Higgs Flavour Changing in Little Higgs Models

José I. Illana

in collaboration with

F. del Águila, Ll. Ametller, J. Santiago, P. Talavera, R. Vega-Morales

- 1. Little Higgs: the hierarchy and the flavour problems
- 2. *Littlest* Higgs with T parity (LHT) revisited
- 3. (New) sources of lepton flavour mixing
- 4. Lepton flavour changing Higgs decays
- 5. Conclusions

arXiv: 1705.08827 [hep-ph]

Little Higgs

Hierarchy problem: the Higgs mass should be of order v (electroweak scale) but it receives quadratic loop corrections of the order of the theory cutoff (Planck scale?)

Naturalness \Rightarrow New Physics at the TeV scale

[SUSY: cancellations of quadratic Higgs mass corrections provided by superpartners]

In LH models the Higgs is a pseudo-Goldstone boson of an approximate global symmetry broken at f (TeV scale) [Arkani-Hamed, Cohen, Georgi '01]

(i) Product group

the SM $SU(2)_L$ group from the diagonal breaking of two or more gauge groups e.g.: Littlest Higgs [Arkani-Hamed, Cohen, Katz, Nelson '02]

(ii) Simple group

the SM $SU(2)_L$ group from the breaking of a larger group into an SU(2) subgroup e.g.: Simplest Little Higgs (SU(3) simple group) [Kaplan, Schmaltz '03]

Little Higgs

- The low energy *dof* described by a nonlinear sigma model, an effective theory valid below a cutoff $\Lambda \sim 4\pi f$ (order of 10 TeV) since then the loop corrections are

$$\Delta M_h^2 \sim \left\{ y_t^2, g^2, \lambda^2 \right\} \frac{\Lambda^2}{16\pi^2} \lesssim (1 \text{ TeV})^2$$

Ultraviolet completion (unknown) is required only for physics above Λ

 The global symmetry explicitly broken by gauge and Yukawa interactions, giving the Higgs a mass and non-derivative interactions, preserving the cancellation of *one-loop* quadratic corrections (collective symmetry breaking)

The sensitivity at two loops to a 10 TeV cutoff is *not unnatural*

LH introduce extra scalars, fermions and gauge bosons: new flavour mixing sources

 \Rightarrow Obtain and revise predictions for lepton flavour changing processes

$$h \to \mu \tau$$
 $Z \to \mu \tau, \ \ell \to \ell' \gamma, \ \mu \to ee\bar{e}, \ \mu N \to eN$

Littlest Higgs

[Arkani-Hamed, Cohen, Katz, Nelson '02]

(1)
$$SU(5) \to SO(5)$$
 by $\Sigma_0 = \begin{pmatrix} \mathbf{0}_{2 \times 2} & 0 & \mathbf{1}_{2 \times 2} \\ 0 & 1 & 0 \\ \mathbf{1}_{2 \times 2} & 0 & \mathbf{0}_{2 \times 2} \end{pmatrix}$, $\Sigma(x) = e^{i\Pi/f} \Sigma_0 e^{i\Pi^T/f} = e^{2i\Pi/f} \Sigma_0$

where $\Pi(x) = \phi^a(x)X^a$ and X^a are the 24 – 10 = 14 broken generators \Rightarrow 14 GB

 $G \equiv SU(5) \supset [SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2 \text{ (gauge)} \xrightarrow{\langle \Sigma \rangle = \Sigma_0} SU(2)_L \times U(1)_Y$

[unbroken]: $Q_1^a + Q_2^a$, $Y_1 + Y_2 \Rightarrow 4$ gauge bosons (γ, Z, W^+, W^-) remain massless [broken]: $Q_1^a - Q_2^a$, $Y_1 - Y_2 \Rightarrow 4$ gauge bosons (A_H, Z_H, W_H^+, W_H^-) get masses of order f

