Flavor Physics at the LHC Run II, Benasque, May 21-27, 2017

Aurelio Juste ICREA/IFAE, Barcelona

Outline

- Introduction
- Overview of Run 1 LHC results
- Status and plans for LHC Run 2
- Summary and outlook

Vector-Like Quarks: Production and Decay

- Top/bottom partners are vector-like quarks (left and right components transform the same under SU(2)_L). VLQs present in many BSM scenarios.
- Production:
 - Pair production via QCD: "universal" mode (just depends on m_Q).
 - → Focus of Run 1 searches
 - Single production via EW: potentially important at high m_Q (depends on coupling strength).
 - → Important to consider in Run 2
- Decay: Q→Wq, Zq, Hq all with sizable BR
 JHEP 11, 030 (2009) (triplets not included)

	Label	Charge	Decay mode
T singlet	Τ _s	+2/3	T → W⁺b, Zt, Ht
B singlet	Β _S	-1/3	B → W⁻t, Zb, Hb
(T,B) doublet	ΤΒ _d	(+2/3, -1/3)	T→Zt, Ht B→W ⁻ t
(X,T) doublet	XT _d	(+5/3, +2/3)	X→W⁺t T→Zt, Ht
(B,Y) doublet	BY _d	(-1/3, -4/3)	B→Zb, Hb Y→W ⁻ b

Strategies

- Very rich phenomenology, depending on the heavy quark mass and quantum numbers.
- Goal is to probe full BR plane in as model independent possible way.
 - → Searches specialized on particular heavy quark decay modes, but also able to probe part of the plane.
 - → Multiple searches required, ideally overlapping on the plane.
- Run 1 searches considered one heavy quark at a time, assuming other resonances do not contribute to the signature. Single production typically neglected.
 - \rightarrow Something to improve upon for Run 2.

Signatures

• There are many signatures that could be exploited, and which are ultimately needed both to enhance discovery potential and model discrimination. Just looking at pair-production:

I		SU(2) singlet					
		T _s	B _S	TB _d	XT _d	BY _d	
	4l (2Z)	ΤŢ	BB	TT,BB	$T\overline{T}$	$B\overline{B}$	
7	4l (1Z)	ΤŢ	BB	TT,BB	$T\overline{T}$	$B\overline{B}$	
4 leptons	41 (0Z)	ΤŢ	BB	TT,BB	$T\overline{T},X\overline{X}$	$B\overline{B}$	
	31 (1Z)	$T\overline{T}$	Β Β	TT,BB	$T\overline{T}$		
3 leptons	31 (0Z)	$T\overline{T}$	BB	TT,BB	$T\overline{T},X\overline{X}$		
	l+l- (1Z)	ΤŢ	Β Β	TT,BB	$T\overline{T}$	$B\overline{B}$	
OS dileptons 🗡	l+l- (0Z)	ΤŢ	Β Β	TT,BB	$T\overline{T},X\overline{X}$	$B\overline{B}, Y\overline{Y}$	
SS dileptons 🛶	l±l±		$B\overline{B}$	$B\overline{B}$	$X\overline{X}$		
lepton+iets	l± (4j)	ΤŢ		$T\overline{T}$	$T\overline{T}$	$Y\overline{Y}$	
	l± (≥6j)	ΤŢ	Β ¯	TT,BB	$T\overline{T},X\overline{X}$		

And not even including all-hadronic final state and Higgs tagging!

• Of course, some of them are more challenging and/or powerful than others...

Overview of Run 1 Results

Vector-Like Top: 1-lepton Searches

- Searches targeting high BR(T_{2/3}→W⁺b), but also sensitive to other decay modes.
- Most sensitive searches exploit lepton+jets final state.
 Also searches on all-hadronic mode but lower sensitivity.
- Basic strategy:
 - Presel: 1 lepton, high E_T^{miss} , \geq 4 jets/ \geq 1 b-tags.
 - Reconstruct boosted hadronic W boson.
 - Tight cuts: high H_T (*), additional cuts to exploit boosted topology for W bosons.
 - Uses reconstruct heavy quark mass.
 - All BRs tested. Best exclusion for $BR(T \rightarrow Wb)=1$.


```
(*) H_T = \sum p_T^{\text{jets}} + p_T^{\text{lep}} + E_T^{\text{miss}}
```

95% CL obs (exp) limits [100% WbWb]: ATLAS: $m_T > 770$ (795) GeV CMS: $m_T > 912$ (851) GeV Limits also apply to $Y_{-4/3}$, since BR($Y_{-4/3} \rightarrow W^-b$)=1.

