $\mathcal{O}_S$ ,  $\mathcal{O}_P$ ,  $\mathcal{O}_T$ ,...

#### Effective Hamiltonian Approach



 $\mathcal{A} \sim C_i$  (short dist.)

× Hadronic Matrix Elements (long dist.)

 $b \rightarrow s \gamma^{(*)}$  Effective Hamiltonian

$$\begin{aligned} \mathcal{H}_{\Delta F=1}^{\text{SM}} \propto V_{ts}^* V_{tb} \sum_{i} C_i \mathcal{O}_i \\ \bullet \mathcal{O}_7 &= \frac{\alpha}{4\pi} m_b (\bar{s} \sigma_{\mu\nu} P_R b) F^{\mu\nu} \\ \bullet \mathcal{O}_9 &= \frac{\alpha}{4\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell) \\ \bullet \mathcal{O}_{10} &= \frac{\alpha}{16\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell) \\ C_7^{\text{SM}}(\mu_b) &= -0.29 \qquad C_9^{\text{SM}}(\mu_b) = 4.1 \\ C_{10}^{\text{SM}}(\mu_b) &= -4.3 \qquad (\mu_b = m_b) \end{aligned}$$

Institut de Física d'Altes Energies (IFAE)

 $\Rightarrow\,$  In this picture, New Physics (NP) effects can enter through two mechanisms:

Extra contributions to the WCs.

Additional effective operators:  $\mathcal{O}'_i$ ,  $\mathcal{O}_S$ ,  $\mathcal{O}_P$ ,  $\mathcal{O}_T$ ,...

Patterns of New Physics in  $b \rightarrow s\ell^+\ell^-$  transitions in the light of recent data

| Review Theoretical Framework |                           |  |
|------------------------------|---------------------------|--|
|                              |                           |  |
|                              | * 0+ 0-                   |  |
| Form Factors $B \to K$       | * <i>l</i> . † <i>l</i> . |  |

The matrix elements of the effective operators are written in terms of (seven) form factors (FF),

$$\langle \mathcal{K}^* | \mathcal{O}_i | B 
angle \sim \mathcal{F}(q^2) \quad (i = 7, 9, 10)$$

Two parametrizations available in the market,



A (10) × (10) × (10)

HQET/LEET 
$$(m_B \rightarrow \infty \text{ and } E_{K^*} \rightarrow \infty = \text{large-recoil})$$
:

$$\frac{m_B}{m_B + m_V} V(q^2) = \frac{m_B + m_V}{2E} A_1(q^2) = T_1(q^2) = \frac{m_B}{2E} T_2(q^2) = \xi_{\perp}(E)$$
$$\frac{m_V}{E} A_0(q^2) = \frac{m_B + m_V}{2E} A_1(q^2) - \frac{m_B - m_V}{m_B} A_2(q^2) = \frac{m_B}{2E} T_2(q^2) - T_3(q^2) = \xi_{\parallel}(E)$$

 $\Rightarrow$  In this limit, we can build ratios where the FF cancel (at LO),

$$\frac{\epsilon^{*\mu}q^{\nu}\left\langle K^{*}|\,\bar{s}\sigma_{\mu\nu}P_{R}b\,|B\right\rangle}{im_{B}\left\langle K^{*}|\,\bar{s}\ell^{*}P_{L}b\,|B\right\rangle}=1+\mathcal{O}(\alpha_{s},\Lambda/m_{b})$$

Institut de Física d'Altes Energies (IFAE)

Following this idea one can build a basis of observables with this property [Matias, Mescia, Ramon 2012 & Descotes-Genon, Matias, Ramon, Virto 2013]

# Optimized Observables $P_1 = \frac{J_3}{2J_{2s}}$ $P_2 = \frac{J_{6s}}{8J_{2s}}$ $P'_4 = \frac{J_4}{\sqrt{-J_{2s}J_{2c}}}$ $P'_5 = \frac{J_5}{2\sqrt{-J_{2s}J_{2c}}}$ $P'_6 = \frac{-J_7}{2\sqrt{-J_{2s}J_{2c}}}$ $P'_8 = \frac{-J_8}{\sqrt{-J_{2s}J_{2c}}}$

#### Bernat Capdevila

Patterns of New Physics in  $b \rightarrow s \ell^+ \ell^-$  transitions in the light of recent data

#### Hadronic corrections: factorisable and non-factorisable

Theory predictions receive different types of QCD corrections.

**Factorisable Corrections:** corrections that **can** be absorved into the definition of the (full) form factors.



Non-factorisable Corrections: corrections that cannot be absorved into the definition of the (full) form factors.



| Review Theoretical Framework | Global Fits | Future opportunities for LFUV | Conclusions |
|------------------------------|-------------|-------------------------------|-------------|
|                              |             |                               |             |
| Improved QCDF                |             |                               |             |

**Improved QCDF (iQCDF) Approach**: General decomposition of a full form factor (FF)

$$F^{\mathsf{Full}}(q^2) = F^{\infty}(\xi_{\perp}(q^2),\xi_{\parallel}(q^2)) + \Delta F^{\alpha_s}(q^2) + \Delta F^{\Lambda}(q^2)$$

where F stands for any form factor, either from the helicity or transversity basis.

