Vector-like fermions: a review

Francisco del Águila and José Santiago

DE PARTICULAS ELEMENTALES

Universidad de Granada

Outline

- Introduction: personal historical view
 - Grand Unified Theories, Majorana masses, Little Higgs models, SUSY
 - Extended spectrum
- Decoupling: well behaved (decoupling) but flavour violation, although model dependent predictions (changing prejudices)
 - Indirect effects
 - Direct effects
 - Fermion masses and mixings
- LHC searches (today's talks)

There is a large number of papers on the subject:

- H. Fritzsch, M. Gell-Mann and P. Minkowski, Phys. Lett. 59B (1975) 256 (SO(10)
 H. Georgi) Light (now, heavy then ~ 10's of GeV) mirror, anomaly free
- M.J. Bowick and P. Ramond, Phys. Lett. 103B (1981) 338 (E₆ F. Gursey, P. Ramond and P. Sikivie) Heavy (up to the GUT scale) vector-like
- F. del Aguila and M,J. Bowick, Phys. Lett. 119B (1982) 144 Phenomenology
- P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B 258 (1985) 46 SUSY motivation (at the TeV scale in E₆ representations)
- G.C. Branco and L. Lavoura, Nucl. Phys. B 278 (1986) 738 Phenomenology
- F. del Aguila, L. Ametller, G.L. Kane and J.Vidal, Nucl. Phys. B 334 (1990) 1 Reach of hadron colliders
- F.J. Botella, G.C. Branco, M. Nebot, M.N. Rebelo and J.I. Silva-Marcos, arXiv: 1610.03018 [hep-ph] Model building
- J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, [arXiv: 1306.0572 [hep-ph]] Review
- ATLAS and CMS limits. Specific talks this week, and especially today

Large
$$\mu$$
Heavy vector-like quark of charge 2/3
 $\mathcal{L}_{SM} + \mathcal{L}_T$ $\mathcal{L}_{SM} = \overline{q_L} \mathcal{D} \mathcal{P} q_L + \overline{t_R} \mathcal{D} \mathcal{P} t_R - \lambda_t (\overline{q_L} \tilde{\phi} t_R + \overline{t_R} \tilde{\phi}^{\dagger} q_L) + \dots$
 $\mathcal{L}_T = \overline{T}(\mathbf{i} \mathcal{P} - M)T - \lambda_T (\overline{q_L} \tilde{\phi} T_R + \overline{T_R} \tilde{\phi}^{\dagger} q_L)$ F. del Aguila, M. Perez-Victoria and J. Santiago [hep-ph/0007316]
 $\mathcal{L}_{SM} + \mathcal{L}_6^{(0l)}$ $\mathcal{L}_6^{(0l)} = \alpha_{\phi q}^{(1)} \mathcal{O}_{\phi q}^{(1)} + \alpha_{\phi q}^{(3)} \mathcal{O}_{\phi q}^{(3)} + \alpha_{u\phi} \mathcal{O}_{u\phi} + h.c.$
 $\mathcal{O}_{\phi q}^{(1)} = \mathbf{i}\phi^{\dagger} D_{\mu}\phi \, \bar{q}\gamma^{\mu}q, \, \mathcal{O}_{\phi q}^{(3)} = \mathbf{i}\phi^{\dagger}\sigma^a D_{\mu}\phi \, \bar{q}\gamma^{\mu}\sigma^a q, \, \mathcal{O}_{u\phi} = \phi^{\dagger}\phi\bar{q}\tilde{\phi}t$
 $\alpha_{\phi q}^{(1)} = -\alpha_{\phi q}^{(3)} = \frac{|\lambda_T|^2}{4M^2}, \, \alpha_{u\phi} = 2\lambda_t \alpha_{\phi q}^{(1)}$ $\mathcal{V} = \mathsf{M}$

EOM (no T_L interaction): $T_L = \frac{1}{M}(-\lambda_T \tilde{\phi}^{\dagger} q_L), \ T_R = \frac{\mathrm{i} \not D}{M^2}(-\lambda_T \tilde{\phi}^{\dagger} q_L)$ \bigstar use t EOM to write the dimension 6 effective Lagrangian in the Warsaw basis