Vector-Like Top: 1-lepton Searches

- Search targeting high BR(T_{2/3}→Ht), but designed as broad-band search sensitive to multiple decay modes: TT→HtHt, HtWb, HtZt, ZtZt, ZtWb
- Basic strategy:
 - Presel: 1 lepton, high E_T^{miss} , ≥ 5 jets/ ≥ 2 b-tags.
 - Analyze H_T spectrum across 8 regions: (5 jets, ≥6 jets) x (2 b-tags, 3 b-tags, ≥4 b-tags)
 ≥6 jets/≥3 b-tags regions split in low/high M_{bb}
 - Signal-depleted regions used to constrain in-situ bkg uncert. through likelihood fit to data.
- All BRs tested. Best exclusion for $BR(T \rightarrow Ht)=1$.

95% CL obs (exp) limits: BR(T \rightarrow Ht)=1: m_T>**950** (885) GeV Doublet: m_T>**855** (820) GeV Singlet: m_T>**765** (720) GeV

Vector-Like Top: Multilepton Searches

- Inclusive multilepton searches. Consider multiple search channels that are eventually combined.
- CMS search:

	OS1	OS2	SS	Multile	ptons
$H_{\rm T}$ (GeV)	> 300	> 500	> 500	> 5	500
$S_{\rm T}$ (GeV)	>900	> 1000	> 700	>7	700
Number of jets	2 or 3	\geq 5	≥ 3	≥ 3	}
b tags	≥ 1	≥ 2	≥ 1	≥ 1	
$E_{\rm T}^{\rm miss}$ (GeV)	> 30	> 30	> 30	>3	80
$M_{\mathrm{b}\ell}$ (GeV)	> 170	_	_		
$M_{\ell\ell}$ (GeV)	>20	>20	>20	>2	20
Z boson veto	yes	no	no	no	1
	OS1	OS	2	SS	Multileptons
Total background	17.4 ± 3	$3.7 84 \pm$	12 16.5	5 ± 4.8	3.7 ± 1.3
Data	20	86		18	2

➔ No significant excess

• ATLAS search:

	-				
	Demition	1			
$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu$	$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu^{\pm}\mu^{\pm} + eee + ee\mu + e\mu\mu + \mu\mu\mu, N_{2}$				
	$N_b = 1$		SRVLQ0		
$400 < H_{\rm T} < 700~{\rm GeV}$	$N_b = 2$	$E_{\rm T}^{\rm miss} > 40~{ m GeV}$	SRVLQ1		
	$N_b \ge 3$		SRVLQ2		
	$N_{2} - 1$	$40 < E_{\rm T}^{\rm miss} < 100~{\rm GeV}$	SRVLQ3		
	$1_{b} - 1$	$E_{\rm T}^{\rm miss} \ge 100 ~{\rm GeV}$			
$H_{\rm T} \ge 700~{\rm GeV}$	N = 0	$40 < E_{\rm T}^{\rm miss} < 100~{\rm GeV}$	SPVLQ5		
	$1 v_b - 2$	$= 2$ $E_{\rm T}^{\rm miss} \ge 100 {\rm GeV}$			
	$N_b \ge 3$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	SRVLQ7		

Apparent excess in VLQ6 and VLQ7 SRs ←

arXiv:1504.04605

Vector-Like Top: Multilepton Searches

- Inclusive multilepton searches. Consider multiple search channels that are eventually combined.
- CMS search:

	OS1	OS2	SS	Multilep	tons
$H_{\rm T}$ (GeV)	> 300	> 500	> 500	> 50	00
$S_{\rm T}$ (GeV)	>900	> 1000	>700	> 70	0
Number of jets	2 or 3	\geq 5	≥ 3	≥ 3	
b tags	≥ 1	≥ 2	≥ 1	≥ 1	
$E_{\rm T}^{\rm miss}$ (GeV)	> 30	> 30	> 30	> 30)
$M_{\rm b\ell}$ (GeV)	> 170				
$M_{\ell\ell}$ (GeV)	>20	>20	>20	>20)
Z boson veto	yes	no	no	no	
	OS1	OS	2	SS 1	Multileptons
Total background	17.4 ± 3	$8.7 84 \pm$	12 16.5	5 ± 4.8	3.7 ± 1.3
Data	20	86		18	2

➔ No significant excess

• ATLAS search:

	SRVLQ5/SR4t2	SRVLQ6/SR4t3	SRVLQ7/SR4t4
$t\bar{t}W/Z$	$1.87 \pm 0.09 \pm 0.80$	$2.46 \pm 0.11 \pm 1.06$	$0.57 \pm 0.05 \pm 0.25$
$t\bar{t}H$	$0.31 \pm 0.04 \pm 0.05$	$0.44 \pm 0.04 \pm 0.06$	$0.08 \pm 0.02 \pm 0.02$
Dibosons	$0.33 \pm 0.14 \pm 0.10$	$0.04 \pm 0.12 \pm 0.03$	$0.00 \pm 0.12 \pm 0.00$
Fake/Non-prompt	$1.03 \pm 0.97 \pm 0.60$	$0.00\pm1.02\pm0.28$	$0.04 \pm 0.83 \pm 0.24$
Q mis-Id	$1.17 \pm 0.16 \pm 0.38$	$1.09 \pm 0.14 \pm 0.34$	$0.30 \pm 0.09 \pm 0.10$
Other bkg.	$0.16 \pm 0.08 \pm 0.02$	$0.23 \pm 0.08 \pm 0.05$	$0.14 \pm 0.08 \pm 0.08$
Total bkg.	$4.9 \pm 1.0 \pm 1.0$	$4.3 \pm 1.1 \pm 1.1$	$1.1 \pm 0.9 \pm 0.4$
Data	6	12	6
<i>p</i> -value	0.46	0.029	0.036

1.9σ 1.8σ

Vector-Like Top: Multilepton Searches

- <u>Dedicated search probing $TT \rightarrow Zt + X$ (*).</u>
- Multiple search channels that are eventually combined.

Event selection				
	Z boson candida	te preselection		
	$\geq 2 \text{ cent}$	ral jets		
	$p_{\mathrm{T}}(Z) \ge 1$	$150 {\rm GeV}$		
Dilepton	channel	Trilepton channel		
= 2 leptons		≥ 3 leptons		
$\geq 2 b$ -tagged jets		≥ 1 b-tagged jet		
Pair production	Pair production Single production		Single production	
$H_{\rm T}({\rm jets}) \ge 600 {\rm ~GeV}$	≥ 1 fwd. jet	_	≥ 1 fwd. jet	
Final discriminant				
m(Zb)		$H_{\rm T}({ m jets})$	+ leptons)	

(*) Not orthogonal to inclusive multilepton search.

95% CL obs (exp) limits: Zt+X search: BR(T→Zt)=1: m_T >810 (810) GeV Doublet: m_T >735 (720) GeV Singlet: m_T >655 (625) GeV

Inclusive multilepton search Singlet: m_T>**590** (660) GeV

11

Vector-Like Top: All-Hadronic Searches

• CMS performed several VLQ searches in the all-hadronic final state using jet substructure techniques.

TT→Ht+X, H→bb

- CA R=1.5 jets used as input to HepTopTagger and Higgs tagging (based on subjet b-tagging)
- \geq 1 HTT candidate (p_T>200 GeV).
- ≥1 Higgs candidate (p_T>150 GeV), m_i>60 GeV
- Categorize events depending on number of Higgs candidates (=1 and ≥2).
- Uses likelihood discriminant based on H_T and Higgs invariant mass.

95% CL obs (exp) limits [100% HtHt]: m_T>900 (810) GeV

Competitive with inclusive CMS search, which combines 1-lepton and multilepton searches

arXiv:1311.7667

Vector-Like Top: Complementarity

ATLAS

arXiv:1509.04177

Vector-Like Top Summary

Vector-like top masses below ~720 GeV excluded for any possible combination of BRs.