- Large recoil symmetries: low-q<sup>2</sup> and at LO in α<sub>s</sub> and Λ/m<sub>B</sub>
   ⇒ Dominant correlations automatically taken into account (important for a maximal cancellation of errors).
- $\square \mathcal{O}(\alpha_s) \text{ corrections} \Rightarrow \mathsf{QCDF}$
- $\square$   $\mathcal{O}(\Lambda/m_B)$  corrections  $\Rightarrow$  **cannot** be explicitly computed within QCDF

Parametrization of  $\Delta F^{\Lambda}$  [Jäger & Camalich 2012]

$$\Delta F^{\Lambda}(q^2) = a_F + b_F \frac{q^2}{m_B^2} + c_F \frac{q^4}{m_B^4} + \dots$$

#### Improved QCDF (vs full FF approach)

- How to estimate  $\Delta F^{\Lambda}$ ?
  - $\Rightarrow$  Central values for  $a_F$ ,  $b_F$ ,  $c_F$  from fit to full LCSR FF.
  - $\Rightarrow$  Error estimate: assign **uncorrelated**  $\sim$  100% errors to

$$a_F, b_F, c_F = \mathcal{O}(\Lambda/m_B) \times F = 10\% \times F$$

Is our estimation of errors conservative?
 FF ratio A<sub>1</sub>/V (that controls P'<sub>5</sub>): BSZ (including correlations) vs iQCDF for different size of power corrections.



Already a 5% power corrections (right) reproduces the BSZ full FF approach errors (left).

#### Bernat Capdevila

Patterns of New Physics in  $b 
ightarrow s \ell^+ \ell^-$  transitions in the light of recent data

| Review Theoretical Framework |             |  |
|------------------------------|-------------|--|
|                              |             |  |
| Non factorizable badronic    | corrections |  |

There are two different types of non-factorisable hadronic corrections

•  $\alpha_s$ -corrections from hard gluon exchange ( $\mathcal{O}_{1-6}$ ,  $\mathcal{O}_8$  topologies)  $\Rightarrow$  QCDF.

 $\blacksquare \mathcal{O}(\Lambda/m_B) \text{ corrections involving } c\overline{c} \text{ loops,}$ 

- $\Rightarrow$  LCSR + dispersion relations (only th. calculation) [KMPW 2010]
- ⇒ Non-factorisable  $O(\Lambda/m_B)$  power corrections (charm loops) yield  $q^2$ and helicity-dependent contributions to  $C_7$  and  $C_9$ .



Bernat Capdevila

#### Estimating the cc-loop contribution at large-recoil

Introduce a shift in the C<sub>9</sub> coefficient at the amplitude level:

$$C_9^{\mathrm{eff}}(q^2) 
ightarrow C_9^{\mathrm{eff}}(q^2) + s_i \delta C_9^{\mathrm{LD},i}(q^2) \quad (i=\perp,\parallel,0 \text{ no summation})$$

The "charm-loop functions" are parametrized in the following way,

$$\begin{split} \delta C 9^{\mathrm{LD},\perp}(q^2) &= \frac{a^{\perp} + b^{\perp}q^2(c^{\perp} - q^2)}{q^2(c^{\perp} - q^2)} \qquad \delta C 9^{\mathrm{LD},\parallel}(q^2) = \frac{a^{||} + b^{||}q^2(c^{||} - q^2)}{q^2(c^{||} - q^2)}\\ \delta C 9^{\mathrm{LD},0}(q^2) &= \frac{a^0 + b^0(q^2 + s_0)(c^0 - q^2)}{(q^2 + s_0)(c^0 - q^2)} \end{split}$$

 $\Rightarrow$  We vary  $s_i$  in the range [-1, 1].

 $\Rightarrow$  a, b, c parameters are fixed so that our parametrization covers the results from KMPW.



Institut de Física d'Altes Energies (IFAE)

Patterns of New Physics in  $b 
ightarrow s \ell^+ \ell^-$  transitions in the light of recent data

# New global fit results

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三 少へ0

Bernat Capdevila

Patterns of New Physics in  $b 
ightarrow s \ell^+ \ell^-$  transitions in the light of recent data

| The $P_5'$ anomaly |  |
|--------------------|--|

 $b \to s \ell \ell$  driven processes have provided some interesting anomalies during the recent years.



- 2013: 1fb<sup>-1</sup> dataset LHCb found 3.7σ.
- **2015**:  $3fb^{-1}$  dataset LHCb found  $3\sigma$  in 2 bins.
- Belle confirmed it in a bin [4,8] few months ago.

#### Other tensions beyond $P'_5$



- BR(B → Kµµ) small compared to SM predictions.
- Deviations in  $BR(B_s \rightarrow \phi \mu \mu).$
- Several systematic low-recoil small tensions in *BR*<sub>µ</sub>.
- LFUV ratios R<sub>K</sub> & R<sub>K\*</sub>.