4 WBGB (η , ω^0 , ω^+ , ω^-) eaten by (A_H , Z_H , W_H^+ , W_H^-)

10 GB: H (complex SU(2) doublet), Φ (complex SU(2) triplet, PGB)

(2) EWSB:
$$SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} U(1)_{QED} \Rightarrow H = \sqrt{2} \begin{pmatrix} -i\frac{\pi^+}{\sqrt{2}} \\ \frac{v+h+i\pi^0}{2} \end{pmatrix}$$

3 WBGB (π^0, π^+, π^-) eaten by (Z, W^+, W^-)
1 PGB: h

Littlest Higgs

The matrix of the 14 Goldstone Bosons:

($-\frac{\omega^0}{2}-\frac{\eta}{\sqrt{20}}$	$-\frac{\omega^+}{\sqrt{2}}$	$-\mathrm{i}rac{\pi^+}{\sqrt{2}}$	$-\mathrm{i}\Phi^{++}$	$-i\frac{\Phi^+}{\sqrt{2}}$
	$-\frac{\omega^{-1}}{\sqrt{2}}$	$\frac{\omega^0}{2} - \frac{\eta}{\sqrt{20}}$	$\frac{v+h+\mathrm{i}\pi^0}{2}$	$-i\frac{\Phi^+}{\sqrt{2}}$	$\frac{-\mathrm{i}\Phi^0 + \Phi^P}{\sqrt{2}}$
$\Pi =$	$i\frac{\pi^{-}}{\sqrt{2}}$	$\frac{v+h-\mathrm{i}\pi^0}{2}$	$\sqrt{\frac{4}{5}}\eta$	$-i\frac{\pi^{+}}{\sqrt{2}}$	$\frac{v+h+i\pi^0}{2}$
	iΦ	$i\frac{\Phi^{-}}{\sqrt{2}}$	$i\frac{\pi^{-}}{\sqrt{2}}$	$-\frac{\omega^0}{2}-\frac{\eta}{\sqrt{20}}$	$-\frac{\omega^{-}}{\sqrt{2}}$
	$i\frac{\Phi^{-}}{\sqrt{2}}$	$\frac{\mathrm{i}\Phi^0 + \Phi^P}{\sqrt{2}}$	$\frac{v+h-\mathrm{i}\pi^0}{2}$	$-\frac{\omega^+}{\sqrt{2}}$	$\frac{\omega^0}{2} - \frac{\eta}{\sqrt{20}}$

Generators of the gauge subgroup $[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2 \subset SU(5)$:

$$Q_{1}^{a} = \frac{1}{2} \begin{pmatrix} \sigma^{a} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \mathbf{0}_{2 \times 2} \end{pmatrix} \qquad Q_{2}^{a} = \frac{1}{2} \begin{pmatrix} \mathbf{0}_{2 \times 2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sigma^{a*} \end{pmatrix}$$
$$Y_{1} = \frac{1}{10} \operatorname{diag}(3, 3, -2, -2, -2) \qquad Y_{2} = \frac{1}{10} \operatorname{diag}(2, 2, 2, -3, -3)$$

[Cheng, Low '03]

New particles at TeV scale coupling to SM particles \Rightarrow tension with EW precision tests

→ T-parity discrete symmetry under which SM (most of new) particles are even (odd)

- Gauge sector: $G_1 \xleftarrow{T} G_2$ with $G_j = (W_j^a, B_j)$ gauge bosons of $[SU(2) \times U(1)]_{j=1,2}$ and $g \equiv g_1 = g_2, g' \equiv g'_1 = g'_2$

T-even:
$$B, W^{3}(\gamma, Z), W^{+}, W^{-} \leftarrow \frac{1}{\sqrt{2}}(G_{1} + G_{2})$$

T-odd: $A_{H}, Z_{H}, W^{+}_{H}, W^{-}_{H} \leftarrow \frac{1}{\sqrt{2}}(G_{1} - G_{2})$
 $\mathcal{L}_{G} = \sum_{j=1}^{2} \left[-\frac{1}{2} \operatorname{Tr} \left(\widetilde{W}_{j\mu\nu} \widetilde{W}_{j}^{\mu\nu} \right) - \frac{1}{4} B_{j\mu\nu} B_{j}^{\mu\nu} \right]$

