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Measuring rotation
alternative views of the Sagnac effect

Radio-frequency dressed potentials
rotating frame, field polarizations,
rings, tori, state-dependence and countertransport

A freebie — RF-dressed detection of clock states
non-destructive probing with lock-in

Driving clock transitions between rf-dressed states
fresh from the lab

Work in progress
ideas and issues

Georges Sagnhac
1869-1928
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A trick question g

Two airplanes leave Singapore
at the same time.

Airplane 1 travels eastward.
Airplane 2 travels westward.

Both airplanes arrive in Singapore
at the same time.

Which trip
took longer?
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Hafele-Keating experiment  ff

Joseph C. Hafele Richard E. Keating

Several planes, two trips
Five atomic clocks
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Hafele-Keating experiment  ff

Joseph C. Hafele ?  Richard E. Keating

Science 177, 168pp (1972) & ibid. 166pp

Around-the-World Atomic Clocks:
Observed Relativistic Time Gains

Abstract. Four cesium beam clocks flown around the world on commercial
jet flights during October 1971, once eastward and once westward, recorded
directionally dependent time differences which are in good agreement with predic-
tions of conventional relativity theory. Relative to the atomic time scale of the
U.S. Naval Observatory, the flying clocks lost 59 + 10 nanoseconds during the
eastward trip and gained 273 *+ 7 nanoseconds during the westward trip, where the
errors are the corresponding standard deviations. These results provide an un-
ambiguous empirical resolution of the famous clock “paradox” with macroscopic

clocks.
Nanoseconds gained
Predicted
Gravitational Kiner_natic Measured
Westward trips oty | ety |
take lon ger! Eastward | 144+ 14 -184+18 |-40+23 |-59+10
Westward | 179 + 18 96 + 10 275+ 21 2737
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Circular path, radius R In an inertial frame, both trips take time T,

AL : The east/westward trips covers length  Lg,, = 27R+ AL = 27R + RQT

A

27R
The average east/westward speed is Vew = = +RQ
0

According to special relativity, the travellers' proper times are:
Vew ) 2R £RQT, )
Tew =To,[1-| =2 | =Ty, [1- — ¢
| C cT,

Proper times expanded by orders of ()

ZﬂRJZ . 2R T,

TEW zTO 1—[—
’ cT, 2
.2 1_(27sz

cT,
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Circular path, radius R Time dilations for non-relativistic speeds, i.e. T <<
Cly
AL 27R? R2T
p Tow *T, - Q- > 0 .0*FO(Q)
’ C C

Proper time difference for non-relativistic speeds:

AT =T, -T. zi—zA.Q




Sagnac Phase of Matter waves f oo
+ <_m —
IG:>/IIIIIJ[HI\<:I N
o

</




Sagnac Phase of Matter waves
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Compton
frequency

X

Proper time
difference

What is the relative phase shift between the two patterns?

Round trip time: TO Zﬁ mA —/ R
Vew D
Pattern displacement: AS=0OR- T _MR 20
h
Phase shift: A(p £27Z' — m 472‘R2Q
/2 i

Ap =240
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Phase of a Quantum State )y

Compton
frequency

Prestframe (T) = (I»’(()) . el®cT

X Proper time

A = Mwo7)~ o Atl+Ame

r A

Sagnac  Atomic
phase clock phase
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Single Clock Sagnac Effect g

Microwave field — Ramsey Sequence
removes dynamic clock phase

Hyperfine splitting of 8’Rubidium
(nuclear spin precession)

E—pulse
2
@ = 90°
oL
1T
Microwave
E,.=h-6.834 GHz coupling
| | |
>
| < N - | t

<
\l
~

F=1
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Single Clock Sagnac Effect g

Microwave field — Ramsey Sequence
removes dynamic clock phase

© acquires Sagnac phase
T /A
2 2

swap states,
reverse direction!

Move atoms around half loop

Move atoms to complete loop

O
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Expectation for Transported Traps I

v )

1D “harmonic” traps on ring (banana-shaped)

Measured population difference:

(6,)=C,p COS %272’ R“Q)

Reduced contrast due to reduced final state overlap (white light
interferometer for finite temperature @

R. Stevenson et al., PRL 115, 163001 (2015), arXiv:1504.05530
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2D Isotropic Traps ) g

Nottingham
Radial motion must be considered: '
* Enclosed area depends on dynamics (centrifugal forces)
* For non zero rotation, centrifugal forces depend on path
* Interferometer contrast depends on rotation
| g = 0.2

Scale factor for |1.2 -
flat-top
drive profile

I 25 =0.1

2 0.8
k L
N
~—

0.6 -
N i

0.4 -

0.2 -

0 100

R. Stevenson et al., PRL 115, 163001 (2015), arXiv:1504.05530
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RF-Dressed Potentials ) g

Spin F atom in magnetic field
H = grugB(t) - F
In spherical coordinates,
static field + single radio-frequency (RF) field

V2 V2

Rotating frame transformation

_ U N\
BpoF, + (— B.F, +—B_F + B,TFZ) elwt] +c.c.