	ATLAS (*)	CMS
Vector-like T BR Hypothesis	95% CL Limit on m _T (GeV) obs (exp)	95% CL Limit on m _⊤ (GeV) obs (exp)
100% Wb (chiral, Y)	770 (795)	920 (890)
100% Zt	810 (810)	790 (830)
100% Ht	950 (885)	770 (840)
T singlet	800 (755)	740 (800)
T in (T, B) doublet	855 (820)	760 (820)

Vector-Like Bottom Summary

Vector-like bottom masses below ~740 GeV excluded for any possible combination of BRs.

	ATLAS (*)	CMS
Vector-like B BR Hypothesis	95% CL Limit on m _в (GeV) obs (exp)	95% CL Limit on m _B (GeV) obs (exp)
100% Wt (chiral, X)	730 (790)	880 (890)
100% Zb	790 (800)	750 (740)
100% Hb	700 (625)	900 (810)
B singlet	685 (670)	780 (760)
B in (B, Y) doublet	755 (755)	810 (800)

Run 2 Status and Plans

10

10-4

 $\sigma(pp \rightarrow T\overline{T}) (pb)$

Capitalize on Run 1 experience

- Most sensitive channels
- Complementary channels
- Missing channels
- Most powerful experimental strategies
- Improved background estimation techniques
- Reducing the impact of systematic uncertainties

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Continue to exploit pair production
 above 1 TeV
 - Add single production above 1 TeV
 - Optimize strategy at high mass

QCD **pair prod**. model indep., relevant at low mass

single prod. with **t** model dep. coupling pdf-favoured at high mass

single prod. with b favoured by small b mass dominant when allowed

Many channels, with and without leptons.

p_T>35 GeV, 2.4<|n|<4.5

- Boosted techniques for all-hadronic modes crucial.
- Must ensure proper helicity propagation in decay.

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
 - **2015**: 3.9 fb⁻¹ recorded
 - High-priority to checking Run 1 excesses.
 - For the most part Run 1-style analyses with early data.
 - First results already exceeding Run 1
 sensitivity!

Early Run 2 Results: Multileptons

Early Run 2 analysis using the same strategy and signal regions as Run 1 analysis to check excess.

~3 fb⁻¹

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
 - **2015**: 3.9 fb⁻¹ recorded
 - High-priority to checking Run 1 excesses.
 - For the most part Run 1-style analyses with early data.
 - First results already exceeding Run 1 sensitivity!
 - **2016**: 35.6 fb⁻¹ recorded
 - Exceed design luminosity of $\sim 10^{34}$ cm⁻²s⁻¹.
 - Record daily delivered luminosity of ~0.6 fb⁻¹
 - Significant discovery potential!

Publication results with 2015+2016 dataset (~36 fb⁻¹) becoming available. Here most results shown use a partial dataset.

TT→Ht+X

- Re-optimized Run 1 search for $T\overline{T} \rightarrow Ht+X$.
- Considers 1-lepton and 0-lepton+high- E_T^{miss} channels.
- Basically same strategy, now adding splitting in masstagged jet multiplicity (re-clustered R=0.4 jets within R=1.0, p_{T,J}>300 GeV, m_J>100 GeV) → 20 analysis regions.

One of the highest-sensitivity regions

95% CL obs (exp) limits: BR(T \rightarrow Ht)=1: m_T>**1200** (1160) GeV Doublet: m_T>**1160** (1110) GeV BR(T \rightarrow Zt)=1: m_T>**1100** (1040) GeV Singlet: m_T>**1020** (960) GeV

TT→Wb+X

- Focus on $T\overline{T} \rightarrow WbWb$ in the lepton+jets final state.
- Basic strategy (CMS analysis):
 - Presel: 1 lepton, ≥4 AK4 jets or 3 AK4 jets and 1 AK8 jet (p_⊤>200 GeV).
 - AK8 jet is "W-tagged" via mass cut.
 - Tight kinematic cuts, in particular $S_T > 1000$ GeV.
 - Events categorized according to b-tagging.
 - Kinematic fit to reconstruct T-quark mass.