- Scalar sector: $\Pi \xrightarrow{T} -\Omega \Pi \Omega$, where $\Omega = \text{diag}(-1, -1, 1, -1, -1)$ $\Rightarrow \Sigma \xrightarrow{T} \Omega \Sigma_0 \Sigma^{\dagger} \Sigma_0 \Omega$ $\Sigma \xrightarrow{G} V \Sigma V^T$

T-even: SM *H* doublet (h, π^0, π^+, π^-) **T-odd:** the others $(\eta, \omega^0, \omega^+, \omega^-, \Phi)$ $\left[\mathcal{L}_S = \frac{f^2}{8} \operatorname{Tr} \left[(D_\mu \Sigma)^\dagger (D^\mu \Sigma) \right] \right] \supset$

with
$$D_{\mu}\Sigma = \partial_{\mu}\Sigma - \sqrt{2}i\sum_{j=1}^{2} \left[gW_{j\mu}^{a}(Q_{j}^{a}\Sigma + \Sigma Q_{j}^{aT}) - g'B_{j\mu}(Y_{j}\Sigma + \Sigma Y_{j}^{T}) \right]$$

– Fermion (lepton) sector:

(a) Introduce $SU(2)_L$ doublets l_{1L} , l_{2L} , l_{HR} , \tilde{l}_L^c and a singlet χ_R in

$$\begin{split} \Psi_{1}[\overline{\mathbf{5}}] &= \begin{pmatrix} -\mathrm{i}\sigma^{2}l_{1L} \\ 0 \\ 0 \end{pmatrix} \quad \Psi_{2}[\mathbf{5}] = \begin{pmatrix} 0 \\ 0 \\ -\mathrm{i}\sigma^{2}l_{2L} \end{pmatrix} \quad \Psi_{R} = \begin{pmatrix} -\mathrm{i}\sigma^{2}\tilde{l}_{L}^{c} \\ \chi_{R} \\ -\mathrm{i}\sigma^{2}l_{HR} \end{pmatrix} \\ \Psi_{1} \stackrel{T}{\longrightarrow} \Omega\Sigma_{0}\Psi_{2} \qquad \qquad \Psi_{1} \stackrel{G}{\longrightarrow} V^{*}\Psi_{1}, \Psi_{2} \stackrel{G}{\longrightarrow} V\Psi_{2} \\ \Psi_{R} \stackrel{T}{\longrightarrow} \Omega\Psi_{R} \qquad \qquad \Psi_{R} \stackrel{G}{\longrightarrow} U\Psi_{R} \end{split}$$

T-even	Standard (light)	Singlet (decouples)		
	$l_L = \frac{1}{\sqrt{2}}(l_{1L} - l_{2L}) = (\nu_L \ell_L)^T$			
		χ_R		
T-odd	Mirror (heavy)	Mirror partners (decouple?)		
	$l_{HL} = \frac{1}{\sqrt{2}}(l_{1L} + l_{2L}) = (\nu_{HL} \ \ell_{HL})^T$			
	$l_{HR} = (\nu_{HR} \ell_{HR})^T$	$\tilde{l}_L^c = (\tilde{\nu}_L^c \tilde{\ell}_L^c)^T$		

Higgs Flavour Changing in Little Higgs Models

▷ To obtain (heavy, vector-like) mirror fermion masses *preserving* gauge and T

$$\mathcal{L}_{Y_H} = -\kappa f\left(\overline{\Psi}_2\xi + \overline{\Psi}_1\Sigma_0\xi^{\dagger}\right)\Psi_R + \text{h.c.}$$

$$\begin{split} \xi &= \mathrm{e}^{\mathrm{i}\Pi/f} \stackrel{\mathrm{T}}{\longrightarrow} \Omega \xi^{\dagger} \Omega \\ \xi \stackrel{G}{\longrightarrow} V \xi U^{\dagger} \equiv U \xi \Sigma_0 V^T \Sigma_0 \end{split}$$