F. del Aguila and J. de Blas, [arXiv:1105.6103 [hep-ph]]

L. Lavoura and J.P Silva, Phys. Rev. D 47 (1993) 2046

F. del Aquila and M.J. Bowick, Nucl. Phys. B 224 (1983) 107

	LH and RH parts	Masses (M large)	L	Gauge R	Higgs RL LR (l is a doublet) (l is a sing;	Li: M < M _{W,Z}	fetimes M _{W,Z} < M	Usual SU(5) representations containing these ΔI=0 [eptons	Other char	acteristics
Singlets	N	No constraint	$L \xrightarrow{\eta} \ell$	(N will be in general a sel conjugate Majorana spinor)	f L (N will be in general a sel conjugate H Majorana spinor)			l _F and 24 _F		1 1 1 1
	Е		$L \xrightarrow{n} \ell$ Z,W	n mixing (no mixing if no other ΔI=0 multi- plets)		τ≤τ(L÷l _τ ev _e)∿	 τ ≤ τ(L+ℓ _τ Ζ) ∿	$10_{\rm F} + \overline{10}_{\rm F}$		1 1 1
Doublets	N E	Particles in the same multiplet are nearly degenerate in mass	n^2 mixing (no mixing in NC if no other $\Delta I=0$ multiplets)	$ \begin{array}{c} s \\ s \\ 0 \\ s \\ -1 \\ z \\ w \\ \end{array} \begin{array}{c} n \\ l \\$	$\begin{bmatrix} \frac{G^2}{192\pi^3} m_{\tau}^2 M^3 \end{bmatrix}^{-1} \sim \begin{bmatrix} \frac{G^2}{192\pi^3} m_{\tau}^2 M^3 \end{bmatrix}^{-1} \sim \begin{bmatrix} \frac{1}{1} m_{\tau}^2 M^3 m_{\tau}^2 M^3 \end{bmatrix}^{-1} \sim \begin{bmatrix} \frac{1}{1} m_{\tau}^2 M^3 m_{\tau}^2 M^3 \end{bmatrix}^{-1} \sim \begin{bmatrix} \frac{1}{1} m_{\tau}^2 M^3 m_{\tau}^2 M^3 m_{\tau}^2 M^3 \end{bmatrix}^{-1} \sim \begin{bmatrix} \frac{1}{1} m_{\tau}^2 M^3 m_{\tau}^2 M^3 m_{\tau}^2 M^3 m_{\tau}^2 M^3 m_{\tau}^2 M^3 m_{\tau}^2 M^3 \end{bmatrix}^{-1} \sim \begin{bmatrix} \frac{1}{1} m_{\tau}^2 M^3 m_{\tau}^2 m_{\tau}^2 M^3 m_{\tau}^2 m_{\tau}^$	$\begin{bmatrix} G \\ g \sqrt{2\pi} & m_{\tau}^2 \end{bmatrix}^{-1} \sim$	$\frac{G}{\sqrt{2\pi}} m_{\tau}^{2} M \Big]^{-1} \sim 5_{F}^{2} + \overline{5}_{F}^{2}$ (used in super-symmetry) and		<pre> No sequential character or associated nearl: massless neutrin or conserved</pre>	
	Е		n ² mixing			10 ⁻¹⁵ (20 M in Gev) ³ sec	$10^{-20} (\frac{100}{M \text{ in GeV}})$ sec	sec $\begin{vmatrix} 45 + 45 \\F - 45 \\FF$	quantum number, ratio of neutral to charge decays large	
Triplets	E ^C N N,E E.		$L \xrightarrow{\eta} \ell$ Z,W	Negligible		м	1 1 1 1	24 _F , other representations	in general imply exotics	 .
			Negligible	1	Negligible		other representations		1 	
Other Multiplets			Negli	igible	Negligible	10 ⁻¹⁶ sec < τ <	1 sec	Difficult to embed		
				•						i L

Effective Lagrangian

accidental symmetries are not fulfiled by higher order operators -lepton number, ...-

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{\dim \mathcal{O}_i > 4} \frac{c_i}{\Lambda^{\dim \mathcal{O}_i - 4}} \mathcal{O}_i$$

 \Rightarrow

basis of **local operators** (no redundant) -systematic use of **equations of motion**-

$$\left(\frac{E}{\Lambda}\right)^{\dim\mathcal{O}_i-4} \sim \epsilon$$

engineering dimension upper limit

$$\dim \mathcal{O}_i \sim 4 + \frac{\log \epsilon}{\log(E/\Lambda)} \quad \left(2 = \frac{\log 0.01}{\log \frac{100 \text{ GeV}}{1 \text{ TeV}}}\right)$$