95% CL obs (exp) limits: CMS (36 fb⁻¹): CMS-PAS-B2G-17-003 BR(T→Wb)=1: m_T>**1295** (1275) GeV Limits also apply to $Y_{-4/3}$, as BR($Y_{-4/3} \rightarrow W^-b$)=1

ATLAS (14.7 fb⁻¹): ATLAS-CONF-2016-102 BR(T→Wb)=1: m_T>**1090** (980) GeV Singlet: m_⊤>810 (870) GeV

TT→Zt+X

- Search targeting TT \rightarrow Zt+X, Z \rightarrow vv.
- Basic strategy:
 - Presel: 1 lepton, E_T^{miss}>300 GeV, ≥4 jets, ≥1 b-tag.
 - Signal region defined through tight cuts to suppress tt̄ background (on m_{T,W}, am_{T2}, ≥2 large-R jets, etc).
 - Control regions used to normalize tt
 and W+jets bkgs in signal region.
 - Background prediction checked in dedicated validation regions.

ATLAS-CONF-2017-015

95% CL obs (exp) limits: BR(T \rightarrow Zt)=1: m_T>**1.16** (1.17) TeV Doublet: m_T>**1.05** (1.06) TeV Singlet: m_T>**870** (980) GeV

$X_{5/3}\overline{X}_{5/3} \rightarrow tWtW$

- Searches targeting pair production of $X_{5/3}$, with $X_{5/3} \rightarrow tW^+ \rightarrow W^+W^+b$.
- Consider SS dilepton (+additional jets or leptons) and lepton+jets signatures, both with comparable sensitivity.
- Basic strategy (lepton+jets):
 - Presel: 1 lepton (p_T>80 GeV), E_T^{miss}>100 GeV,
 ≥4 jets p_{Tj1,j2}>450,150 GeV, ≥1 b-tags.
 - Events separated into 16 categories depending on lepton flavor (e, μ), b-tags (1, ≥2), W-tags (0, ≥1), and top-tags (0, ≥1).
 - Analyze min[M(l,b)] spectrum in all regions.

95% CL obs (exp) limits: RH: m_T>1.32 (1.23) TeV LH: m_T>1.30 (1.23) TeV

Single T(→Wb)+X

Basic strategy:

- Presel: 1 lepton, high E_T^{miss}, ≥1 hard central jet b-tagged, 1 forward jet.
- Additional tight kinematic requirements.
- Kinematic reconstruction of leptonic W candidate and pairing with b-tagged central jet to estimate heavy quark mass.
- Main backgrounds: tt and W+jets. Estimated using dedicated control regions.

ATLAS-CONF-2016-072

Single T(→Ht)+X

28

- Basic strategy (all-hadronic):
 - Trigger based on scalar sum of jet p_T .
 - Presel: ≥4 AK4 jets (p_T>30 GeV), ≥1 AK8 jets (p_T>300 GeV), H_T>1100 GeV.
 - Top and Higgs tagging on AK8 jets using a combination of jet substructure variables and b-tagging requirements.
 - Main background: tt and multijet. Multijet estimated using data-driven techniques.

arXiv:1612.00999 arXiv:1612.05336

Single T(\rightarrow Zt)+X

Basic strategy:

Events

50

40

30

20

10∣

600

Preliminary

- Presel: $Z(\rightarrow II)$ +jets, ≥ 1 b-tags, small $\Delta R(II)$
- Top-tagging and W-tagging on AK8 jets.
- Events separated into 10 categories depending on • lepton flavor, top kinematics (fully-merged/semimerged/resolved) and presence of forward jets.
- Use heavy quark mass built from reconstructed Z and top candidates.

Observed Z/γ+iets

m_{Z,top} [GeV]

Main background: Z+jets. Estimated using dedicated control regions.