Bernat Capdevila

| Review Theoretical Framework | Global Fits | Future opportunities for LFUV | Conclusions |
|------------------------------|-------------|-------------------------------|-------------|
|                              |             |                               |             |
| Summary of anomalies         |             |                               |             |

Currently available  $b\to s\ell\ell$  data comprises up to  $\sim 170$  observables. The main anomalies observed are:

| Observable                                                   | Experiment                                                      | SM Prediction                                                   | Pull                         |
|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|
| $\langle P_5'  angle^{[4,6]} \ \langle P_5'  angle^{[6,8]}$  | $\begin{array}{c} -0.30 \pm 0.16 \\ -0.51 \pm 0.12 \end{array}$ | $\begin{array}{c} -0.82 \pm 0.08 \\ -0.94 \pm 0.08 \end{array}$ | $-2.9\sigma$<br>$-2.9\sigma$ |
| $R_{K}^{[1,6]}$                                              | $0.745\substack{+0.097\\-0.082}$                                | $1.00\pm0.01$                                                   | $+2.6\sigma$                 |
| $R_{K^*}^{[0.045,1.1]}$                                      | $0.660\substack{+0.113\\-0.074}$                                | $\textbf{0.92}\pm\textbf{0.02}$                                 | $+2.3\sigma$                 |
| $R_{K^*}^{[1.1,6]}$                                          | $0.685\substack{+0.122\\-0.083}$                                | $1.00\pm0.01$                                                   | $+2.6\sigma$                 |
| $\mathcal{B}^{[2,5]}_{B_{\epsilon} \to \phi \mu^{+}\mu^{-}}$ | $\textbf{0.77} \pm \textbf{0.14}$                               | $1.55\pm0.33$                                                   | $+2.2\sigma$                 |
| $\mathcal{B}_{B_s \to \phi \mu^+ \mu^-}^{[\bar{5},8]}$       | $\textbf{0.96} \pm \textbf{0.15}$                               | $1.88\pm0.39$                                                   | $+2.2\sigma$                 |

 $\Rightarrow$  To assess all theses deviations consistently, we need global fits.

イロト イポト イヨト イヨト

| Global Fits |  |
|-------------|--|
|             |  |
| <i>c</i> .  |  |

#### List of observables in the fit

We perform a fit to all available data (except CPV obs.)  $\Rightarrow$  175 observables.

- Inclusive decays
  - $\Rightarrow B \rightarrow X_s \gamma (BR).$
  - $\Rightarrow B \rightarrow X_{s}\mu^{+}\mu^{-}$  (BR).
- Exclusive leptonic decays
  - $\Rightarrow$   $B_s \rightarrow \mu^+ \mu^-$  (BR).
- Exclusive radiative/semileptonic decays

$$\begin{array}{l} \Rightarrow B \to K^*\gamma \; (BR, \; S_{K^*\gamma}, \; A_I). \\ \Rightarrow B \to K\ell^+\ell^- \; (BR_\mu, \; R_K). \\ \Rightarrow B \to K^*\ell^+\ell^- \; (BR_\mu, \; P_{1,2,4,5,6,8}^{(\prime) \; \mu}, \; F_L^\mu, \; \text{available electronic angular obs}). \\ \Rightarrow B_s \to \phi\mu^+\mu^- \; (BR, \; P_{1,4,6}^{(\prime)}), \; F_L). \end{array}$$

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

## List of observables in the fit (2017 update)

#### Updates

- $\Rightarrow \mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$  (LHCb).
- $\Rightarrow$  Isospin-averaged  $P_{4,5}^{\prime \ e\mu}(B \to K^*\ell\ell)$  (Belle).
- $\Rightarrow P_{1,4,5,6,8}^{(\prime)}, F_L(B^0 \to K^{*0} \mu^+ \mu^-) \text{ in the large-recoil region (ATLAS)}.$
- $\Rightarrow P_{1,5}^{(\prime)}(B^0 \to {\mathcal K}^{^*0}\mu^+\mu^-) \text{ at large-recoil plus [16, 19] GeV}^2 \text{ bin (CMS)}.$
- $\Rightarrow$  F<sub>L</sub>, A<sub>FB</sub> from 2015 and F<sub>L</sub>, A<sub>FB</sub>, BR from 2013 at 7 TeV (CMS).
- $\Rightarrow R_{K^*}$  in the bins [0.045, 1.1], [1.1, 6] GeV<sup>2</sup> (LHCb).

イロト 不得 トイヨト イヨト

|                       | Global Fits |  |
|-----------------------|-------------|--|
|                       |             |  |
|                       |             |  |
| Statistical framework |             |  |

We parametrize the Wilson coefficients as

$$C_i = C_i^{ ext{SM}} + C_i^{ ext{NP}}$$
 (*i* = 7, 9, 10,  $C_i^{ ext{NP}} \in \mathbb{R} \Rightarrow ext{no CPV}$ )

Standard frequentist fit to the NP contributions to the Wilson coefficients,

$$\chi^{2}(C_{i}^{\mathsf{NP}}) = \left(\mathcal{O}^{\mathsf{th}}(C_{i}^{\mathsf{NP}}) - \mathcal{O}^{\mathsf{exp}}\right)_{i} \mathsf{Cov}_{ij}^{-1} \left(\mathcal{O}^{\mathsf{th}}(C_{i}^{\mathsf{NP}}) - \mathcal{O}^{\mathsf{exp}}\right)_{j}$$

Both theory and experiment contribute to the covariance matrix,  $\Rightarrow Cov = Cov^{\text{th}} + Cov^{\text{exp}}$ 

- Experimental covariance,
  - ⇒ Experimental correlations between observables (if not provided, assumed uncorrelated). Assume guassian errors (symmetrize if needed).
- Theoretical covariance,
  - ⇒ Compute the **theoretical correlations** by performing a multivariate gaussian scan over all nuisance parameters.
- In principle  $Cov = Cov(C_i)$ ,
  - $\Rightarrow$  Very **mild** dependency  $\Rightarrow$  Cov = Cov<sub>SM</sub>  $\equiv$  Cov(C<sub>i</sub> = 0).