finite number of independent operators

F. del Aguila, M. Perez-Victoria and
J. Santiago, [hep-ph/0007316]
$$Q^{(m)}$$
 $-\mathcal{L}_{lh}$ U $\lambda_{ai}^{\prime(1)}V_{ji}\bar{U}_{R}^{a}\tilde{\phi}^{\dagger}q_{L}^{i}$ $\lambda_{ai}^{\prime(2)}\bar{D}_{R}^{a}\phi^{\dagger}q_{L}^{i}$ U_{R}^{b} D_{R}^{b} U_{D}^{b} D U_{R}^{b} D_{R}^{b} U_{D}^{b} $\lambda_{ai}^{\prime(2)}\bar{D}_{R}^{a}\phi^{\dagger}q_{L}^{i}$ U_{R}^{b} D_{R}^{b} U_{D}^{b} U_{D}^{b} U_{R}^{b} D_{R}^{b} U_{D}^{b} $\lambda_{ai}^{\prime(2)}\bar{U}_{D}^{a}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{D}^{b}_{L}^{a}$ $\frac{1}{U}_{D}^{b}_{R}^{b}$ $\frac{1}{U}_{L}^{\prime(3u)}$ $\frac{1}{U}_{L}^{\prime(3u)}\bar{U}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{D}^{b}_{L}^{a}$ $\frac{1}{Q}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{L}^{\prime(3u)}\bar{U}_{L}^{c}\bar{U}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{D}^{b}_{L}^{a}$ $\frac{1}{Q}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{L}^{\prime(3u)}\bar{U}_{L}^{c}\bar{U}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{D}^{b}_{L}^{a}$ $\frac{1}{Q}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{L}^{\prime(3u)}\bar{U}_{L}^{c}\bar{U}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{D}^{b}_{L}^{a}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{L}^{\prime(3u)}\bar{U}_{L}^{c}\bar{U}_{L}^{c}\bar{U}_{L}^{c}\phi^{\dagger}q_{L}^{i}$ $\frac{1}{U}_{L}^{c}\bar{U}_{L}^{c}\phi^{\dagger}q^{-1}\bar{Q}\phi^{-1}\bar{Q}\phi^{-1}\bar{Q}\phi^{-1}q^{-1}\bar{Q}\phi^{-1}q^{-1}\bar{Q}\phi^{-1}q^{-1}\bar{Q}\phi^{-1}q^{-1}\bar{Q}\phi^{-$

Equations of motion and field redefinitions

Relevant (dimension < 4), marginal (dimension = 4) and irrelevant (dimension > 4) operators, which it is convenient to bring to a canonical form without redundancies:

- Necessary to make a meaningful comparison between different (phenomenological) analyses.
- Although there are subsets more suitable for given data subsets.

As in the case of lepton number violation, just discussed, new physics may originate at a rather large order but its effects in general do manifest at the lowest possible order after quantum corrections are taken into account.

$$\mathcal{O}_{\phi q}^{(1)} = \phi^{\dagger} \phi \ \overline{q_L} \text{ i } \not D \ q_L \xrightarrow{\mathsf{q}_L \mathsf{EOM:}} \lambda_t \ (\mathcal{O}_{u\phi} = \phi^{\dagger} \phi \ \overline{q_L} \ \tilde{\phi} \ t_R)$$
$$\mathbf{i} \not D q_L - \lambda_t \tilde{\phi} t_R = 0$$

$$\begin{split} \mathcal{Z}[J] &= \int D\varphi \, \exp\left\{\mathrm{i} \int dx \, \left[\mathcal{L}(\varphi(x), \partial_{\mu}\varphi(x)) + J(x)\varphi(x)\right]\right\} \\ \mathcal{S}_{\mathrm{eff}} &= \int d^{4}x \, \mathcal{L}_{\mathrm{eff}} \\ \mathcal{L}_{\mathrm{eff}} &= \mathcal{L}_{\mathrm{SM}} + \sum_{\mathrm{dim}\mathcal{O}_{i} > 4} \frac{c_{i}}{\Lambda^{\mathrm{dim}\mathcal{O}_{i} - 4}} \mathcal{O}_{i} = \sum_{n=0}^{\infty} \mathcal{L}_{n} \end{split}$$

Any combination of terms which allows for the factorization of an equation of motion of a light field ϕ can be removed because it has no contribution to the S-matrix

$$\mathcal{L}_m = \frac{1}{\Lambda^m} \Big(\dots + f(\varphi, \partial_\mu \varphi) \Big(\frac{\delta \mathcal{L}_{\rm SM}}{\delta \varphi^\dagger} - \partial_\mu \frac{\delta \mathcal{L}_{\rm SM}}{\delta \partial_\mu \varphi^\dagger} \Big) \Big)$$

 $\frac{\delta \mathcal{L}_{\rm SM}}{\delta \varphi^\dagger} - \partial_\mu \frac{\delta \mathcal{L}_{\rm SM}}{\delta \partial_\mu \varphi^\dagger} = 0$