(b) Introduce (light) standard (down-type) fermion singlets (ℓ_R) with mass terms preserving gauge and T [Chen, Tobe, Yuan '06]

$$\mathcal{L}_{Y} = \frac{i\lambda_{\ell}}{2\sqrt{2}} f\epsilon_{ij}\epsilon_{xyz} \left[(\overline{\Psi}_{2}')_{x}\Sigma_{iy}\Sigma_{jz}X + \text{T-transformed} \right] \ell_{R} + \text{h.c.}$$
$$\Psi_{2}' = \begin{pmatrix} 0\\0\\l_{2L} \end{pmatrix}, \quad X = (\Sigma_{33})^{-\frac{1}{4}}, \quad i, j \in \{1, 2\}, \quad x, y, z \in \{3, 4, 5\}$$

 \triangleright So far

$$\mathcal{L}_{Y} \supset -rac{\lambda_{\ell}}{\sqrt{2}} v \,\overline{\ell_{L}} \ell_{R} + ext{h.c.}$$

 $\mathcal{L}_{Y_{H}} \supset -\sqrt{2} \kappa f \,\overline{l_{HL}} l_{HR} + ext{h.c.}$

(c) To provide the mirror partners \tilde{l}_L^c with (heavy, vector-like) masses is unavoidable to *break* SO(5) by introducing its left-handed counterpart $\tilde{l}_R^c = (\tilde{\nu}_R^c, \tilde{\ell}_R^c)^T$ in an incomplete SO(5) representation

$$\Psi_{L} = \begin{pmatrix} -\mathrm{i}\sigma^{2}\tilde{\ell}_{R}^{c} \\ 0 \\ 0 \end{pmatrix}$$
$$\mathcal{L}_{M} = -M\,\overline{\tilde{l}_{R}}\,\tilde{l}_{L} + \mathrm{h.c.}$$

(d) The gauge interactions with fermions are fixed!

$$\mathcal{L}_{F} = i\overline{\Psi}_{1}\gamma^{\mu}D_{\mu}^{*}\Psi_{1} + i\overline{\Psi}_{2}\gamma^{\mu}D_{\mu}\Psi_{2} + i\overline{\Psi}_{R}\gamma^{\mu}\left(\partial_{\mu}+\frac{1}{2}\xi^{\dagger}(D_{\mu}\xi)+\frac{1}{2}\xi(\Sigma_{0}D_{\mu}^{*}\Sigma_{0}\xi^{\dagger})\right)\Psi_{R} + (\Psi_{R} \to \Psi_{L})$$

with $D_{\mu} = \partial_{\mu} - \sqrt{2} i g (W_{1\mu}^a Q_1^a + W_{2\mu}^a Q_2^a) + \sqrt{2} i g' (Y_1 B_{1\mu} + Y_2 B_{2\mu})$

including $O(v^2/f^2)$ couplings to Goldstones that render one-loop amplitudes (vid. Z-penguins) UV finite [del Águila, JI, Jenkins '09]

(e) The gauge interactions of light right-handed singlets (ℓ_R)

$$\mathcal{L}'_F = \mathrm{i}\overline{\ell}_R \gamma^\mu (\partial_\mu + \mathrm{i}g' y_\ell B_\mu) \ell_R \qquad y_\ell = -1$$

require enlarging SU(5) to assign proper hypercharges...

 $SU(5) \supset [SU(2)_1 \times U(1)_1] \times [SU(2)_2 \times U(1)_2]$

▷ Enlarging SU(5) with two extra U(1) factors ($y = y_1 + y_2$) [Goto, Okada, Yamamoto '09]

 $SU(5) \times U(1)_1'' \times U(1)_2'' \supset [SU(2)_1 \times \underbrace{U(1)_1' \times U(1)_1''}_{\supset U(1)_1}] \times [SU(2)_2 \times \underbrace{U(1)_2' \times U(1)_2''}_{\supset U(1)_2}]$

Leptons	$SU(2)_1$	$SU(2)_{2}$	$y_1 = y_1' + y_1''$	$y_2 = y'_2 + y''_2$	y'_1	y'_2	y_1''	y_2''
$l_1 = \left(egin{array}{c} u_{1L} \ \ell_{1L} \end{array} ight)$	2	1	$-\frac{3}{10}$	$-\frac{1}{5}$	$-\frac{3}{10}$	$-\frac{1}{5}$	0	0
$l_2=\left(egin{array}{c} u_{2L} \ \ell_{2L} \end{array} ight)$	1	2	$-\frac{1}{5}$	$-\frac{3}{10}$	$-\frac{1}{5}$	$-\frac{3}{10}$	0	0
ν_R	1	1	0	0	0	0	0	0
ℓ_R	1	1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$
$l_{HR} = \left(\begin{array}{c} \nu_{HR} \\ \ell_{HR} \end{array}\right)$	_	_	_		_	_	0	0

LHT (Lepton) Flavour mixing

ightarrow T parity \Rightarrow SM (T-even) fermions do not mix with T-odd fermions

 \triangleright 3 generations: λ_{ℓ} , κ and M are matrices in flavour space

$$\frac{\lambda_{\ell}}{\sqrt{2}}v = V_L^{\ell}\operatorname{diag}(m_{\ell i}) V_R^{\ell \dagger}$$

$$\begin{pmatrix} \sqrt{2}\kappa f & 0\\ 0 & M \end{pmatrix} = \begin{pmatrix} V_L^H & 0\\ 0 & \widetilde{V}_L \end{pmatrix} \begin{pmatrix} \operatorname{diag}(m_{\ell_{Hi}}) & 0\\ 0 & \operatorname{diag}(m_{\widetilde{\ell}_i}) \end{pmatrix} \begin{pmatrix} V_R^{H \dagger} & 0\\ 0 & \widetilde{V}_R^{\dagger} \end{pmatrix}$$

This leads to heavy-light mixings in both charged and neutral currents coupling a left-handed T-odd fermion to a T-odd gauge or Goldstone boson

$$V \equiv V_L^{H\dagger} V_L^{\ell} \qquad \qquad W \equiv \widetilde{V}_L^T V_L^H$$

– *V* parameterizes the misalignment between mirror (l_H) and light leptons (ℓ) – *W* parameterizes the misalignment between mirror partners (\tilde{l}) and l_H new

LHT (Lepton) Flavour mixing

 \triangleright W is a source of LFV, so far ignored assuming that mirror partners decouple.

[In fact we have checked \tilde{l} decoupling in $\ell \to \ell' \gamma$, $\mu \to ee\bar{e}$ and $\mu N \to eN$]

LHT (Lepton) Flavour mixing

- ▷ But in LFV Higgs decays breaking news!!
 - The mirror partners \tilde{l} do NOT decouple!
 - They are **needed** to make the amplitude UV finite!
 - The complex SU(2) triplet of physical Goldstones Φ (Φ⁰, Φ^P, Φ[±], Φ^{±±}) also plays a fundamental role for the cancellation of the UV divergences
 [Φ contributions are subleading in v²/f², negligible in other LFV processes]

 $[\]Rightarrow$ LFV Higgs decays are sensitive to both V and W

LHT | **Physical masses** (to order v^2/f^2)

- Scalar fields get rotated into a diagonal basis after gauge fixing
- Goldstone-gauge interactions provide v^2/f^2 mass corrections
- \triangleright Gauge boson masses [\mathcal{L}_S]

$$m_{W} = \frac{gv}{2} \left(1 - \frac{v^2}{12f^2} \right) \qquad m_{Z} = m_{W}/c_{W} \qquad [e = gs_{W} = g'c_{W}]$$
$$m_{W_{H}} = gf \left(1 - \frac{v^2}{8f^2} \right) \qquad m_{Z_{H}} = m_{W_{H}} \qquad m_{A_{H}} = \frac{g'f}{\sqrt{5}} \left(1 - \frac{5v^2}{8f^2} \right)$$

 \triangleright Fermion masses [$\mathcal{L}_{Y_H}, \mathcal{L}_M$]

$$m_{\ell_{Hi}} = \sqrt{2}\kappa_i f \qquad m_{\nu_{Hi}} = m_{\ell_{Hi}} \left(1 - \frac{v^2}{8f^2}\right) \qquad m_{\tilde{\nu}_i^c} = m_{\tilde{\ell}_i^c}$$

▷ Scalar masses (physical pseudo-Goldstones) [Coleman-Weinberg mechanism]

$$m_h \qquad m_{\Phi^0, \Phi^P, \Phi^{\pm}, \Phi^{\pm\pm}}$$

LHT One-loop contributions to LFV Higgs decays

 $h \to \mu \bar{\tau}$

Higgs Flavour Changing in Little Higgs Models

LHT Amplitude $h \to \mu \bar{\tau}$

$$\mathcal{M}(h \to \mu \bar{\tau}) = \bar{u}(p_2) \left(\boxed{\frac{m_{\mu}}{v}} c_L^{\mu \tau} P_L + \boxed{\frac{m_{\tau}}{v}} c_R^{\mu \tau} P_R \right) v(p_1)$$

$$c_{L(R)}^{\mu\tau} = \underbrace{\frac{g^2}{16\pi^2}}_{i=1} \underbrace{\frac{v^2}{f^2}}_{k=1} \left\{ \sum_{i=1}^{3} V_{\mu i}^{\dagger} V_{i\tau} F(m_{\ell_{Hi}}, m_{W_{H}}, m_{A_{H}}, m_{\Phi}) + \sum_{i,j,k=1}^{3} V_{\mu i}^{\dagger} \frac{m_{\ell_{Hi}}}{m_{W_{H}}} W_{ij}^{\dagger} W_{jk} \frac{m_{\ell_{Hk}}}{m_{W_{H}}} V_{k\tau} G(m_{\ell_{Hi(k)}}, m_{\tilde{v}_{j}^{c}}, m_{\ell_{Hk(i)}}, m_{W_{H}}, m_{\Phi}) \right\}$$

$$\mathcal{M} \propto \frac{1}{16\pi^2} \frac{v^2}{f^2} \lambda \left\{ \underbrace{\delta \kappa^2 \, \sin 2\theta_V}_{m_{\tilde{\nu}_i^c}}, \underbrace{\overline{\kappa}^2 \, \cos 2\theta_V \, \sin 2\theta_W}_{m_{\tilde{\nu}_i^c} \to \infty} \ln \frac{m_{\tilde{\nu}_i^c}^2}{m_{\tilde{\nu}_i^c}^2} \right\}$$

LHT

UV divergences $h \rightarrow \mu \overline{\tau}$ (highly non-trivial cancellations!)

$$\mathcal{M}(h \to \mu \bar{\tau}) = \frac{1}{16\pi^2} \sum_{i} V_{\mu i}^{\dagger} V_{i\tau} \frac{m_{\ell_{Hi}}^2}{f^2} \left(\underbrace{\frac{C_{UV}^{(0)}}{\epsilon}}_{\epsilon} + \underbrace{\frac{C_{UV}^{(1)}}{\epsilon}}_{\epsilon} \frac{v^2}{f^2} \right) \overline{u}(p_2) \left(\frac{m_{\mu}}{v} P_L + \frac{m_{\tau}}{v} P_R \right) v(p_1)$$

 $\epsilon = 4 - D$

$C_{ m UV}^{(0)}$	Ι	II	III	IV	V+VI	VII+VIII	IX+X	XI+XII	sum
ω, ν_H		_	•	•	_	_	1	-1	•
ω^0,ℓ_H			•	•	_	—	$\frac{1}{2}$	$-\frac{1}{2}$	•
η, ℓ_H		_	•	•	_	_	$\frac{1}{10}$	$-\frac{1}{10}$	•
all		_	•	•	_	_	$\frac{8}{5}$	$-\frac{8}{5}$	•

• Also finite part is zero

LHT UV divergences

 $h \rightarrow \mu \bar{\tau}$ (highly non-trivial cancellations!)

_	$C_{\mathrm{UV}}^{(1)}$	Ι	II	III	IV	V+VI	VII+VIII	IX+X	XI+XII	sum	
	W_H, ν_H	0	0	_	_	_	•	_	_	0	
	W_H, ω, ν_H	-	_	_	_	0	_	_	_	0	$F _{W_H}$
	ω, ν_H	_	_	$\frac{1}{4}$	$-\frac{1}{8}$	_	_	$-\frac{1}{6}$	$\frac{5}{24}$	$\frac{1}{6}$	
	Z_H, ℓ_H	•	0	_	_	_	•	—	—	0	
	Z_H, ω^0, ℓ_H	_	_	—	-	0	_	_	_	0	$F _{Z_H} \checkmark$
	ω^0,ℓ_H	_	_	•	$-\frac{1}{16}$	_	_	$-rac{13}{48} + x_H rac{c_W}{s_W}$	$rac{7}{16} - x_H rac{c_W}{s_W}$	$\frac{5}{48}$	
	A_H, ℓ_H	•	0	_	_	_	•	_	_	0	
	A_H,η,ℓ_H	-	_	—	-	0	_	—	—	0	$F _{A_H} \checkmark$
	η, ℓ_H	_	_	•	$-\frac{1}{16}$	_	_	$-rac{23}{240} - x_H rac{s_W}{5c_W}$	$-rac{17}{240} + x_H rac{s_W}{5c_W}$	$-\frac{11}{48}$	
	Z_H, A_H, ℓ_H	_	0	-	-	_	_	_	—	0	El (
	ω^0,η,ℓ_H	_	_	—	$\frac{1}{8}$	_	_	_	_	$\frac{1}{8}$	$I Z_H A_H $
	W_H, Φ, ν_H	_	_	_	_	0	_	_	_	0	
	Φ, ν_H	_	_	•	•	_	_	$-\frac{1}{8}$	$\frac{1}{24}$	$-\frac{1}{12}$	
	ω, Φ, ν_H	_	-		$\frac{1}{6}$	_	_	-	_	$\frac{1}{6}$	$F _{\Phi l_H}$
	ω^0, Φ^P, ℓ_H	_	-		$\frac{1}{24}$	_	_	-	_	$\frac{1}{24}$	
	η, Φ^P, ℓ_H	_	_	_	$-\frac{1}{24}$	_	_	_	_	$-\frac{1}{24}$	
	$\Phi, \tilde{\nu}^c, \nu_H$	_	_	$-\frac{1}{4}$	$\frac{1}{24}$	_	_	•	$-\frac{1}{24}$	$-\frac{1}{4}$	G
	all	0	0	0	$\frac{1}{12}$	0	•	$-\frac{49}{120}$	$\frac{39}{120}$	0	\mathcal{M}

Conclusions

- The one-loop predictions for flavour violating processes in the LHT are UV-finite when *all* Goldstone interactions compatible with gauge and T symmetry and *all* T-odd leptons (mirror and mirror partners) are included
- The partner leptons do not decouple and introduce a new source of LFV via their couplings to the pseudo-Goldstone scalar triplet Φ showing up in Higgs LFV decays only in the heavy mass limit
- However, *if* partner lepton masses are of same order as the other T-odd particles, all their contributions are expected of similar size in Higgs and gauge-mediated LFV processes (Z → μτ, ℓ → ℓ'γ, μ → eeē, μN → eN)
- We find $\mathcal{B}(h \to \mu \tau)$ as large as $\sim 0.5 \times 10^{-6}$ for large mixings and all T-odd particle masses of order of a few TeV