< □ > < □ > < □ > < □ > < □ > < □ >

| Review Theoretical Framework | Global Fits | Future opportunities for LFUV | Conclusions |
|------------------------------|-------------|-------------------------------|-------------|
|                              |             |                               |             |
|                              |             |                               |             |
| Statistical framework        |             |                               |             |
|                              |             |                               |             |

Fit procedure:

 $\Rightarrow \textbf{Best fit points (bfp): } \chi^2(C_i^{\text{NP}}) \rightarrow \chi^2_{\text{min}} = \chi^2(\hat{C}_i^{\text{NP}}).$ 

⇒ Confidence intervals (gaussian approximation):  $\chi^2(C_i^{\text{NP}}) - \chi^2_{\min} \leq Q^2$ (1 $\sigma \rightarrow Q^2 = 1, 2\sigma \rightarrow Q^2 = 4, ...$ ).

 $\Rightarrow$  Compute **pulls** ( $\sigma$ ) by inversion of the above formula.

- $\Rightarrow \text{ Calculate } p\text{-values as usual } p = \int_{\chi^2_{\min}}^{\infty} d\chi^2 f(\chi^2; n_{\text{dof}}).$
- Two types of fits

 $\Rightarrow$  Canonical fit: fit to all data (175 data points).

 $\Rightarrow$  LFUV fit:  $R_{K}$ ,  $R_{K^*}$ ,  $P_{4,5}^{\prime \ e\mu}(B \rightarrow K^* \ell \ell)$  plus  $b \rightarrow s\gamma$  (17 data points)

Testing different hypothesis

- $\Rightarrow$  Hypothesis with NP only in one Wilson coefficient (1D fits).
- $\Rightarrow$  Hypothesis with NP in two Wilson coefficients (2D fits).
- $\Rightarrow$  Hypothesis with NP in the six Wilson coefficients (**6D fits**).

< 日 > < 同 > < 回 > < 回 > < 回 >

#### 1D hypothesis

#### Canonical fit

| Coefficient                               | Best Fit | $1\sigma$      | $Pull_{SM}(\sigma)$ | p-value (%) |
|-------------------------------------------|----------|----------------|---------------------|-------------|
| $C_{9\mu}^{\sf NP}$                       | -1.10    | [-1.27, -0.92] | 5.7                 | 72          |
| $C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$ | -0.61    | [-0.73, -0.48] | 5.2                 | 61          |
| $C_{9\mu}^{\rm NP} = -C_{9\mu}^{\prime}$  | -1.01    | [-1.18, -0.84] | 5.4                 | 66          |
| $C_{9\mu}^{\rm NP} = -3C_{9e}^{\rm NP}$   | -1.06    | [-1.23, -0.89] | 5.8                 | 74          |

 $\Rightarrow$  SM goodness of fit (canonical fit): p-value = 14.6%.

- ⇒ The inclusion of the new data (mainly  $R_{K^*}$ ) increases the significances (comparing with 2015 analysis).
- $\Rightarrow C_{9\mu}^{\mathsf{NP}} = -C_{9\mu}'$  would predict  $R_K \simeq 1$  and  $R_{K^*} < 1$ .
- $\Rightarrow$  Scenarios with positive  $C_{10\mu}$  (and/or  $C'_{10}$ ) imply  $R_{K} < 1$ .

(I) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (III) < (

| Review Theoretical Framework | Global Fits | Future opportunities for LFUV | Conclusions |
|------------------------------|-------------|-------------------------------|-------------|
|                              |             |                               |             |
|                              |             |                               |             |
| 1D hypothesis                |             |                               |             |

#### LFUV fit

| Coefficient                               | Best Fit | $1\sigma$      | $Pull_{SM}(\sigma)$ | p-value (%) |
|-------------------------------------------|----------|----------------|---------------------|-------------|
| $C_{9\mu}^{\sf NP}$                       | -1.76    | [-2.36, -1.23] | 3.9                 | 69          |
| $C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$ | -0.66    | [-0.84, -0.48] | 4.1                 | 78          |
| $C_{9\mu}^{\rm NP} = -C_{9\mu}^{\prime}$  | -1.64    | [-2.12, -1.05] | 3.2                 | 31          |
| $C_{9\mu}^{\rm NP} = -3C_{9e}^{\rm NP}$   | -1.35    | [-1.82, -0.95] | 4.0                 | 71          |

 $\Rightarrow$  SM goodness of fit (LFUV fit): p-value = 4.4%.

- $\Rightarrow$  High level of preference for NP over the SM considering the limited subset of observables included in the fit.
- $\Rightarrow$  Remarkable compatibility with canonical fit results ( $b \rightarrow s \mu \mu$  dominated).

 $\Rightarrow \ C_{9\mu}^{\rm NP} = - C_{9\mu}' \ {\rm loses} \ {\rm relative} \ {\rm weight} \ {\rm since} \ {\rm it} \ {\rm predicts} \ R_{\rm K} \simeq 1.$ 

イロト イポト イヨト イヨト

#### 2D hypothesis

#### Confidence regions plots



 $\Rightarrow$  3 $\sigma$  regions experiment by experiment.