This follows from the observation that the field redefinition

cancels such a combination without modifying

$$\varphi^{\dagger} \to \varphi^{\dagger} - \frac{1}{\Lambda^m} f(\varphi, \partial_{\mu} \varphi)$$
$$\mathcal{L} = \sum_{n=0}^m \mathcal{L}_n$$

$$\alpha_{\phi q}^{(1)} \left((\mathcal{O}_{\phi q}^{(1)} = \phi^{\dagger} \phi \ \overline{q_L} \ i \not D \ q_L) \longrightarrow \lambda_t \ (\mathcal{O}_{u\phi} = \phi^{\dagger} \phi \ \overline{q_L} \ \tilde{\phi} \ t_R) \right)$$

$$\begin{split} \mathcal{L}^{Z} &= -\frac{g}{2\cos\theta_{W}} \left(\bar{u}_{L}^{i} X_{ij}^{uL} \gamma^{\mu} u_{L}^{j} + \bar{u}_{R}^{i} X_{ij}^{uR} \gamma^{\mu} u_{R}^{j} \\ &- \bar{d}_{L}^{i} X_{ij}^{dL} \gamma^{\mu} d_{L}^{j} - \bar{d}_{R}^{i} X_{ij}^{dR} \gamma^{\mu} d_{R}^{j} - 2\sin^{2}\theta_{W} J_{EM}^{\mu} \right) Z_{\mu}, \\ \mathcal{L}^{W} &= -\frac{g}{\sqrt{2}} (\bar{u}_{L}^{i} W_{ij}^{L} \gamma^{\mu} d_{L}^{j} + \bar{u}_{R}^{i} W_{ij}^{R} \gamma^{\mu} d_{R}^{j}) W_{\mu}^{+} + \text{h.c.}, \\ \mathcal{L}^{H} &= -\frac{1}{\sqrt{2}} (\bar{u}_{L}^{i} Y_{ij}^{u} u_{R}^{j} + \bar{d}_{L}^{i} Y_{ij}^{d} d_{R}^{j}) H + \text{h.c.}, \\ X_{ij}^{uL} &= \delta_{ij} - \frac{v^{2}}{\Lambda^{2}} V_{ik} (\alpha_{\phi q}^{(1)} - \alpha_{\phi q}^{(3)})_{kl} V_{lj}^{\dagger}, \\ X_{ij}^{uR} &= -\frac{v^{2}}{\Lambda^{2}} (\alpha_{\phi u})_{ij}, \\ X_{ij}^{dL} &= \delta_{ij} + \frac{v^{2}}{\Lambda^{2}} (\alpha_{\phi q}^{(1)} + \alpha_{\phi q}^{(3)})_{ij}, \\ X_{ij}^{dL} &= \delta_{ij} + \frac{v^{2}}{\Lambda^{2}} (\alpha_{\phi q})_{ij}, \\ W_{ij}^{L} &= \tilde{V}_{ik} (\delta_{kj} + \frac{v^{2}}{\Lambda^{2}} (\alpha_{\phi q}^{(3)})_{kj}), \\ W_{ij}^{R} &= -\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} (\alpha_{\phi \phi})_{ij}, \\ Y_{ij}^{u} &= \delta_{ij} \lambda_{j}^{u} - \frac{v^{2}}{\Lambda^{2}} \left(V_{ik} (\alpha_{u\phi})_{kj} + \frac{1}{4} \delta_{ij} [V_{ik} (\alpha_{u\phi})_{kj} + (\alpha_{u\phi})_{ik}^{\dagger} V_{kj}^{\dagger}] \right), \\ Y_{ij}^{d} &= \delta_{ij} \lambda_{j}^{d} - \frac{v^{2}}{\Lambda^{2}} \left((\alpha_{d\phi})_{ij} + \frac{1}{4} \delta_{ij} (\alpha_{d\phi} + \alpha_{d\phi}^{\dagger})_{ij} \right), \end{split}$$

$$\begin{split} \lambda_{b}\overline{\left(\begin{array}{c}T\\B\end{array}\right)}_{L}\phi b_{R}+\lambda_{t}\overline{\left(\begin{array}{c}T\\B\end{array}\right)}_{L}\tilde{\phi}t_{R}+\lambda_{t}\overline{\left(\begin{array}{c}X\\T'\end{array}\right)}_{L}\phi t_{R}\\ \\ \frac{\alpha_{\phi u}}{\Lambda^{2}}=-\frac{1}{2}\frac{\lambda_{t}^{2}}{M_{1}^{2}}+\frac{1}{2}\frac{\lambda_{t}^{\prime 2}}{M_{7}^{2}}\rightarrow \boxed{Z_{\mu}\overline{t_{R}}\gamma^{\mu}t_{R}}\rightarrow 0\\ \frac{\alpha_{\phi d}}{\Lambda^{2}}=\frac{1}{2}\frac{\lambda_{b}^{2}}{M_{1}^{2}}\qquad \rightarrow \boxed{Z_{\mu}\overline{b_{R}}\gamma^{\mu}b_{R}}\rightarrow 0\\ \frac{\omega_{\phi \phi}}{\Lambda^{2}}=-\frac{\lambda_{t}\lambda_{b}}{M_{1}^{2}}\qquad \rightarrow \boxed{W_{\mu}\overline{t_{R}}\gamma^{\mu}b_{R}}\rightarrow 0\\ [2_{\frac{1}{6}},2_{\frac{7}{6}}]=\left[\left(\begin{array}{c}T\\B\end{array}\right),\left(\begin{array}{c}X\\T'\end{array}\right)\right]\\ SU(2)_{L}\times SU(2)^{c}\\ \end{array}$$

 $I_R - I_R \rightarrow Z t_R$

Accidental symmetries

Lepton number is an accidental symmetry of the (minimal) Standard Model because all renormalizable couplings among the electroweak quark and lepton doublets and singlets and invariant under the gauge symmetry group SU(3)XSU(2)XU(1) do also preserve **baryon** and **lepton number**.

