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Yesterday ...

» Bubble nucleation rate/volume

[(T) =To(T)e 5"

» Transition rate parameter

r(t) =re’"

with X3 (31/8*) Iy =1
» Wall speed vy
> Transition strength ;. = 5=
» Junction conditions (r = wy /w_)
Vv = 1—(1—38ay4)r Ve _ 3+ (1 —3ay)r
3-3(1+aq)r’ v 1431+ aq)r
» Similarity solution for bubble growth: detonation, deflagration, hybrid
» Conversion efficiency
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Gravitational waves from shear stresses

Metric  perturbations  h;  from
transverse-traceless part of EM - " o
tensor Mj: o

3000/T;

= 1000/T,

. 2 D107 —— S000/T, e

h/j -V hlj = 167TG|_|/] 3 I /\
= —— WG ansatz
T

I—lf _ 2 » m -
/’j - (e + p)7 V/VI + pé/] 17 10" 10 10%

ne = [0i006 — 1(96)25;] "

dpaw(k)  K® / aQ ;- "
dink — 327G/ (27)3 it )y (1. k)

w/dlog k

Y(H,R,)~\dS

(H.t

GW power spectrum:
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Detection prospects

» e.g. strong EW transition with

eLISA configurations: best (r),
Space-based GW detector LISA worst (g) (Caprini et al. 2015)

(launch by 2034):
» a=0.5,3/H=100, vy = 0.95
» Total (k) sound (g) turbulence (r)

Qe ()
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Gravitational wave equation (and an auxiliary equation)

» Assume processes happen much faster than Hubble rate (8/H > 1)
Assume metric perturbations are small
» Linearised GR, neglect expansion("

ds® = —df® + (65 + hy)dx’dx’

v

» Linearised Einstein eqn for transverse-traceless part:
hj — V2h; = 167G

» Convenient to avoid TT for evolution®

[I,'j — VZU,',' = 167TGT,‘,’

where hy = u/" and M = 7.
» Can take

T =(e+pNPvv, T =006

(Can put expansion in, not much changes
@ Garcia-Bellido, Figueroa, Sartre 2008
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Gravitational wave spectral density

» GW energy density (average over many wavelengths, periods)

1 - -
Paw = %hri(x)hfj(x)

» Fourier transform: hj(k, t) = [ d®xh;(x, t)e~™**
» Define spectral density P;, through
(hy(k, A (K', 1)) = Pi(k) 3°(k — K')
» Assume gravitational waves are generated by a process which is

> isotropic: P; (k) — P (k)
» homogeneous (hence 3°(k — k’))
» Random, Gaussian

» GW energy density becomes
_ 1 "3 ' 2
”gw_szwe/dkph() 32@2)3/dkk
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Gravitational wave spectral density

» GW energy density (average over many wavelengths, periods)
1

Pgw = %hri(x)hfj(x)
» Fourier transform: hj(k, t) = [ d®xh;(x, t)e~™**
» Define spectral density P;, through
(hy(k, A (K', 1)) = Pi(k) 3°(k — K')
» Assume gravitational waves are generated by a process which is

> isotropic: P; (k) — P (k)
» homogeneous (hence 3°(k — k’))
» Random, Gaussian

» GW energy density becomes
RN b - B 2p,
P = 327G / I kP(K) = 357G 22 /dkk Pa(k)
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Gravitational wave power spectrum

» Recall GW energy density from spectral density
= ke, (k)
Pov = 327G 22 h

» Convenient to introduce power spectrum Pj, = %Ph(k)

1 " dk
Pow = 355 / Tph(k)

» Cosmology: characterisation better in terms of Qqw = pgw/&.
» Define gravitational wave power spectrum

Qg 1 1 01
din(k) — 327G h(K) = T2 Prk)

Paw(k) =
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GW from stochastic sources

» Equation for auxiliary tensor uj;(x, t)

(02 — V2)uj(x, t) = (167G)7j(x, 1)

» Solution with oscillator Green’s function®
°t H ¢
k. t) = (16x6) [ ar S =Dlrc )
0
» Gravitational wave from TT projector hj;(k, t) = \j x(k) (K, t)
» Projector: \jw(K) = Pi(K)Pi(k) — 1 Pj(k)Pu(k) with P;(k) = §; — kik;.
» GW power spectrum obtained from

(A (1) =

(167G)? / dt; dt cos[k(t — ti)] cos[k(t — t)]Nju(K) (7 (k, t1 )7’ (K, t2)).
0

©®Boundary condition: uj(k,t) — 0ast — 0

Mark Hindmarsh GWs from phase transitions



Recap

Outline

Gravitational waves and shear stresses
Gravitational wave power spectrum discussion
Summary and outlook

GW from stochastic sources

» Equation for auxiliary tensor uj(k, t)

(02 + K®)uj(k, t) = (167 G)7j(k, t)

» Solution with oscillator Green’s function®
°t H ¢
k) = (16x6) [ ar L =Olrc 1)
0
» Gravitational wave from TT projector hj;(k, t) = \j x(k) (K, t)
» Projector: \jw(K) = Pi(K)Pi(k) — 1 Pj(k)Pu(k) with P;(k) = §; — kik;.
» GW power spectrum obtained from

(A (1) =

(167G)? / dt; dt cos[k(t — ti)] cos[k(t — t)]Nju(K) (7 (k, t1 )7’ (K, t2)).
0

©®Boundary condition: uj(k,t) — 0ast — 0
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Unequal time correlator (UETC) for shear stress

» Define shear stress UETC N? by
XK (T, 1)K b)) = TP (K, 1, ) 53 (k + K')

» Form of UETC
> source is “on” for a time ¢
» auto-correlated for a time 74¢

» peak at wavenumber k ~ Lp
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GW spectral density from shear stress UETC

» Averaging over a many periods of the wave®
t
Py(k.t) = (167G)2] / dty dscos[k(t — B)]M2(K, b, 1),
0

» Assumed form of UETC (write ty = (h + b)/2,t- =t — &)
N2(k, t_ /7ac)0(mn — t})
» Results in spectral density for A

Ph(kr t) = (16776)27717'510 Cl'l(k)

where Cn(k) = } [‘”—*cos kt_)YN2(k, t— /Tac)

» Available scales for auto-correlation time 74:
> Tac ~ KT
> Tac ~ Ln
> Tac ~ TN

“S0 that cos[k(t — ;)] cos[k(t — &)] — 4 cos[k(ti — )]
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Sources of shear stress: fluid vs. scalar field

v

Estimate size of shear stress correlator: M? ~ (r7)

> Fluid source tensor 7/ = w~2v/vi

> Field source tensor T(g = 0pdlp

» Kinetic energies K = [ &®x7f, K, = [ d®*x7

> Fluid: K; = [ &Bxwry?v2 = ZRWSan

> Field: K, = [ d®x (V)2 = 4rR%0
Ratio Ki/Ky ~ Rw/o ~ R/{ > 1

> Bubble size R grows to Hubble length, ¢ is a microscopic scale (wall width).
Scalar coupled to fluid, similarity solution: fluid shear stress dominant

> Fluid shear stresses come from compression/rarefaction: sound waves

v

v

v

Runaway: field shear stress also grows as R® (not considered here)
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Sound waves

Consider EM tensor for perturbations with z dependence only
TH _ W,yz “p, TEZ _ W,yzvz7 TZ _ W,yz(vz)z tp
Perturbations: fe=e— &, dp=p—p, vZ all < 1
HT"+ 0, T" =0 = (de) +wd,v* =0 (1)
HTE +0, T =0 = Wov* + 9,(p) =0 2)

Note that 6p and e both depends temperature T: jp = (#/3—) de=cide

Hence equations (1) and (2) can be combined
(67 - goB)vi =0,  (of —cEeE)sT =0

Sound wave is a collective mode of fluid velocity v/ and temperature T.
It is longitudinal: v' is in direction of travel of wave.

Mark Hindmarsh GWs from phase transitions
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Shear stress UETC from sound waves 1

> Recall shear stress UETC N
N (K (T (K, 1) 79 (Ko, 1)) = MP(ki, b, 1) 33 (K1 + ko)

» Source tensor dominated by fluid: 7/ = 7/ = w?v/V/
» Non-relativistic fluid velocities: 7/ ~ wv'v/
» Fourier transform of velocity field 7'(q, t) = [ d®x v/(x, t)e~"4*
» Hence

Ay =w [Fa7@?@n.  d-a-k
» Assume velocity field is Gaussian: (77) ~ (vwwv) = > (vw)(w)
» Velocity unequal time correlator:

(Ta, (1)0()) = [Pi(@)F(q. 11 1) + A& G(a, 11, £)] 3°(a1 — q2).

> Tranverse projector Pj(q) = 6; — §'¢/
> Sound waves contribute only to longitudinal part G

Mark Hindmarsh GWs from phase transitions
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Shear stress UETC from sound waves 2

Recall shear stress UETC I2:

N (K (T (K, 1) 79 (Ko, 1)) = MP(ki, 1, 1) 33 (K1 + ko)
With (k. t) = W [ d°qV(q, )7(§,1), §=q—Kk
And the velocity unequal time correlator from sound waves:
(Va, (1) Vel (k) = G'F G(q, 1, 1) 3°(q1 — G2).
A long calculation gives:®

v

v

v

v

a2
Mk, ) = # [ @' T(1 =17l £)G(@, 1)

where =k - §, & = ¢° — 2gku + k2.

®)Caprini, Durrer, Servant 2007, 2009
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Velocity UETC from sound waves

v

Following completion of transition at #, sound waves propagate freely
General sound wave solution:

X t /d q / —/wt+qu *!elwt iq- x>7 w = qu

v

v

Spectral density of velocity plane wave amplitudes

(vavh) =4dP(9) (@ +7)

v

Recall velocity UETC (vq(t1)"*/( 5)) = G @ G(g, b, 1) 3%(q — q).
Plane wave amplitudes related to Fourier transform ¥4(t) = 2v§ cos(wt)
» Hence (recall t;, = (4 + ©)/2,t- =t — &)

v

G(q, t1, ) = 4Py(q) cos(wty) cos(wk) = 2P,(q) [cos(wt-) + cos(2wty)]

Mark Hindmarsh GWs from phase transitions
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Shear stress UETC from sound waves 3

» Recall expressions for shear stress UETC and velocity UETC

. 2
M(k, ti, &) = sz/daq %(1 — 12’ G(q, i, ) G(@, t, 1)
G(q, t1, ) = 2Py(q) [cos(wt_) + cos(2wt} )]

» Argument:

» Convolution to get M2 has integral over g = w/cs
> For large times t; > w~" and cos(2wt,.) is highly oscillatory
» = N? dominated by cosz(wt_) terms

M2(k. t, 1) /dq T (1 - 12)?P,(q)Pu(§) cos(wt ) cos(t. )

» Conclusions:
> M2(k, t, k) depends mostly on t_ = t; — t, (“stationary”)
» Autocorrelation time of mode with wavenumber k is 7ac ~ k—!
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GW from UETC

v

Recall in spectral density for A
Ph(k: )= (167TG)2TﬂTac Cn(k)

where Cn(k) = } f‘ﬁ;cos(kt YM2(K, t- /Tac)

We justified dropplng the dependence of N2 on t,
We argued that 7ac = k1, so

Cn(k) = Lk [ dt_cos(kt-)M?(k, kt-)
» Hence

v

v

Cn(k) = 432 / Ta L (1~ 1P PUQPAGAMK . &)

where A(k,w, @) = 1 [ dt_ cos(kt_) cos(wt_) cos(it-)

Mark Hindmarsh GWs from phase transitions
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Kinematics of GW production from sound waves

» Spectral density of metric perturbation P;(k, t) = (167G)?mk "' Cn(k)
Cn(k) = 4 f83q S(1— W2PPAQ)PA)A (K, w,5)
A(k,w,®) = 1 [ dt_ cos(kt_) cos(wt_) cos(@t-)

Ak, w, @) = mo(k £ w+ @)
» Recall w = ¢sq,
@ = cs§ = cs(q% + k% — 2kqp)
» Kinematics: only k — w — & can vanish

» For large time differences: g

» Conservation of energy for production of GWs . q o g
» Hence

2
Calk) = 4mi [ F'q T (1~ 1) Pula) Pu(@5(k — - D)

Mark Hindmarsh GWs from phase transitions



Recap

Outline

Gravitational waves and shear stresses
Gravitational wave power spectrum discussion
Summary and outlook

Kinematics of GW production from sound waves

» Spectral density of metric perturbation P;(k, t) = (167G)?mk "' Cn(k)

. 2
Cal) = 4m# [ F'q T (1~ 1) Pula) P (@K — - D)

» Use & function to perform integral over =k - §
> Solution: u = ps = £ (1 - 3(1 - c8)¥)
> Giving § = g, = clsk—q

» Only g— < g < g; can produce GW with frequency k: with g+

w2 .
Colk) = 5o, [ @301 =V PU@P(G)
Jqg_

Mark Hindmarsh GWs from phase transitions
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Kinematics of GW production from sound waves

» Assume that sound waves have length scale L

L T2
» Scale out mean square velocity Us

v

Hence P,(q) = U- L3P, (qL;), where P, is dimensionless.
» Define z =ql;and z. = (kL)HECS

eniky = UL [ d2 (=2 Pz =2 )

27Cs ., Z zZi+z_—2z

v

Define dimensionless function

Fdz (z2—z0)(z—2)?
z zi4+z -z

Cn(kL) = P,(2)P)(z; + z_

zZ_

> is dimensionless and a function of y = kL¢
> peaks at y ~ 1 (definition of L)
» Magnitude O(1)

Mark Hindmarsh GWs from phase transitions
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Power spectrum of GWs from sound waves

» The final pieces are

dQgu 1 K
Poulk) = gy ~ 12 202 10
Ph(k t) (167’I'G) Tnk Cn(k)
_2U4 ;
Cn(k) = ngcsf L3Cn(kL;)
5 Z d —z VP (z—z_P 5 =
Cn(kL) = ?Z (z zj:—) z(, — ) Py(2)Pu(z4 + z-

» The gravitational wave power spectrum is

(kLs)* Cn(kLy)
212 27TCska

Paw(k) = 320} (Hm)(HL)

where I' = w/e (adiabatic index, I ~ 4/3)

Mark Hindmarsh GWs from phase transitions
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Power spectrum of GWs from sound waves: amplitude

» From last slide
Paw(k) = 3|'2Uf(Hrn)(HLf)759W(ka)
(kL;)® Cn(kLy)

Pow(kLi) = 2m2 2meskLs
5 [z (z-z)(z-z- )y 2 B
Cn(kL) = 7 4z =z Pu(2)P/(zy + z- — 2)
where z,. = (ka)12fETSCS

» Power proportional to square of kinetic energy: rUf2 ~ Ko
> Phase transition strength parameter «
> Vacuum to kinetic energy conversion efficiency «
» Power proportional to length scale L
> Length scale set by bubble separation: L; ~ R, = (Sw)% vw/B
» Power proportional to time sound waves last 7, which is the shorter of
» Hubble time 7y = H~1
» Eddy turn-over time 7e ~ L;/U (time for turbulence to develop)

Mark Hindmarsh GWs from phase transitions
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Power spectrum of GWs from sound waves: shape

» From last-but-one slide

Pou(k) = 32U} (Hrn)(HL;) Pow (L)
(kL)® Cn(kLy)

Pou(kLi) = 2m2 2meskLs
5 [z (z-z)(z-z- )y 2
Cﬂ(ka) — L 7 Z+J,»27 —Z Pv(z)Pv(z++27
where z+ = (kL) 12iC:S
» If velocity power spectrum P, ~ q", then P,(z) ~ z"~°
> = Cn(y) ~ YRR~y e
> = Pgw(}/) 3 2n 4 y2n—1 o k2n71

v

Prediction: Pgw(k) ~ k2" from Py(q) ~ q"

Mark Hindmarsh GWs from phase transitions
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Modelling GWs from sound waves

» Phenomenological model for GW power spectrum from linear sound
waves (W not near sound speed ¢s)
> Bubble nucleation temperature T,
> Hubble rate Hy
> Mean bubble separation R, peak of power spectrum at zp = kpR« ~ 10

A0
din(f)

— 0.68F 0l 2 U (FhR.) g C ( ff ) .

foo
o 7 7/2
0=+ (i) "

dilution of GWs since matter-domination

where

1
Fow,0 = (3.57 £0.05) x 10-° (1,5)0) 3 .

Peak frequency

1
1 Zp Ta h. \®
o =26 (Han’*) (10) (102 GeV) (ﬁ) uHz,

Mark Hindmarsh GWs from phase transitions
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Summary and outlook

» Gravitational wave production from 1st order phase transition
> Promising sensitivity to EW transition from LISA (Taiji ...)
» Areas for further work:

» GWs from turbulent velocity field

» GWs from runaway bubble (scalar field dominant)

> Parameter extraction from GW power spectrum «, 3, iy, Tc

» Improve accuracy of calculations of «, 8, v, Tc from fundamental theory
» Collider signals and phase transition parameters

» Future:
> information about fundamental physics from the GW background at LISA

Mark Hindmarsh GWs from phase transitions
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