- $\Rightarrow$  Pulls<sub>SM</sub> (p-values): 5.5 $\sigma$  (74%), 5.6 $\sigma$  (75%) & 5.4 $\sigma$  (72%) (respectively).
- ⇒ While  $C_{9\mu}^{\text{NP}} \sim -1$  is preferred over SM at the 5 $\sigma$  level,  $C_{9e}^{\text{NP}}$  is already compatible at 1 $\sigma$ . Clear hint of LFUV.
- $\Rightarrow$  LHCb data drives most of the effect.

< 回 ト < 三 ト <

#### 2D hypothesis

#### Confidence regions plots



 $\Rightarrow$  3 $\sigma$  regions experiment by experiment.

- $\Rightarrow$  Pulls<sub>SM</sub> (p-values): 5.5 $\sigma$  (74%), 5.6 $\sigma$  (75%) & 5.4 $\sigma$  (72%) (respectively).
- ⇒ While  $C_{9\mu}^{NP} \sim -1$  is preferred over SM at the 5 $\sigma$  level,  $C_{9e}^{NP}$  is already compatible at  $1\sigma$ .
- $\Rightarrow$  LHCb data drives most of the effect.
- $\Rightarrow$  LFUV fit results are poiting towards the same direction.

| Review Theoretical Framework | Global Fits | Future opportunities for LFUV | Conclusions |
|------------------------------|-------------|-------------------------------|-------------|
|                              |             |                               |             |
|                              |             |                               |             |
| 6D hypothesis                |             |                               |             |

We fit the six Wilson coefficients (assumed real) to all data.

| Coefficient      | Best Fit | $1\sigma$      | $2\sigma$      |
|------------------|----------|----------------|----------------|
| $C_7^{\rm NP}$   | +0.02    | [-0.01, +0.05] | [-0.03, +0.07] |
| $C_{9\mu}^{NP}$  | -1.12    | [-1.34, -0.85] | [-1.51, -0.61] |
| $C_{10\mu}^{NP}$ | +0.33    | [+0.09, +0.59] | [-0.10, +0.80] |
| $C_7'$           | +0.03    | [-0.00, +0.06] | [-0.02, +0.08] |
| $C'_{9\mu}$      | +0.59    | [+0.01, +1.12] | [-0.50, +1.56] |
| $C_{10\mu}'$     | +0.07    | [-0.23, +0.37] | [-0.50, +0.64] |

- $\Rightarrow C_{9\mu}$  only compatible with the SM above the  $3\sigma$  level.
- $\Rightarrow C_{10\mu} \& C'_{9\mu}$  SM compatible at  $2\sigma$ .
- $\Rightarrow$  All the other coefficients are already SM compatible at  $1\sigma$ .
- $\Rightarrow$  Pull<sub>SM</sub> of the 6D hypothesis is at the level of  $5\sigma$  (3.6 $\sigma$  in 2015).

1

< □ > < □ > < □ > < □ > < □ > < □ >

# Future opportunities for LFUV

・ロト・御と・ 言と、 正、 りんの

Bernat Capdevila

Patterns of New Physics in  $b 
ightarrow s \ell^+ \ell^-$  transitions in the light of recent data

### Motivation: $R_K \& R_{K^*}$

- $\Rightarrow R_K \& R_{K^*} \text{ show tensions around} \\ \sim 2.5\sigma \text{ with their (very precise)} \\ \text{SM predictions.}$
- $\Rightarrow R_{K} \& R_{K^{*}} \text{ tension is$ **coherent** $} with the pattern of tensions observed in the <math>B \to K^{*}$  angular analysis.
- $\Rightarrow C_9^{\rm NP} = -1.1 \text{ alleviates both } R_K \& R_{K^*} \text{ and angular anomalies.}$
- ⇒ **But**, with current data, more information than  $R_K$  and  $R_{K^*}$  is needed to distinguish between NP scenarios.



**What do we want?** To probe the different NP scenarios suggested by global fits with the highest possible precision.

What do we need? New observables matching the following criteria:

- Sensitivity only to the short distance part of  $C_9$  (high SM precision).
- Capacity to test for lepton flavour universality violation between the electronic and muonic modes.
- Sensitivity to other Wilson coefficients than  $C_9$ .

Exploiting the angular analyses of both  $B \to K^* \mu \mu$  and  $B \to K^* ee$  decays, certain combinations of the angular observables fulfill the requirements

$$\langle Q_i \rangle = \langle P_i^{\mu} \rangle - \langle P_i^{e} \rangle \quad \langle \hat{Q}_i \rangle = \langle \hat{P}_i^{\mu} \rangle - \langle \hat{P}_i^{e} \rangle \quad \langle B_k \rangle = \frac{\langle J_k^{\mu} \rangle}{\langle J_k^{e} \rangle} - 1 \quad \langle \tilde{B}_k \rangle = \frac{\langle J_k^{\mu} / \beta_\mu^{2} \rangle}{\langle J_k^{e} / \beta_e^{2} \rangle} - 1$$

$$i = 1, \dots, 9 \& k = 5, 6s$$

where ^ means correcting for lepton-mass effects in the first bin (backup slides).