However, already at next order there exists one dimension 5 operator with nonvanishing lepton number equal to 2:

S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566 A. Santamaría's talk

$$\begin{split} \frac{C_{ee}^{(5)}}{\Lambda} \mathcal{O}_{ee}^{(5)} &= \frac{C_{ee}^{(5)}}{\Lambda} \overline{\tilde{\ell}_{e\,L}} \phi \tilde{\phi}^{\dagger} \ell_{e\,L} \rightarrow -\frac{v^2 C_{ee}^{(5)}}{\Lambda} \overline{\nu_{e\,L}^c} \nu_{e\,L} + \dots = -\frac{1}{2} (m_{\nu})_{ee}^* \overline{\nu_{e\,L}^c} \nu_{e\,L} + \dots \\ \tilde{\phi} &= i\tau_2 \phi^*, \ \tilde{\ell}_L = i\tau_2 \ell_L^c & |(m_{\nu})_{ee}| < 0.24 - 0.5 \text{ eV} \\ \langle \phi \rangle &\equiv v \simeq 174 \text{ GeV} & |\Delta m_{31}^2| \cong 2.5 \times 10^{-3} \text{ eV}^2 \\ \frac{\langle \phi \rangle}{\langle \psi_{10}^{(0)} \psi$$

R.N. Mohapatra and G. Senjanovic '80; J. Schechter and J.W.F. Valle '80

$$\mathcal{L}_{6} = \begin{bmatrix} \left(\alpha_{e\phi}^{(1)}\right)_{ij} & \left(\frac{\phi^{\dagger}}{b}\right) \left(\frac{\overline{b}_{L}}{b} \phi^{e}_{R}\right) + \left(\alpha_{u}^{(1)}\right)_{ij} & \left(\frac{\phi^{\dagger}}{b}\right) \left(\frac{\overline{b}_{L}}{b} \phi^{e}_{R}\right) + \left(\alpha_{u}^{(1)}\right)_{ij} & \left(\frac{\phi^{\dagger}}{b}\right) \left(\frac{\overline{b}_{L}}{b} \phi^{e}_{R}\right) + \left(\alpha_{u}^{(1)}\right)_{ij} & \frac{1}{2} \left(\frac{A_{L}}{b}\right)_{ia}(A_{L})_{ai}}{M_{\Delta}^{2}} & \frac{1}{2} \left(\frac{A_{L}}{b}\right)_{ia}(A_{L})_{ai}}{M_{\Delta}^{2}} & - \frac{3}{16} \left(\frac{A_{L}}{b}\right)_{ia}(A_{L})_{ai}}{M_{\Delta}^{2}} & \frac{1}{4} \left(\frac{A_{L}}{b}\right)_{ia}(A_{L})_{ai}}{M_{\Delta}^{2}} & - \frac{3}{16} \left(\frac{A_{L}}{b}\right)_{ij}}{M_{\Delta}^{2}} & \frac{A_{L}}{b} & \frac$$

$h \to \tau \mu$ $\tau \to \mu \gamma$ $(g-2)_{\mu}$

$$\mathcal{L}_{M} = -M_{L}\bar{L}_{L}L_{R} - M_{E}\bar{E}_{L}E_{R} + \text{h.c.}$$
$$\mathcal{L}_{Y} = -Y_{LE}\bar{L}_{L}HE_{R} - Y_{EL}\bar{L}_{R}HE_{L} + \text{h.c.}$$
$$\mathcal{L}_{\lambda} = -\lambda_{\mu L}\bar{\mu}_{L}L_{R}\phi^{*} - \lambda_{\tau L}\bar{\tau}_{L}L_{R}\phi$$
$$-\lambda_{\mu E}\bar{\mu}_{R}E_{L}\phi^{*} - \lambda_{\tau E}\bar{\tau}_{R}E_{L}\phi + \text{h.c.}$$

W. Altmannshofer, M. Carena and A. Crivellin, [arXiv:1604.08221 [hep-ph]]

Flavor changing top couplings

J.A. Aguilar-Saavedra, [arXiv:0904.2387 [hep-ph]]

$$\mathcal{L}_{Ztc} = -\frac{g}{2c_W} \bar{c} \gamma^{\mu} \left(X_{ct}^L P_L + X_{ct}^R P_R \right) t Z_{\mu} -\frac{g}{2c_W} \bar{c} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_Z} \left(\kappa_{ct}^L P_L + \kappa_{ct}^R P_R \right) t Z_{\mu} + \text{H.c.}$$

$$\begin{split} \delta X_{ct}^{L} &= \frac{1}{2} \left[C_{\phi q}^{(3,2+3)} - C_{\phi q}^{(1,2+3)} \right] \frac{v^2}{\Lambda^2} \,, \\ \delta X_{ct}^{R} &= -\frac{1}{2} C_{\phi u}^{2+3} \frac{v^2}{\Lambda^2} \,, \\ \delta \kappa_{ct}^{L} &= \sqrt{2} \left[c_W C_{uW}^{32*} - s_W C_{uB\phi}^{32*} \right] \frac{v^2}{\Lambda^2} \,, \\ \delta \kappa_{ct}^{R} &= \sqrt{2} \left[c_W C_{uW}^{23} - s_W C_{uB\phi}^{23} \right] \frac{v^2}{\Lambda^2} \,, \end{split}$$

$$\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi \equiv i\varphi^{\dagger}\left(\tau^{I}D_{\mu}-\overleftarrow{D}_{\mu}\tau^{I}\right)\varphi$$
$$\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi \equiv i\varphi^{\dagger}\left(D_{\mu}-\overleftarrow{D}_{\mu}\right)\varphi$$

3 (2) stands for t (c)

$$\mathcal{L}_{Htc} = -\frac{1}{\sqrt{2}} \,\bar{c} \left(\eta_{ct}^L P_L + \eta_{ct}^R P_R \right) t \,H + \text{H.c.}$$

$$\delta\eta_{ct}^{L} = -\frac{3}{2} C_{u\phi}^{32*} \frac{v^2}{\Lambda^2}$$
$$\delta\eta_{ct}^{R} = -\frac{3}{2} C_{u\phi}^{23} \frac{v^2}{\Lambda^2}$$

Warsaw basis

W. Buchmüller and D. Wyler, Nucl. Phys. B268 (1986) 621

Gauge-invariant dimension 6 operators constructed with the Standard Model fields, up to redundancies which are taking care using equations of motion for fermions and gauge and Higgs bosons, integration by parts, Pauli (SU(2)) and Gell-Mann (SU(3)) matrix properties and Fierz transformations

```
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, [arXiv:1008.4884 [hep-ph]]
J.A. Aguilar-Saavedra, [arXiv:1008.3562 [hep-ph]]
```

Ignoring flavor indices and assuming that there are not light right-handed neutrinos (and that baryon number is conserved)

<u>Operator basis</u>	<u>1986</u>	<u>2010</u>
No fermions	16	15
2 fermions	35	19
4 fermions	29	25
Dimension 6	80	59

Three-body top decays and single and pair top production

Pauli (τ) and Gell-Mann (λ) matrices:

2

Fierz rearrangements:

$$\sum_{I=1}^{3} (\tau^{I})_{ij} (\tau^{I})_{kl} = 2 \left(\delta_{il} \delta_{kj} - \frac{1}{2} \delta_{ij} \delta_{kl} \right) \qquad (\bar{A}_{L} \gamma^{\mu} B_{L}) (\bar{C}_{L} \gamma_{\mu} D_{L}) = (\bar{A}_{L} \gamma^{\mu} D_{L}) (\bar{C}_{L} \gamma_{\mu} B_{L}) (\bar{A}_{R} \gamma^{\mu} B_{R}) (\bar{C}_{R} \gamma_{\mu} D_{R}) = (\bar{A}_{R} \gamma^{\mu} D_{R}) (\bar{C}_{R} \gamma_{\mu} B_{R}) \sum_{a=1}^{8} (\lambda^{a})_{ij} (\lambda^{a})_{kl} = 2 \left(\delta_{il} \delta_{kj} - \frac{1}{3} \delta_{ij} \delta_{kl} \right) \text{two orderings} \qquad (\bar{A}_{R} \gamma^{\mu} B_{R}) (\bar{C}_{L} \gamma_{\mu} D_{L}) = -2 (\bar{C}_{L} B_{R}) (\bar{A}_{R} D_{L})$$

572 independent gauge-invariant four-fermion operators involving one or two top quarks (taking into account different fermion chiralities, colour contractions and flavour combinations) -out of the 25 different types of independent four-fermion operators-.

New vector-like fermion	Dominant production terms
D	$\mathscr{L}_{\rm QCD} = -ig_s A_{a\mu} \overline{D} T^a \gamma^{\mu} D$
$\begin{pmatrix} \mathbf{U} \\ \mathbf{D} \end{pmatrix}$	$\mathscr{L}_{\text{QCD}} = -ig_s A_{a\mu} (\overline{U}T^a \gamma^{\mu}U + \overline{D}T^a \gamma^{\mu}D)$
U	$\mathscr{L}_{\rm QCD} = -ig_s A_{a\mu} \widetilde{U} T^a \gamma^{\mu} U$
E	$\mathscr{L}_{\gamma+Z} = eA_{\mu}J^{\mu}_{\mathbf{EM}} - \frac{es_{\mathbf{W}}}{c_{\mathbf{W}}}Z_{\mu}J^{\mu}_{\mathbf{EM}};$
	$J^{\mu}_{\rm EM} = -\overline{E}\gamma^{\mu}E$
$\begin{pmatrix} N\\ E \end{pmatrix}$	$\mathscr{L}_{\mathbf{\gamma}+\mathbf{W}^{\pm}+\mathbf{Z}} = eA_{\mu}J_{\mathbf{EM}}^{\mu}$
	$+\frac{g_2}{2c_W}Z_{\mu}(\overline{N}\gamma^{\mu}N-\overline{E}\gamma^{\mu}E-2s_W^2J_{\rm EM}^{\mu})$
	$+\frac{g_2}{\sqrt{2}} W^+_{\mu} \overline{N} \gamma^{\mu} E + \text{h.c.}; J^{\mu}_{\text{EM}} = -\overline{E} \gamma^{\mu} E$

VLQs have a quite rich phenomenology

Nuno Castro, Granada, 11/05/2017

pair and single production

Reference FCNC present at tree level

Vector-like quarks: where do we stand?

- Single production is more complicate (and interesting...) from the phenomenology point of view
 - Can dominate for high VLQ masses:

M. Chala and J. Santiago, [arXiv:1305.1940 [hep-ph]]

Fraction of (vector-like) $Q\overline{Q}$ decays into final states with at most one neutrino. ℓ stands for e and μ . We take an average for the branching ratio into W, Z and H (see text) and assume that H always decays into $q\overline{q}$. For each mode we give in parentheses the fraction of events with at least one Higgs

	$D = U = \begin{pmatrix} U \\ D \end{pmatrix}$			
Signal	Decay mode fraction	(Fraction of events with a Higgs)		
qqlll	3×10^{-4}	(—)		
$q\bar{q}\ell\bar{\ell}\ell\nu$	4×10^{-3}	(—)		
$q\bar{q}q\bar{q}\ell\bar{\ell}$	0.03	(0.33)		
qqqqlv	0.17	(0.33)		
$q\bar{q}q\bar{q}q\bar{q}$	0.59	(0.55)		

Total cross sections (in pb) for the signals with at least one lepton, and for different colliders and illustrative vector-like quark masses

	$q\bar{q}\ell\bar{\ell}\ell\bar{\ell}$ $D = U = \frac{1}{2} \begin{pmatrix} U \\ D \end{pmatrix}$	$q\bar{q}\ell\bar{\ell}\ell\nu$ $D = U = \frac{1}{2} \begin{pmatrix} U\\D \end{pmatrix}$	$q\bar{q}q\bar{q}\ell\bar{\ell}$ $D = U = \frac{1}{2} \begin{pmatrix} U \\ D \end{pmatrix}$	$q\bar{q}q\bar{q}\ell\nu$ $D = U = \frac{1}{2} \begin{pmatrix} U\\D \end{pmatrix}$
Tevatron $M_Q = 150 \text{ GeV}$	2×10^{-3}	0.03	0.2	1.3
UNK $M_Q = 300 \text{ GeV}$	2×10^{-3}	0.03	0.2	1.2
LHC $M_Q = 700 \text{ GeV}$	3×10^{-4}	4×10^{-3}	0.03	0.2
$SSC M_Q = 700 \text{ GeV}$	4×10^{-3}	0.05	0.4	2.4

Vector-like quarks: what next?

• With more data we will have new opportunities for discovery (or to improve on exclusion limits...):

	$T_{\rm s}$	$B_{\rm s}$	TB_{d_1}	TB_{d_2}	$XT_{\rm d}$	$BY_{ m d}$
$\ell^+\ell^+\ell^-\ell^- \ (ZZ)$	_	24 fb ⁻¹	$18 { m fb^{-1}}$	23 fb^{-1}	23 fb^{-1}	10 fb^{-1}
$\ell^+\ell^+\ell^-\ell^-\ (Z)$	$11 { m ~fb^{-1}}$	$14 { m fb^{-1}}$	$5.7 { m fb^{-1}}$	$3.4 { m fb^{-1}}$	$3.3 { m ~fb^{-1}}$	$50 {\rm ~fb^{-1}}$
$\ell^+\ell^+\ell^-\ell^-$ (no Z)	$35 \ \mathrm{fb}^{-1}$	$25 { m fb^{-1}}$	$11 \ {\rm fb}^{-1}$	$3.3 { m fb^{-1}}$	$3.5~{\rm fb}^{-1}$	_
$\ell^{\pm}\ell^{\pm}\ell^{\mp} \ (Z)$	$3.4 {\rm ~fb^{-1}}$	$3.4~{\rm fb}^{-1}$	$1.1 \ {\rm fb}^{-1}$	$0.73 { m ~fb^{-1}}$	$0.72 {\rm ~fb^{-1}}$	26 fb^{-1}
$\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (no Z)	$11 \ {\rm fb}^{-1}$	$3.5 { m ~fb^{-1}}$	$1.1 \ {\rm fb}^{-1}$	$0.25 {\rm ~fb^{-1}}$	$0.25 {\rm ~fb^{-1}}$	_
$\ell^{\pm}\ell^{\pm}$	$17 \ {\rm fb}^{-1}$	$4.1~{\rm fb}^{-1}$	$1.5 \ {\rm fb}^{-1}$	$0.23 { m ~fb^{-1}}$	$0.23 { m ~fb^{-1}}$	_
$\ell^+\ell^-(Z)$	22 fb^{-1}	$4.5~{\rm fb}^{-1}$	2.4 fb^{-1}	$4.4 \ \mathrm{fb}^{-1}$	$4.4 \ {\rm fb}^{-1}$	$1.8 { m ~fb^{-1}}$
$\ell^+\ell^ (Z, 4b)$	_	—	$30 \ {\rm fb}^{-1}$	—	_	$9.2 { m ~fb^{-1}}$
$\ell^+\ell^-$ (no Z)	$2.7 { m ~fb^{-1}}$	$9.3 { m ~fb^{-1}}$	$0.83 { m ~fb^{-1}}$	$1.1 { m fb^{-1}}$	$1.1 { m ~fb^{-1}}$	$0.87 { m ~fb^{-1}}$
ℓ^{\pm} (2b)	$1.1 \ {\rm fb}^{-1}$	—	$0.60 {\rm ~fb^{-1}}$	—	_	$0.18 { m ~fb^{-1}}$
ℓ^{\pm} (4b)	$0.70 {\rm ~fb^{-1}}$	$1.9~{ m fb}^{-1}$	$0.25 {\rm ~fb^{-1}}$	$0.16~{ m fb}^{-1}$	$0.16 {\rm ~fb^{-1}}$	$6.2 {\rm ~fb^{-1}}$
ℓ^{\pm} (6b)	$11 \ {\rm fb}^{-1}$	_	$9.4~{\rm fb}^{-1}$	$2.7 { m ~fb^{-1}}$	$2.7 { m ~fb^{-1}}$	_
[arXiv:0907.3155]						
Luminosity required to have a 5σ discovery in all final states studied.						

This is an old study on the discovery reach of 500 GeV VLQs

→ the message is still valid: different channels are required for a discovery (and to identify the nature of the discovered VLQ)

Searches for new physics in the top quark sector at the LHC

Dominant decay terms

A.Atre, M. Carena, T. Han and J. Santiago B.[arXiv:0806.3966 [hep-ph]]

$$[2_{\frac{1}{6}}, 2_{\frac{7}{6}}] = \left[\left(\begin{array}{c} T \\ B \end{array} \right), \left(\begin{array}{c} X \\ T' \end{array} \right) \right]$$

$$B_R, X_R \to Wt_R \\ T_L + T'_L \to Ht_R \\ T_R - T'_R \to Zt_R$$

$$\left\{ \begin{array}{l} \lambda_t = \lambda'_t \\ M_{\frac{1}{6}} = M_{\frac{7}{6}} \\ \lambda_b = 0 \end{array} \right.$$

X_{5/3} masses with right-handed (left-handed) couplings below 1.32 (1.30) TeV are excluded at 95% confidence level

CMS Collaboration, CMS PAS B2G-17-008

Under the assumption of strong pair production of vector-like quarks and 100% branching fractions to bW, an observed (expected) lower limit of 1295 (1275) GeV at 95% CL is set on the $T_{2/3}(Y_{-4/3})$ quark mass

CMS Collaboration, CMS PAS B2G-17-003

M. Chala, [arXiv:1705.03013 [hep-ph]]

Vector-like quarks: what next?

- But there is also a lot to do beyond that (and already with 100/fb):
 - More data will allow us to have more elaborate analysis
 - Advanced MVA techniques
 - Continue to explore (and improve) the use of boosted objects and top/W/Z/H tagging
 - And also to be more advanced in our assumptions (actually some of this work already started in run-1...)
 - Present limits relaxing the Σ BR(VLQ \rightarrow SM) =1 assumption
 - Test the chirality of the VLQ couplings
 - Coupling to light generations
 - Alternative production mechanisms

Further conclusions

- Rare processes $\left(\sim \frac{m'}{M} \rightarrow \frac{{m'}^2}{M^2}\right)$
- Much richer phenomenology when lower is the new physics scale
- Complementary to production ($E \sim M$)

Thanks for your attention