40

35

5

٥

20-Apr

14-May

7-Jun

- Capitalize on Run 1 experience •
- Fully exploit increased CM energy
- Plan according to integrated luminosity
 - **2015**: 3.9 fb⁻¹ recorded
 - High-priority to checking Run
 - For the most part Run 1-style early data. Integrated luminosity [fb⁻¹]
 - First results already exceed • sensitivity!
 - **2016**: 35.6 fb⁻¹ recorded •
 - Exceed design luminosity of
 - Record daily delivered lumino
 - Significant discovery poten
 - 2017 and beyond:
 - Beam commissioning ongoing. Will start run at the end of May.
 - Expect 45 fb⁻¹ delivered in 2017.
 - Expect ~120 fb⁻¹ by end of Run 2 (2015-2018)! ٠

LHC integrated luminosity by year

2017 should look similar!

The LHC Run 2 and Beyond

Eventually will multiply by x100 the 2016 dataset!

We are at the beginning of a ~20 year program!

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
 So far:
 - Renormalizable extension of the SM including mixing term between SM quarks and VLQs (e.g. arXiv:1306.0572).
 - Phenomenological (non-renormalizable)
 Lagrangian parameterized with coupling terms.

 $\begin{aligned} \mathcal{L} &= \frac{g_w}{2} \left[c_R^{XV} \, \overline{X}_R \forall t_R + c_L^{XV} \, \overline{X}_L \forall t_L \right] + \frac{g_w}{2} \left[c_L^{XV} \, \overline{X}_L \forall b_L + c_R^{XV} \, \overline{X}_R \forall b_R \right] \\ &+ \left[c_R^{Xh} \, h \, \overline{X}_L t_R + c_L^{Xh} \, h \, \overline{X}_R t_L \right] + \left[c_L^{Xh} \, h \, \overline{X}_R b_L + c_R^{Xh} \, h \, \overline{X}_L b_R \right] + \text{h.c.} \,, \end{aligned}$

ATLAS-CONF-2016-072

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
 - Increased use of simplified models
 - Combination of pair and single production
 - Take into account effect of extra resonances in some cases

Typical spectrum in minimal coset SO(5)/SO(4)

arXiv:1409.0100

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard production
 - Heavy gluon: G→QQ̄, m_G≥2m_Q G→Qq̄, m_Q+m_q<m_G<2m_Q

Most searches not examining $M(Q\overline{Q})$ distribution

arXiv:1602:06034

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard production

. . .

- Heavy gluon:
 G→QQ, m_G≥2m_Q
 G→Qq, m_Q+m_q<m_G<2m_Q
- Heavy W'/Z':
 W'→Tb, Bt, XT, depending on custodian mass and mixing

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard production
 - Non-standard decays
 - $BR(Q \rightarrow Wq) + BR(Q \rightarrow Zq) + BR(Q \rightarrow Hq) < 1$
 - Examples:
 - Q→q+inv
 - Q→q+η, η CP-odd scalar
 - ..
 - If exotic BRs dominant, signal may be picked by existing searches (e.g. direct sbottom searches for BB→bb+E_T^{miss}).
 - For comparable BRs, it becomes difficult as signal split into challenging channels (e.g. TT→W⁺btgg).

But also promising channels: $T\overline{T} \rightarrow W^+ b\overline{t}t\overline{t}!$

Summary and Outlook

- Broad program of searches for pair production of VLQs during LHC Run 1.
 - VLQs with mass below ~800 GeV excluded in minimal scenarios.
 - Serves as a stepping stone for more incisive tests during Run 2.
- Run 2 program in full swing, covering pair and single production.
 - First results at √s=13 TeV significantly extend Run 1 sensitivity.
 Publications with 36 fb⁻¹ of data upcoming, <u>including combinations</u>.
 - With 100 fb⁻¹ should be able to probe VLQ masses up to 1.4 TeV via pair production and even beyond via single production, depending of the electroweak couplings.
 - Should also target bosonic resonances!
 - We basically have a plan...

Exciting times ahead!

<u>To do</u> Capitalize on Run 1 experience Fully exploit increased CM energy Plan according to integrated luminosity Improved interpretation of searches Make sure we don't miss a signal!