< 日 > < 同 > < 三 > < 三 >

~

Bernat Capdevila

## Discrimination tests: $\hat{Q}_i \& B_{5,6s}$

- $\Rightarrow \ \big< \hat{Q}_2 \big>^{[0.045,1.1]} \text{ is very SM-like.} \\ \text{Potential as a control observable.}$
- $\label{eq:constraint} \begin{array}{l} \Rightarrow \ \left< \hat{Q}_5 \right>^{[1.1,6]} \mbox{ promising power of} \\ \mbox{ discrimination. Especially capable} \\ \mbox{ to distinguish the SM from hyp. 2} \\ \mbox{ and the other NP hyp.} \end{array}$
- $\Rightarrow \langle B_5 \rangle^{[0.045,1.1]} \text{ and } \langle B_{6s} \rangle^{[0.045,1.1]} \text{ are} \\ \text{very sensitive to hyp. 2. Capacity} \\ \text{to distinguish hyp. 2 from hyp. 1,} \\ \text{3 and 4 (if the experimental errors} \\ \text{are small}).$



## Conclusions

4 日 ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 0

Bernat Capdevila

Patterns of New Physics in  $b \to s \ell^+ \ell^-$  transitions in the light of recent data

|             |  | Conclusions |
|-------------|--|-------------|
|             |  |             |
|             |  |             |
| Conclusions |  |             |

- The SM is substantially disfavoured against other NP solutions. ⇒ p-value<sub>SM</sub>(canonical) = 14,6% (p-value<sub>SM</sub>(LFUV) = 4,4%). ⇒ 6D fit: Pull<sub>SM</sub> = 5 $\sigma$ .
- **C**<sub>9 $\mu$ </sub> is still the most strong signal of NP, but now with increased significance ~  $5.5\sigma$ .
- Several other NP hypothesis are also very favoured compared to the SM (but all containing  $C_{9\mu}$ ).
- Our global fits also provide clear hints of LFUV.
  - ⇒ Framework for the definition of LFUV observables.
  - $\Rightarrow$  Future measurements of these observables will help further increasing the significances, plus clarifying the possible underlying type of NP.

Bernat Capdevila

# Thank you

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Bernat Capdevila Patterns of New Physics in  $b o s\ell^+\ell^-$  transitions in the light of recent data

## Backup Slides

4 ロト 4 部 ト 4 差 ト 4 差 ト 差 の 4 (0)

Bernat Capdevila

Patterns of New Physics in  $b 
ightarrow s \ell^+ \ell^-$  transitions in the light of recent data

| Review Theoretical Framework | GIODAI FILS | Future opportunities for LFOV | Conclusions |
|------------------------------|-------------|-------------------------------|-------------|
|                              |             |                               |             |
| "Hats"                       |             |                               |             |

LHCb currently determines  $F_{L,T}$  using a simplified description of the angular kinematics:

$$\left. \begin{array}{c} J_{2s} \\ J_{2c} \end{array} \right\} \longmapsto J_{1c} \mbox{ (equivalent in the massless limit)}$$

Then, to match this convention, the angular observables are redefined in the following way:

$$F_{L} = \frac{-J_{2c}}{d\Gamma/dq^{2}} \rightarrow \hat{F}_{L} = \frac{J_{1c}}{d\Gamma/dq^{2}} \qquad F_{T} = \frac{4J_{2s}}{d\Gamma/dq^{2}} \rightarrow \hat{F}_{T} = 1 - \hat{F}_{L}$$

$$P_{1} = \frac{J_{3}}{2J_{2s}} \rightarrow \hat{P}_{1} = \frac{J_{3}}{2\hat{J}_{2s}} \qquad P_{2} = \frac{J_{6s}}{8J_{2s}} \rightarrow \hat{P}_{2} = \frac{J_{6s}}{8\hat{J}_{2s}}$$

$$P_{3} = -\frac{J_{0}}{4J_{2s}} \rightarrow \hat{P}_{3} = -\frac{J_{0}}{4\hat{J}_{2s}} \qquad P_{4}' = \frac{J_{4}}{\sqrt{-J_{2s}J_{2c}}} \rightarrow \hat{P}_{4}' = \frac{J_{4}}{\sqrt{\hat{J}_{2s}J_{1c}}}$$

$$P_{5}' = \frac{J_{5}}{2\sqrt{-J_{2s}J_{2c}}} \rightarrow \hat{P}_{5}' = \frac{J_{5}}{2\sqrt{\hat{J}_{2s}J_{1c}}} \qquad P_{6}' = -\frac{J_{7}}{2\sqrt{-J_{2s}J_{2c}}} \rightarrow \hat{P}_{6}' = -\frac{J_{7}}{2\sqrt{\hat{J}_{2s}J_{1c}}}$$

$$P_{5}' = -\frac{J_{8}}{\sqrt{-J_{2s}J_{2c}}} \rightarrow \hat{P}_{8}' = -\frac{J_{8}}{\sqrt{\hat{J}_{2s}J_{1c}}} \qquad \text{with } \hat{J}_{2s} = \frac{1}{16}(6J_{1s} - J_{1c} - 2J_{2s} - J_{2c})$$

#### Bernat Capdevila

 $P'_8$ 

Patterns of New Physics in  $b 
ightarrow s \ell^+ \ell^-$  transitions in the light of recent data

|        |  | Conclusions |
|--------|--|-------------|
|        |  |             |
|        |  |             |
| "Hats" |  |             |

Why is there a need to compute the predictions from  $\hat{F}_{L,T}$  instead of  $F_{L,T}$ ? Let's consider the decay distribution

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\Omega} = \frac{9}{32\pi} \left[ \frac{3}{4} \hat{F_T} \sin^2 \theta_K + \hat{F}_L \cos^2 \theta_K + \frac{1}{4} F_T \sin^2 \theta_K \cos 2\theta_l - F_L \cos^2 \theta_K \cos 2\theta_l + \ldots \right]$$

With the current limited statistics,  $\hat{F}_{L,T}$  and  $F_{L,T}$  cannot be distinguished by LHCb.