—~ Irlip hw ~ 1 ~ 1 5 i o . ]
H.. = Bpr ——— |E,+—=B.F. +—=B_F e?@t + B_Ee'®t| +c.c.
rot 2 [( DC gF.“B) Z \/E +4 4+ \/7 + iz

Rotating wave approximation

~ 9drUp hw = 1 ~
HRWA = 2 [(BDC — gF—‘uB> FZ + \/—§B+F+] + C.cC.

= gripBesr F
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Adiabatic RF Dressing I

laboratory frame rotating frame

b

N




The University of

Nottingham

RF-Dressed Potentials ) g

Atoms in static field gradient with RF coupling

Zeeman levels Resonant coupling Dressed state energies

E=-iB a E b) E . ©

mF= 1

Adiabatic potential in RWA (given by effective field strength)

w 1
>+_|B+|2

, h
U(z) = mpgriip || Bpc — 5

JrUp

minimal at resonant field magnitude
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Resonant Potential - Polarization ff

e

Within resonant manifold, potential is determined by
local o0, component: B, = e, - Brp

Example: loffe trap + global, spherical RF components
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Resonant Potential - Polarization f

Within resonant manifold, potential is determined by
local 0, component: B, = e, - Brp

Example: loffe trap + global, spherical RF components
Double well potential

coupling

dressed

B +B, potential

T. Schumm et al., Nat. Phys. 1, 57 (2005)
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Ring Traps )

e Ring-shaped, cylindrical quadrupole field

B..(t)=Re|B_, -
(use two rings of permanent magnetic material) RF( ) [ a,b ]

cosd cosd

e RF quadrupole field + vertical field (90° phase) b
high gradient ired f Il ri B., = sin@ |+—| sind
(high gradient required for small rings) »~ " 5 j

R
z =
%pM J
e

wdw

T. Fernholz et al., "Toroidal and ring-shaped traps with control of atomic motion",
PRA 75, 063406 (2007).



Resulting Potentials
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Potential on the resonant torus r, ¢ -planes
(given by local coupling strength |B, |) circular rf
(b=0)

Mgl
U, =—F2E28 g 41 —2abco{2gp arg j ( r—
=0 \/ bl — 2fally —

5

elliptical rf
(la|>[b]>0)
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Motion Control ) g

Atomic motion can be controlled using only global rf fields

Poloidal rotation
e Induce rings using elliptical rf
e Vary relative phase between a and b.

Toroidal rotation (state dependent)
* Additional in-plane (x,y) circular fields interfere with B, ,

Counter-propagating rings
e Create two vertically split rings
(rf quadrupole component (p) > vertical component (z))

e Add in-plane (x,y), linearly polarized rf field —

(slightly different frequency)

With rf fields in x- and y- directions,
the two rings or
different internal states with different
g-factors can be controlled independently !

poloidal angle 6

toroidal angle ¢
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Magnetically Guided Clock  f

Energy of 8Rubidium in B-field

U~E, s +M,0,43B,

A U O_+ P
_ ‘ ;mFZZ F=2
A _- F 1
el g T2
— 'F T
me. =—-2
E,.. =h-6.834GHz
v F=1
1
O¢ :_E
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Experimental Efforts g




State-Dependent Guiding

) g
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See Wolf von Klitzing, Thursday 9:00

a) F=1

b) F=2
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Voigt Spectroscopy )

Nottingham
Non-destructive measurement
of linear birefringence
proportional to tensor polarizability
E A A X
AR ? ........
]: _:_ Ff:]- BX A <y>
o\ /o ﬂ‘pm'\/z
! o—pol.
: ‘\]\u A A
: | S, =N
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Output for classical input light with 45°-polarization
(fz ~ 0, fx ~ 0, .§'y ~ Sy)
- o N
Sp =8, +5—a;”s, x f (fZ = 1 )pdz
Zeoc
\ Y,
. A } N R
(S () = oz (F(F + 1) = 3m?)
3+ ()
o 0 for Eigenstates of £,
> FylF,m) = mh|F, m)
m
-3 9] ()
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RF-Dressed |1,0> State r

—




The University of

Dressed State Detection ) g

Nottingham

—_—F =2

-+ F =1

B, = B, COS|@yt
}\/4 y RF ( RF ) )\/2
F=2
Phase-locked
detection o F=1

RF dressing:
F,=m — F,cos(@gt)+F, sin(@g:t)=m




Dressed Probing of Bare Clock f Refinghom
— mw pulse field ramps probe pulses
i T B\ L I
TPV FVVYY | Vv
F:; O WUUUUWUUBMW BRF time
L. [ =1 MW — bare states — dressed states

Standard clock transition

ITIT | Y Ll

1,0) — |2, 0)

(starting from pure state)

Amplitude

T
] 2.5

1
5 7.5 10 12.5 15 17.5 20 225 25
Time [ms]
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Bare Clock Rabi Cycles )

1.5

-1.5
0.01

0.005

residuals
(e ]

-0.005 |

-0.01 ' ' '
0 0.05 0.1 0.15 0.2

microwave pulse length TMW (ms)



The University of

Nottingham

Dressed Clock? )y

Energy of 8Rubidium in B-field

U~E, s +M,0,43B,

A U O_+ P
_ ‘ ;mFZZ F=2
A _- F 1
el g T2
— 'F T
me. =—-2
E,.. =h-6.834GHz
v F=1
1
O¢ :_E
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Linear RF
1.5 RF
DA & MW,
il all fields
orthogonal
br_an
0.5} o
I*’
= F=2 e
= —
S} N rwﬂrkv'r*u \/
£
=
Q.
0.5+ S
Sy
0
F=1 N
1 Initial states
|1,-1> & |1,+1>
populated
1.5 - : - : - : ' : '
-1000 -800 600 400 -200 0 200 400 600 800 1000
MW Detuning kHz

from bare clock transition (6.834 GHz)



Dressed MW transitions 1 | Nottingham
. - MW field &
o static field
1} parallel
T

0.5}
g F=2 e
= e
5 Ur f s
=
=y
0.5 & 7
o S
Q.
F=1 N
p Initial states
|1,-1> & |1,+1>
populated
_15 1 1 1 1 1 1 1 1 |
-1000 -BO0O 600 400 -200 O 200 400 600 8OO 1000

MW Detuning kHz
from bare clock transition (6.834 GHz)
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Coupling of Dressed States
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atom microwave
+ static field coupling
+ RF field

H=H,(t) + H;cos(wpywt)

Hamiltonian expanded in dressed state basis

0
m UUT + UH,UT + UH,cos(wywt)UT

ZE D, )P, |+Z B (Do | T (0 c05(wry )T T ()|}

_ Z E, |0, ), + Z B (Wi () | H1 cOS (@part) | W (£) (D |

modulated coupling =
instantaneous coupling elements between lab-frame solutions
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Dressed, Trappable Clock States I
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A Useful Picture g

E,1

RF off rotation at 2xRF RF on
phase phase
&S i
0T dressec?l
— F=1 basis
>
Fi

A triplet of sharp transitions is expected
for all fields orthogonal, at £1xRF.
One transition between trappable states.
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F2 Amplitude

All fields
orthogonal

MW Detuning kHz

-1xRF +1xRF
group group
0.4 : 0.4
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0.07
Clock Transitions (1,-1)and (1,1) 7-
008y Clock Transition (1,0) o
0.05 | oyt
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Control Magnetic field G

Field dependence ¥ Nottinaha
p Nottingham
180.8
| F1 rf resonance
i F2 rf resonance
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Inferred Dressed Potentials [
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Potential (Hz)

o
lﬁ !_-IH_-IL-I

RF resonance shift
due to

g-factor difference
—

Potential shift
(and curvature
difference) due to

RF ellipticity

Static field (mG)

oo
Lol
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Ideas and Questions ) g

1000

- Equalize potentials

« MW/RF dressing (see talk by Jozsef Fortagh),
but with RF dressed potentials, robustness?

500

PRA 90, 053416 (2014), also PRA 91, 023404 (2015)
* Separate frequencies 1000 |

(see talk by Wolf von Klitzing),

requires radial or vertical currents in this setup s

- Topological constraints for dressed traps?
' Gerritsma, Spreeuw, PRA 74, 043405 (2006)

- - 2D periodic boundary conditions
- Lattices of rings & ring lattices
- Artificial gauge fields in dressed lattices?
- Non-adiabatic potentials?