Vector-Like Bottom: 1-lepton Searches

- Searches targeting high BR($B_{-1/3} \rightarrow W^-t$), but also sensitive to other decay modes.
- Basic strategy:
 - Preselection: 1 lepton, ≥6 jets w/ p_T>25 GeV ≥1 b-tags, H_T>500 GeV
- ATLAS _
- ≥1 hadronic W/Z candidate
 - Dijet pair with ΔR_{ii} <1.0, $p_{T,ii}$ >200 GeV, 60<m_{ii}<110 GeV
- Uses BDT as final discriminant variable.
- Preselection: 1 lepton, \geq 4 jets w/ p_T>200,60,40,30 GeV, \geq 1 b-tags
- CMS -
- Categorize events in 0, 1, ≥2 tagged W/Z candidates
 - CA R=0.8 jets, p_T>200 GeV, pruned/mass drop, 50<m_i<150 GeV
- $_$ Uses S_T as final discriminant variable.

95% CL obs (exp) limits [100% WtWt]: ATLAS: m_B>**810** (760) GeV CMS: m_B>(~800) GeV

Vector-Like Bottom: Multilepton Searches

- ATLAS: same multilepton searches used for vector-like top interpreted in the context of vector-like bottom (sometimes even better optimized for the latter, e.g. Zb+X).
- CMS: several analysis channels
 - SS 2I, \geq 4 jets, E_T^{miss}>30 GeV; uses S_T
 - OS 2I, Z candidate, ≥1 b-jet, p_{T,Z}>150 GeV; uses M(Zb)
 - Multileptons: ≥3 leptons (incl τ), several categories depending on number of leptons and flavor; uses S_T

95% CL obs (exp) limits: ATLAS: BR(B→Wt)=1: m_B >730 (790) GeV [Multilepton] BR(B→Zb)=1: m_B >790 (800) GeV [Zb+X]

CMS multilepton combination: BR(B \rightarrow Wt)=1: m_B>(~800) GeV BR(B \rightarrow Zb)=1: m_B>(740) GeV arXiv:1409.5500

Vector-Like Bottom: All-Hadronic Searches

$BB \rightarrow Hb + X, H \rightarrow bb$

- Search targeting high BR($B \rightarrow Hb$), with $H \rightarrow bb$.
- Strategy:
 - ≥1 Higgs-tagged jet
 - CA R=0.8, p_T>300 GeV, pruned, 90<m_i<140 GeV
 - 2-prong-like ($\tau_2/\tau_1 < 0.5$), 2 b-tagged subjets
 - H_T >950 GeV (from AKT5 jets with p_T >50 GeV)
 - ≥1 additional b-tagged AKT5 jet
 - Events categorized into =1 and ≥2 additional b-tagged jets
 - Uses H_T as final discriminant •

Vector-Like Bottom: Complementarity

Composite Higgs Paradigm

- Models where the Higgs boson is a composite state give a natural solution to the hierarchy problem.
- The Higgs boson can be light if it is a PNGB emerging from the breaking of a global symmetry (e.g. SO(5)→SO(4)).
- Partial compositeness:
 - SM fermions mix linearly with composite fermions.
 - Fermion mass generation needs separate composite partner for each SM fermion.
 - Basic phenomenology:

•

- Indirect effects:
 - deviations in top couplings to EW gauge bosons, and in precision EW observables.
 - deviations in Higgs couplings to fermions and vector bosons.
- Direct effects:
 - New heavy gauge bosons (since vector boson scattering not fully unitarized by the composite Higgs).
 - Partially composite top quark can be strongly coupled to the composite sector → anomalous four-top-quark production.
 - New fermionic resonances → searches for top/bottom partners.

Pair production

- ATLAS: Zt+X (1lep+MET) 36/fb, Wb+X 13/fb, Ht+X (l+jets) 13/fb, multilep 3.2/fb
- CMS: Wb+X 36/fb, X5/3 (I+jets) 36/fb, X5/3 (2I SS) 36/fb, Ht+X (I+jets) 3.2/fb

Single production

- ATLAS: T->Wb 3.2/fb
- CMS: T->Zt (Z->II) 36/fb, T->Wb 3/fb, T->Zt/b (Z->II) 3/fb, T->Ht (I+jets and allhad) 2.3/fb

Heavy resonances:

- CMS: Z'->Tt, T->Wb 3/fb
- CMS: Z'->Tt, T->Zt 36/fb