**c**os  $\theta_K^2$  is the dominant term, so they extract  $\hat{F}_L$  and not  $F_L$ .

Bernat Capdevila

|                   |  | Conclusions |
|-------------------|--|-------------|
|                   |  |             |
|                   |  |             |
| Scheme dependence |  |             |

Different possibilities for what to take as input for the two independent soft FFs  $\{\xi_{\perp}, \xi_{\parallel}\}$ 

e.g. scheme 1 [DHMV] { $V, a_1A_1 + a_2A_2$ } or scheme 2 [JC] { $T_1, A_0$ } or...

- $\Rightarrow$  choice defines **input scheme**.
- Observables are scheme independent if and only if all the correlations among FF are included.
  - $\Rightarrow$  also correlations among  $\Delta a_F, \Delta b_F, \ldots!$
  - $\Rightarrow$  Uncorrelated errors in  $\Delta F^{\Lambda} \Rightarrow$  scheme dependence at  $\mathcal{O}(\Lambda/m_B)$ .
- Input FF do not receive power corrections
  - $\Rightarrow$  Appropriate scheme choices reduce the impact of  $\Delta F^{\Lambda}$ .
  - $\Rightarrow$  Non-optimal schemes can artificially inflate the errors due to  $\Delta F^{\Lambda}$ .

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ =

Bernat Capdevila

#### An illustrative example: $BR(B \rightarrow K^*\gamma)$

How a non-optimal scheme can artificially inflate the errors?

 $\Rightarrow$  Take  $BR(B \rightarrow K^*\gamma)$  as an example:

$$BR(B 
ightarrow K^* \gamma) \propto T_1(0)$$

 $\Rightarrow$  **Natural choice**: Choose an scheme where  $T_1$  is used as input,

$$T_1(0) = T_1^{\mathsf{LCSR}}(0) \pm \Delta T_1^{\mathsf{LCSR}}(0) \ \Rightarrow \ \Delta BR(B \to K^*\gamma) \propto \Delta T_1^{\mathsf{LCSR}}(0)$$

 $\Rightarrow$  "Wrong" choice: Use any other FF related to  $T_1$  as input (e.g.  $T_2$ ),

$$T_{1}(0) = \left(T_{2}^{\text{LCSR}}(0) + a_{T_{1}}\right) \pm \left(\Delta T_{1}^{\text{LCSR}}(0) + \Delta a_{T_{1}}\right)$$
$$\Rightarrow \Delta BR(B \to K^{*}\gamma) \propto \Delta T_{1}^{\text{LCSR}}(0) + \Delta a_{T_{1}}$$

 Unnatural scheme choices generate extra contributions in error computations.

Institut de Física d'Altes Energies (IFAE)

(I) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (III) < (

|  | Conclusions |
|--|-------------|
|  |             |
|  |             |

### Scheme dependence of $P'_5$

Explicit analytic formulae for the power corrections to  $P'_5$  [CDHM]:

Helicity basis,

$$P'_{5} = P'_{5}|_{\infty} \left( 1 + \frac{2a_{V_{-}} - 2a_{T_{-}}}{\xi_{\perp}} \frac{C_{7}^{\text{eff}}(C_{9,\perp}C_{9,\parallel} - C_{10}^{2})}{(C_{9,\perp} + C_{9,\parallel})(C_{9,\perp}^{2} + C_{10}^{2})} \frac{m_{b}m_{B}}{q^{2}} + \frac{2a_{V_{0}} - 2a_{T_{0}}}{\tilde{\xi}_{\parallel}} \frac{C_{7}^{\text{eff}}(C_{9,\perp}C_{9,\parallel} - C_{10}^{2})}{(C_{9,\perp} + C_{9,\parallel})(C_{9,\parallel}^{2} + C_{10}^{2})} \frac{m_{b}}{m_{B}} - \frac{2a_{V_{+}}}{\xi_{\perp}} \frac{C_{9,\parallel}}{C_{9,\perp} + C_{9,\parallel}} + \dots \right)$$

 $\Rightarrow$  We recovered the expression in JC12 + an additional term

Transversity basis,

$$P_{5}' = P_{5}'|_{\infty} \left( 1 + \frac{a_{A_{1}} + a_{V} - 2a_{T_{1}}}{\xi_{\perp}} \frac{C_{7}^{\text{eff}}(C_{9,\perp} - C_{9,\parallel}^{2} - C_{10}^{2})}{(C_{9,\perp} + C_{9,\parallel})(C_{9,\perp}^{2} + C_{10}^{2})} \frac{m_{b}m_{B}}{q^{2}} - \frac{a_{A_{1}} - a_{V}}{\xi_{\perp}} \frac{C_{9,\parallel}}{C_{9,\perp} + C_{9,\parallel}} - \frac{a_{T_{1}} - a_{T_{3}}}{\tilde{\xi}_{\parallel}} \frac{C_{7}^{\text{eff}}(C_{9,\perp} - C_{9,\parallel} - C_{10}^{2})}{(C_{9,\perp} + C_{9,\parallel})(C_{9,\parallel}^{2} + C_{10}^{2})} \frac{m_{b}}{m_{K^{*}}} + \dots \right)$$

with 
$$C_{9,\perp} = C_9^{\text{eff}} + rac{2m_b m_B}{q^2} C_7^{\text{eff}}$$
 and  $C_{9,\parallel} = C_9^{\text{eff}} + rac{2m_b}{m_B} C_7^{\text{eff}}$ 

