

NON-EQUILIBRIUM TECHNIQUES

# FOR ATOMTRONIC MODELLING





# NICK PROUKAKIS

EPSRC

Engineering and Physical Sciences Research Council









→ Need to Find Optimum Balance: Theory can (hopefully) help ?





Thermal

\*\*\* Future Prospects ??? \*\*\*







## **GROSS-PITAEVSKII**

$$i\hbar\frac{\partial\phi}{\partial t} = \left(-\frac{\hbar^2\nabla^2}{2m} + V_{TRAP} + g(n_C)\right)\phi$$



"BEST" KINETIC THEORY ("ZNG")







## **Study Surface Evaporative Cooling on a Room-Temperature Surface**

by moving thermal cloud (~100's nK) onto room-temperature surface (300 K) from initial distance ~100μm at constant speed & observing atom loss rate vs. time at different distances from surface

J Maerkle, AJ Allen et al., PRA 90, 023614 (2014)



Effective Potential Schematic near Surface



# SURFACE EVAPORATIVE COOLING





Measure atom loss rates vs. time for cloud moved towards surface

Theory-Experiment Comparison (different "hold" positions)

> J Maerkle, AJ Allen et al., PRA 90, 023614 (2014)





# SURFACE EVAPORATIVE COOLING





Measure atom loss rates vs. time for cloud moved towards surface

J Maerkle, AJ Allen et al., PRA 90, 023614 (2014)





## In trying to optimize surface cooling efficiency, we find:



Condensate Fraction is maximised very close to surface & saturates at very low velocities

Condensate Number is however maximised further away from the surface

J Maerkle, AJ Allen et al., PRA 90, 023614 (2014)

... suggesting the existence of an optimum distance from the surface for large pure condensates















Talk by Alessia Burchianti (LENS)











Talk by Alessia Burchianti (LENS)

## **Vortex Ring Dynamics with Barrier Removal**





... but ... why do experiments see vortices after a much longer wait time ?

→ Barrier Removal (for Imaging) actually enhances vortex ring lifetime!









Talk by Alessia Burchianti (LENS)



Only a minor shift to *Phase Diagram* when comparing cases of equal <u>condensate</u> number ! ... but ... but ... Dynamics within each region significantly affected !











Talk by

(LENS)





## Nick Proukakis

# **RING TRAP "TOY SIMULATIONS"**





Temperature can actually *suppress* "unwanted" BEC excitations – can this be utilised ?

Nick Proukakis





Single-Component Self-Consistent Kinetic Equation ("ZNG") > 0 TWO-COMPONENT CONDENSATE THEORY







→ Identify & Characterise "Novel" Collisional Processes

Lee, Edmonds & NPP PRA 91, 011602(R) (2015) PRA 92, 063607 (2015) J Phys B 49, 214003 (2016) PRA 94, 013602 (2016) and a new (improved) criterion for phase mixing/separation [jointly with Aarhus experiments (Arlt)]

**CAUTION: Expansion Imaging does not always reveal correct in-situ picture!** 



# **ROLE OF EXPANSION IMAGING**





Miscibility / Immiscibility can also appear solely during Expansion!

Lee, Jorgensen, Wacker, Skou, Skalmstang, Arlt & NPP, Preprint

# **EMERGENCE OF IMMISCIBILITY IN TOF**







**NON-BEC** 

BEC



# Different, yet complementary, approaches to partially condensed (T > 0) Systems

Kinetic Approaches (explicit BEC separation) Stochastic Approaches (no explicit BEC separation)

BEC + Dynamical Thermal Cloud with full self-consistent coupling



Modes up to a cut-off described in a unified manner (classical field) coupled to a Heat Bath



Ideally suited for:

Collective Modes / Transport Full BEC – Thermal Coupling (far from critical region) Random (shot-to-shot) Fluctuations Quenches / Low-D & Universality (high-lying modes "unaffected") Nick Proukakis STOCHASTIC GROSS-PITAEVSKII (SGPE) MODEL



SGPE describes the entire multi-mode system describing the low-lying modes





## Nick Proukakis STOCHASTIC GROSS-PITAEVSKII (SGPE) MODEL



## SGPE describes the entire multi-mode system describing the low-lying modes

$$i\hbar \frac{\partial \Phi(x,t)}{\partial t} = \left(1 - i\gamma\right) \left[ -\frac{\hbar^2 \nabla^2}{2m} + V_{TRAP} - \mu + g \left| \Phi(x,t) \right|^2 \right] \Phi(x,t) + \eta(x,t)$$

 $\rightarrow$  Results obtained by averaging over noise realizations  $\eta(x,t)$ 

$$\langle \eta^*(x,t)\eta(x',t')\rangle = 2\hbar\gamma k_B T\delta(x-x')\delta(t-t')$$

so supposed to be interpreted after suitable 'trajectory' averaging

Stoof-Bijlsma J Low Temp Phys 124, 431 (2001); Gardiner-Davis J Phys B 36, 4731 (2003)



## Nick Proukakis <u>STOCHASTIC GROSS-PITAEVSKII (SGPE) MODEL</u>



# SGPE describes the entire multi-mode system describing the low-lying modes

$$i\hbar \frac{\partial \Phi(x,t)}{\partial t} = \left(1 - i\gamma\right) \left[-\frac{\hbar^2 \nabla^2}{2m} + V_{TRAP} - \mu + g \left|\Phi(x,t)\right|^2\right] \Phi(x,t) + \eta(x,t)$$

 $\rightarrow$  Results obtained by averaging over noise realizations  $\eta(x,t)$ 

$$\langle \eta^*(x,t)\eta(x',t')\rangle = 2\hbar\gamma k_B T\delta(x-x')\delta(t-t')$$

so supposed to be interpreted after suitable 'trajectory' averaging Stoof-Bijlsma J Low Temp Phys 124, 431 (2001); Gardiner-Davis J Phys B 36, 4731 (2003)



- \* Contain element of stochasticity
   \* Qualitatively reproduces single experimental realisations
- \* Wash out density fluctuations to produce smooth profiles
- \* Suitable for extracting global features (densities, correlation functions, etc.)

Nick Proukakis



## Properties Characterised by Densities & Lowest Order Correlation Functions

## Quasi-1D: Ab Initio Prediction of densities & coherences



## Quasi-2D: Scale-invariance & Universality



## Experiments: Paris & Amsterdam

PRL 97, 250403 (2006) PRL 100, 090402 (2008) PRL 105, 230402 (2010) PRL 91, 010405 (2003) EPJD 35, 155 (2005)

Ab Initio SGPE Modelling: NPP et al., PRA 84, 023613 (2011) PRA 86, 013627 (2012)

> Experiment: Chicago

Nature 470, 236 (2011)

Ab Initio SGPE Modelling: Cockburn & NPP PRA 86, 033610 (2012)

Detailed Theoretical Benchmarking: Cockburn et al. PRA 83, 043619 (2011)

Nick Proukakis QUENCHED CROSSING OF A PHASE TRANSITION



# Consider rapidly quenching a system through the BEC phase transition

As system approaches phase transition, it cannot follow external drive (e.g. cooling ramp)

Dynamics "freezes out" with coherence forming in "local patches"



## Kibble-Zurek Model:

Number of Defects:  $N \propto (\tau_{o})^{-\alpha}$ 

## Review: del Campo & Zurek, Int J Mod Phys A 29, 1430018 (2014)

# COLD ATOM KIBBLE-ZUREK GALLERY

Nick

**Proukakis** 





## Experimentally also Characterised in a 3D/2D Box-like Trap

CAMBRIDGE: Science 347 (2015) ; LKB: Nat. Comm. (2015)





0.8

 $t_e$ 

t [s]

 $t_{\rm TOF}$ 

TRENTO EXPERIMENT SUMMARY

Quench Protocol (Forced Evaporative Cooling)

Nick

**Proukakis** 

Phys. Rev. A 94, 023628 (2016)

**Observations (Quasi-1D System; TOF Imaging)** 

0.0

0.4







# Model BEC Growth Dynamics via Stochastic Simulations





# **KIBBLE-ZUREK IN RING TRAPS**







## **Growth with Persistent Current**



## **Growth without Persistent Current**



## See also Das, Sabbatini & Zurek, Scientific Reports (2012) & Jerome Beugnon's Talk

Nick Proukakis

8

Next, Density Engineer a Dark-Soliton Pair of desired speed



and study its dynamical evolution

## Focus on JQI Ring Trap Parameters

[see also Murray et al., PRA 88, 053615 (2013) for parameter details ]

**Planar Geometry** 

$$V(r) = V_G \left( 1 - e^{-2(r-r_0)^2/w^2} \right)$$

$$l_r = 2\mu m$$

$$r_0 = 18.5\mu m$$

 $w = 9.45 \,\mu m$  $\omega_{\perp} = 2\pi \times 600 Hz$ 





# **OPTIMIZING THE EXCITATION SCHEME**



Narrow Width of Excitation Laser

 $V = \dots + V_L(t)e^{-y^2/2\sigma^2}$ 

Nick

**Proukakis** 

Ensures only single Counter-propagating soliton pair is generated





**Relevant 'control' parameters thus reduce only to:**  $V_0, \xi$  **To make soliton engineering** findings universal, we hence consider the following dimensionless ratios:  $\left(\frac{l_r}{\xi}\right) \& \left(\frac{V_0}{\mu}\right)$ 

Gallucci & NPP , New J Phys 18, 025004 (2016)

LONG-LIVED DARK SOLITONS IN RING TRAPS

Nick



Gallucci & NPP, New J Phys 18, 025004 (2016)

Nick Proukakis



## **Identify T = 0 Phase Diagram Revealing Distinct Dynamics**







## **2D Solitonic Regime**



Nick Proukakis



## **Identify T = 0 Phase Diagram Revealing Distinct Dynamics**



Nick Proukakis



## **Identify T = 0 Phase Diagram Revealing Distinct Dynamics**



Nick

Proukakis



# What about Thermodynamic Instabilities ?

# Add realistic "noisy" background density modulation & Monitor Evolution INITIAL CONDITION (t=0) POST DENSITY-ENGINEERING



**Observe Counter-Propagating Dark "Solitons" with**  $\Delta \phi \approx 0.4\pi$ **persisting for multiple revolutions / collisional cycles** 



# What about Thermodynamic Instabilities ?

Add realistic "noisy" background density modulation & Monitor Evolution



Nick

**Proukakis** 

**Observe Counter-Propagating Dark "Solitons" with**  $\Delta \phi \approx 0.4\pi$ **persisting for multiple revolutions / collisional cycles** 





## Can flow patterns in complex ring geometries be useful for measurements?

# Single Ring Potential

## Density



**Double Rings** 

## or even more complex Structures ?



Nick **Proukakis** 

# MULTIPLE RING TRAPS



Have done basic "brute-force" investigation of emerging phase patterns (by stochastic condensation into such geometry)







# Example of (an unlikely?) atomtronic scheme [work in progress]







## Example of (an unlikely?) atomtronic scheme [work in progress]



Middle ring acts as gate controlling flow / phase???

... Concrete Ideas Wanted !!! ...

## Nick Proukakis

## **ANNOUNCEMENTS**



## NJP Interdisciplinary Spotlight Collection on MultiComponent Quantum Matter

http://iopscience.iop.org/journal/1367-2630/page/Multicomponent-Quantum-Matter



# **New Journal of Physics**

The open access journal at the forefront of physics

www.njp.org

## Announcement and your invitation to contribute

*New Journal of Physics* (NJP) is pleased to announce the publication of a collection of research articles on multicomponent quantum matter.

Your Invitation to Submit a Contribution within 2017

## (usual NJP application/acceptance criteria apply)

Managed by: Frédéric Chevy (*ENS*) Milorad Miloševic (*Antwerp*) Nick Proukakis (*Newcastle/JQC*)

Universal Themes of Bose-Einstein Condensation (Cambridge University Press, PUBLISHED, April 2017) ISBN-9781316084366

Edited by NP Proukakis, DW Snoke & PB Littlewood





# **ANNOUNCEMENTS**



## **The Onassis Foundation**

**2017 Lectures in Physics** 

# Quantum Physics Frontiers Explored with Cold Atoms, Molecules & Photons

## Hosted by Serge Haroche

Other Lecturers: Aspect – Bloch – Dalibard Davidovich – Proukakis - Ye

24-28 July 2017, Crete

Full Financial Support for 15 International UG/PG Students, or RAs



SCIENCE LECTURE SERIES

## Scientific Committee

Prof. E. N. Economou
 Prof. J. Hoffmann
 Prof. Y. Iliopoulos
 Prof.W. Ketterle

Prof. E. Moudrianakis
 Prof. D. Nanopoulos
 Prof. V. Ramakrishnan
 Prof. D. Tsichritzis
 Prof. E. Witten
 Prof. H.zur Hausen

Organizing Committee Chairman: Prof. I. Papamastorakis FORTH

## Location/Address

Foundation for Research and Technology - Hellas "The Onassis Foundation Science Lecture Series" P.O. 1385, GR-711 10 Heraklion, Crete, Greece Tel: x30 2810 394269 E-mail: Onassis/F@admin.forth.gr

Participants

Researchers, Postdoctoral Associates, Postgraduate and advanced Undergraduate students. On-line applications through our website: http://www.forth.gr/onassis/ Deadline for Application: May 25th. 2017

### Financial Aid

The Onasis Foundation will support travel and accommodation expanses for up up to hintry five Greek students and up to fifteen International students, selected on the basis of their academic performance. The financial aid for the travel of non-European students cannot exceed the maximum amount of the reimbursement provided for the travel of European students. Interested students should attach to their (V a list of courses taken, their grades, and two letters of recommendation.

## Certificate

Admitted students receive a certificate after successful participation in the lectures and the submission of a summary report for each lecture presented. Under the Auspices of H.E. The President of the Hellenic Republic Mr. Prokopios Pavlopoulos The 2017 Lectures in Physics

## Quantum physics frontiers explored with cold atoms, molecules and photons Heraklion Crete, July 24-28, 2017

## Lecturers

## SERGE HAROCHE

Em. Professor, Laboratoire Kastler Brossel, College de France, Paris, France. Nobel Prize (2012) in Physics

## ALAIN ASPECT

Professor, Institut d'Optique Graduate School and Ecole Polytechnique, Universite Paris-Saclay, Palaiseau, France.

## **IMMANUEL BLOCH**

Professor, Ludwig-Maximilians-University and Max Planck Institute of Quantum Optics, Munich, Germany.

## JEAN DALIBARD

Professor, Laboratoire Kastler Brossel, College de France, Paris, France.

## LUIZ DAVIDOVICH

Professor, Instituto de Fisica, Universidade Federal do Rio De Janeiro, Rio de Janeiro, Brazil.

## NIKOLAOS PROUKAKIS

Professor, Joint Quantum Centre (JQC) Durham-Newcastle, Newcastle University, Newcastle, U.K..

## JUN YE

Professor, JILA, NIST and University of Colorado, Boulder, USA.













→ Identify & Characterise "Novel" Collisional Processes



**C > 0 TWO-COMPONENT CONDENSATE THEORY** 





Nick

Proukakis

→ Identify & Characterise "Novel" Collisional Processes





# Phase Profiles Controlled by Inter- / Intra- Atomic Interactions



 $g_{11}(g_{22})$ : Interactions *within* Species 1 (or 2)  $g_{12}$ : Interactions *between* Species 1 & 2



# Phase Profiles Controlled by Inter- / Intra- Atomic Interactions



PHASE PROFILES OF 2-COMPONENT BECs

Nick

Proukakis





Phase separation Boundary: Green  $\rightarrow$  Blue

Criterion in Trap can Deviate Significantly from Homogeneous Condition ! This depends critically also on atom numbers Nick







**T** = **0** 

## Undamped Surface Shape Oscillations

## Large Spatial Overlap Enhances Counterflow Instability



**COLLECTIVE MODES AS IMMISCIBILITY PROBES** 



New Criterion fully captures "crossover" between separation & overlap

Nick

**Proukakis** 



Our Picture is Confirmed by a Simultaneous Shift in Frequency & Damping of Collective Oscillations







**IMPORTANCE OF NOVEL COLLISIONAL TERM** 



# We now examine the Temperature-dependence of this collisional process

M Edmonds, K-L Lee, NP Proukakis , arXiv:1409.1725

**Absolute T-dependence** 

Nick

**Proukakis** 

**Relative T-dependence** 



Remarkably this "cross-condensate" scattering process is found to dominate near equilibrium even at rather high temperatures !



We thus anticipate it to play a dominant role in sympathetic cooling, from its early stages,

completely dominating over collisions at lower Temperatures