Patterns of New Physics in  $b \rightarrow s \ell^+ \ell^-$  transitions in the light of recent data

|                   |       | Conclusions |
|-------------------|-------|-------------|
|                   |       |             |
|                   |       |             |
| Schame dependence | at P' |             |

The FF ratio  $A_1/V$  dominates  $P'_5$ ,

- $\Rightarrow$  **Convenient**: scheme 1 [DHMV] { $V, a_1A_1 + a_2A_2$ }
- $\Rightarrow$  **Inconvenient**: scheme 2 [JC] { $T_1, A_0$ }

b

Evaluating the expression for the power corrections to  $P'_5$  at  $q^2 = 6 \text{ GeV}^2$  (around the anomaly),

$$\begin{aligned} P_5'(6 \text{ GeV}^2) &= P_5'|_{\infty}(6 \text{ GeV}^2) \left( 1 + 0.18 \frac{a_{A_1} + a_V - 2a_{T_1}}{\xi_{\perp}} - 0.14 \frac{a_{T_1} - a_{T_3}}{\tilde{\xi}_{\parallel}} - 0.73 \frac{a_{A_1} - a_V}{\xi_{\perp}} \right) \\ \Rightarrow \text{ Scheme 1: } P_5'(6 \text{ GeV}^2) \simeq P_5'|_{\infty}(6 \text{ GeV}^2) \left( 1 - 0.73 \frac{a_{A_1}}{\xi_{\perp}} \right) \Rightarrow \text{ reduced errors.} \\ \Rightarrow \text{ Scheme 2: } P_5'(6 \text{ GeV}^2) \simeq P_5'|_{\infty}(6 \text{ GeV}^2) \left( 1 - 0.73 \frac{a_{A_1} - a_V}{\xi_{\perp}} \right) \Rightarrow \text{ increased} \end{aligned}$$

errors.

Bernat Capdevila

#### Correlations and scheme dependence of $P'_5$

Assessing the impact of the correlations among power corrections (PC) + scheme dependence,



| $P_5'[4.0, 6.0]$                          | scheme 1 [CDHM] | scheme 2 [JC]           |  |
|-------------------------------------------|-----------------|-------------------------|--|
| 1                                         | $-0.72\pm0.05$  | $-0.72\pm\textbf{0.12}$ |  |
| 2                                         | $-0.72\pm0.03$  | $-0.72\pm0.03$          |  |
| 3                                         | $-0.72\pm0.03$  | $-0.72\pm0.03$          |  |
| full BSZ                                  | $-0.72\pm0.03$  |                         |  |
| errors only from pc with BSZ form factors |                 |                         |  |

Bernat Capdevila

Patterns of New Physics in  $b \rightarrow s \ell^+ \ell^-$  transitions in the light of recent data

#### Disentangling cc loops from New Physics

NP and hadronic effects have different signatures on  $C_9$ :

- **NP** effects: universal and  $q^2$ -independent.
- Hadronic effects: transversity dependent and (most likely)  $q^2$ -depedent.

Testing the  $q^2$  dependence of the contributions to  $C_9$  by means of data,

**C**<sub>9</sub><sup>NP</sup> bin-by-bin fit to  $b \to s\ell\ell$  data (assuming KMPW-like  $C_9^{c\bar{c}i}(q^2)$ ):



#### Fitting a charm-loop parametrization to data

Following *Ciuchini et al.*, we performed a fit of the charm loop contributions to data using a polinomial paramatrization,

$$\mathcal{A}_{L,R}^{0} = \mathcal{A}_{L,R}^{0}(Y(q^{2})) + rac{N}{q^{2}} \left(h_{0}^{(0)} + rac{q^{2}}{1\,GeV^{2}}h_{0}^{(1)} + rac{q^{4}}{1\,GeV^{4}}h_{0}^{(2)} + rac{q^{6}}{1\,GeV^{6}}h_{0}^{(3)}
ight)$$

■ Non-zero  $h_{\lambda}^{(2),(3)}$  ( $\lambda = +, -, 0$ ) introduce  $q^2$ -dependent terms in  $C_9$ . ⇒ Disclaimer:  $C_{7,9}^{NP}$  contribute to  $h_i^{(2),(3),\dots} \Rightarrow C_i^{NP} \times F(q^2)$ .

- Frequentist fit of  $h_{\lambda}^{(i)}$  to  $B \to K^* \mu \mu$  data: using KMPW FF and without including any charm-loop estimate to  $C_{7,9}$ .
- Comparing hypothesis with increasing orders of the  $h_{\lambda}$  polynomials (n = 0, 1, 2, 3), we conclude [CDHM]:
  - ⇒ Hypotheses with linear  $h_{\lambda}$  polinomials are the ones with better improvement of the fit.
  - $\Rightarrow$  Setting  $C_9^{\text{NP}} = -1.1$  significantly improves the fit (already with  $h_{\lambda} = 0$ ).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト