Atomtronics

A Very Short Introduction

Charles W. Clark Joint Quantum Institute

Image: E. Edwards, JQI

Atomtronics

Internet electronics and photonics

Quantum computers and atomic clocks

Atomtronic concepts and devices

Is it just a flash in the pan . . .

...or could it be REALLY BIG, someday?

Is it just a flash in the pan . . .

...or could it be REALLY BIG, someday?

ARPANET 1980 Computers connected by telephone lines and satellite links

Is it just a flash in the pan . . .

...or could it be REALLY BIG, someday?

ARPANET GEOGRAPHIC MAP, OCTOBER 1980

ARPANET 1980 Computers connected by telephone lines and satellite links

ARPANET

DIRECTORY

NOVEMBER 1980

Prepared for: DEFENSE COMMUNICATIONS AGENCY Washington, D C. 20305 On Contract No. DCA 200-C-641 Produced and Published by: NETWORK INFORMATION CENTER SRI International Menlo Park, California 94025

Is it just a flash in the pan . . .

...or could it be REALLY BIG, someday?

ARPANET GEOGRAPHIC MAP, OCTOBER 1980

(NOTE: THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL SATELLITE CONNECTIONS) NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES

ARPANET 1980 Computers connected by telephone lines and satellite links

Prepared for: DEFENSE COMMUNICATIONS AGENCY Washington, D C. 20305 On Contract No. DCA 200-C-641

Produced and Published by NETWORK INFORMATION CENTER SRI International Menlo Park, California 94025

ARPANET DIRECTORY

A printed directory of the 4,000 users

NOVEMBER 1980

NIC 48000

Is it just a flash in the pan . . .

...or could it be REALLY BIG, someday?

ARPANET GEOGRAPHIC MAP, OCTOBER 1980

ARPANET 1980 Computers connected by telephone lines and satellite links ARPANET DIRECTORY

A printed directory of the 4,000 users

NOVEMBER 1980

VGC

Prepared for: DEFENSE COMMUNICATIONS AGENCY Washington, D C. 20305 On Contract No. DCA 200-C-641

> CERF, Vinton G. Advanced Research Projects Agency Information Processing Techniques Office 1400 Wilson Boulevard Arlington, VA 22209

Produced and Published by NETWORK INFORMATION CENTER SRI Internationa Menio Park, California 94025

CERF@USC-ISI (202) 694-3049 or 694-8096 ARPA-TIP

NIC 48000

Is it just a flash in the pan . . .

...or could it be REALLY BIG, someday?

ARPANET GEOGRAPHIC MAP, OCTOBER 1980

(NOTE: THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL SATELLITE CONNECTIONS) NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES ARPANET 1980 Computers connected by telephone lines and satellite links ARPANET DIRECTORY

The Electronic Age

NOVEMBER 1980

VGC

Prepared for: DEFENSE COMMUNICATIONS AGENCY Washington, D C. 20305 On Contract No. DCA 200-C-641

> CERF, Vinton G. Advanced Research Projects Agency Information Processing Techniques Office 1400 Wilson Boulevard Arlington, VA 22209

Produced and Published by NETWORK INFORMATION CENTER SRI Internationa Menio Park, California 94025

CERF@USC-ISI (202) 694-3049 or 694-8096 ARPA-TIP

Is it just a flash in the pan . . .

...or could it be REALLY BIG, someday?

ARPANET GEOGRAPHIC MAP, OCTOBER 1980

ARPANET 1980 Computers connected by telephone lines and satellite links

Prepared for: DEFENSE COMMUNICATIONS Washington, D C. 20305 On Contract No. DCA 200-C-

> CERF, Vinton G. Advanced Resea Agency Information Prod Techniques 1400 Wilson Bo Arlington, VA 22200

Enabling technology of electronics: **The Transistor** Bell Laboratories 1947

ARPANET DIRECTORY

SE CO.

The Electronic Age

Internet today

The Electronic Age

Internet today

2 billion smartphones worldwide; each contains ~ 1 billion transistors = 10^{18} (azakhstan United State Indian Ocean South South Atlantic Pacific Ocean Ocean Image: TeleGeography

Map data ©2017 Terms of Use Repo

The Electronic Age

Vast global flow of data requires high-speed optical communication: *Photonics*

Global reach requires precise network synchronization: *Atomic clocks*

Internet today

The Electronic Age

Vast global flow of data requires high-speed optical communication: *Photonics*

Global reach requires precise network synchronization: *Atomic clocks*

Atomic Clocks

The Electronic Age

Vast global flow of data requires high-speed optical communication: *Photonics*

Global reach requires precise network synchronization: *Atomic clocks*

Image: E. Edwards, JQI

Atomic Clocks

Constellations of Atomic Clocks Aboard Earth Satellites

ASS Global Navigation Satellite Systems (GNSS):

- Global Positioning System GPS (USA)
- GLONASS (Russia)
- Galileo (Europe)

Regional coverage:

- BeiDou (China)
- NAVIC (India)

•

The Electronic Age

Vast global flow of data requires high-speed optical communication: *Photonics*

Global reach requires precise network synchronization: *Atomic clocks*

Atom – most precise oscillator – sets the standard of time

NIST

Suplee,

ပ

Image:

Internet int

Global reach requires precise network synchronization: *Atomic clocks*

The clock in the control room of the Laser Interferometer Gravitational-Wave Observatory at Hanford, WA, displays PST and GPS Time (in seconds).

Shown on a GPS-enabled smartphone.

Atomic Clocks

The original atomtronic devices

Image: eBay

Global reach requires precise network synchronization: *Atomic clocks*

Get your own atomic clock on eBay for about a hundred bucks (plus shipping)

Quantum Computers and Atomic Clocks

NIST

Image:

QUANTUM COMPUTERS AND ATOMIC CLOCKS

D. J. WINELAND, J. C. BERGQUIST, J. J. BOLLINGER, R. E. DRULLINGER, AND W. M. ITANO NIST,*Time and Frequency Division, Boulder, CO, 80305-3328, USA david.wineland@boulder.nist.gov

Recent developments in quantum information processing may be applicable to future atomic clocks. In this paper we discuss two potential applications to trappedion frequency standards. In the first, quantum-mechanical entanglement can provide a resource for increased measurement precision in spectroscopy. In the second, we indicate how a simultaneously trapped auxiliary ion species can be used to provide cooling and as a quantum measuring device; this could be used to increase the number of ion species than can be used as frequency standards.

1 Introduction

The subject of quantum information processing (QIP) has recently received attention because quantum computers could provide a substantial speedup in factoring numbers¹ and in searching databases.² In spite of considerable interest in these goals, it is generally agreed that a quantum computer capable of useful factorization or searching (beyond what is possible with classical computers) will, at best, be extremely difficult to achieve in any currently proposed implementation.^{3,4} Nevertheless, it is highly likely that other, more tractable applications of QIP will be found and implemented. This paper cites two possible applications of QIP to frequency standards based on trapped atomic ions. Although the basic ideas for these applications emerged before the tidal wave of interest in QIP appeared (ca. 1995), these ideas have matured more rapidly due to advances in QIP. The first application, which we only summarize here, is to use entanglement to reduce frequency instability $\sigma_y(\tau)$ to the minimum level allowed by quantum mechanics. The second application uses the ideas of QIP to remove the functions of cooling and detection from the ion that is used for the frequency standard and place these functions on a second, simultaneously trapped ion species.

http://bit.ly/AtomQC

Only have time to read just one atomic physics paper in your life?

Try this.

David J. Wineland 2012 Nobel Prize in Physics

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

Atoms

- Identical
- Stable
- Quantum
- Diverse

	Group	N	A 4		ERI													18
	1 IA		Atol	mic F	ents	Standards and lechnology												
	1 2S _{1/2} FREQUENTLY USED FUNDAMENTAL PHYSICAL CO							L CONSTANT	ONSTANTS§			Phy			U.S. Department of Commerce vsical Measurement Laboratory www.nist.gov/pml			
	H			1 second = 9 192 631 770 periods of transition between the two hyperfine le										Standard Reference Data www.nist.gov/srd				
1	Hydrogen 1 008*		s	speed of light in vacuum c Planck constant h elementary charge e electron mass m _e			c 299 792 458 m s ⁻¹ h 6.626 070 x 10 ⁻³⁴ J s		(exact) s $(\hbar = h/2\pi)$	§ For the most accurate values of these and other constants, visit pml.nist.gov/constants							Helium 4.002602	
	1s	2										13	14	15 VA	16	17	1s ²	
	13.5984 3 ² S _{1/2}	IIA 4 ¹ S ₀					9.109 384	x 10 ⁻³¹ kg		pin	printing governed to		111A 5 ² P ^o _{1/2}	IVA 6 ³ P ₀		VIA 8 ³ P ₂	VIIA 9 ² P _{3/2}	24.5874 10 ¹ S ₀
	Li Be		n	proton mass		m _e c² m _p		0.510 999 MeV 1.672 622 x 10 ⁻²⁷ kg		Solids		B	C	N 3/2	O	F	Ne	
2	Lithium	Lithium Beryllium fine-structure constant at 6.94* 9.0121831 Rydberg constant R 1s ² 2s 1s ² 2s ² R R 5.3917 9.3227 R R		ine-structure of	-structure constant a		1/137.035 999			Liquids		Boron	Carbon	Nitrogen	Oxygen 15.999*	Fluorine	Neon	
	1s ² 2s			R _m R _m c	10 973 731.569 m ⁻¹ 3.289 841 960 x 10 ¹⁵ Hz				Gases Artificially		10.81* 1s ² 2s ² 2p	12.011* 1s ² 2s ² 2p ²	14.007* 1s ² 2s ² 2p ³	1s ² 2s ² 2p ⁴	18.99840316* 1s ² 2s ² 2p ⁵	20.1797 1s ² 2s ² 2p ⁶		
	5.3917 11 ² S _{1/2}			alactron volt	R _w hc eV		13.605 693 eV 1.602 176 6 x 10 ⁻¹⁹ J			Prepared		8.2980 13 ² P _{1/2}	11.2603 14 ³ P ₀	14.5341 15 ⁴ S ^o _{3/2}	13.6181 16 ³ P ₂	17.4228 17 ² P ^o _{3/2}	21.5645 18 ¹ S ₀	
	Na	Mg	E	Boltzmann constant		k 1,380,65 x		10 ⁻²³ J K ⁻¹					Al	Si	P	S		Ar
3	Sodium	Magnesium 24.305*		nolar gas cons		R	8.314 5 J m		-				Aluminum	Silicon	Phosphorus	Sulfur	Chlorine 35.45*	Argon
	22.98976928 [Ne]3s	[Ne]3s ²	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 — VIII —	10	11 IB	12 IIB	26.9815385 [Ne]3s ² 3p	28.085* [Ne]3s ² 3p ²	30.97376199* [Ne]3s ² 3p ³	32.06* [Ne]3s ² 3p ⁴	[Ne]3s ² 3p ⁵	39.948 [Ne]3s ² 3p ⁶
	5.1391 19 ² S _{1/2}	7.6462 20 ¹ S ₀	21 ² D _{3/2}		23 ⁴ F _{3/2}			26 ⁶ D ₄		28 ³ F ₄			5.9858 31 ² P ^o _{1/2}	8.1517 32 ³ P ₀	10.4867 33 ⁴ S ^o _{3/2}	10.3600 34 ³ P ₂	12.9676 35 ² P ^o ₃₂	15.7596 36 ¹ S ₀
g	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Period 4	Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58,6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78,971	Bromine 79,904*	Krypton 83,798
D	[Ar]4s	[Ar]4s ²	[Ar]3d4s ²	[Ar]3d ² 4s ²	[Ar]3d ³ 4s ²	[Ar]3d ⁵ 4s	[Ar]3d ⁵ 4s ²	[Ar]3d ⁶ 4s ²	[Ar]3d ⁷ 4s ²	[Ar]3d ⁸ 4s ²	[Ar]3d ¹⁰ 4s	[Ar]3d ¹⁰ 4s ²	[Ar]3d ¹⁰ 4s ² 4p	[Ar]3d ¹⁰ 4s ² 4p ²	[Ar]3d ¹⁰ 4s ² 4p ³	$[Ar]3d^{10}4s^{2}4p^{4}$	[Ar]3d ¹⁰ 4s ² 4p ⁵	[Ar]3d ¹⁰ 4s ² 4p ⁶
	4.3407 37 ² S _{1/2}	6.1132 38 ¹ S _n	6.5615 39 ² D _{3/2}	6.8281 40 ³ F ₂	6.7462 41 ⁶ D _{1/2}	6.7665 42 ⁷ S ₃	7.4340 43_6S _{5/2}	7.9025 44 ⁵ F ₅	7.8810 45 ⁴ F _{9/2}	7.6399 46 ¹ S ₀	7.7264 47 ² S _{1/2}	9.3942 48 ¹ S ₀	5.9993 49 ² P _{1/2}	7.8994 50 ³ P ₀	9.7886 51 ⁴ S ^o _{3/2}	9.7524 52 ³ P ₂	11.8138 53 ² P _{3/2}	13.9996 54 ¹ S ₀
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5	Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121,760	Tellurium 127.60	lodine 126.90447	Xenon 131,293
	[Kr]5s 4,1771	[Kr]5s ² 5.6949	[Kr]4d5s ² 6.2173	[Kr]4d ² 5s ² 6.6339	[Kr]4d ⁴ 5s 6.7589	[Kr]4d ⁵ 5s 7.0924	[Kr]4d ⁵ 5s ² 7,1194	[Kr]4d ⁷ 5s 7.3605	[Kr]4d ⁸ 5s 7.4589	[Kr]4d ¹⁰ 8.3369	[Kr]4d ¹⁰ 5s 7.5762	[Kr]4d ¹⁰ 5s ² 8.9938	[Kr]4d ¹⁰ 5s ² 5p 5.7864		[Kr]4d ¹⁰ 5s ² 5p ³ 8.6084	[Kr]4d ¹⁰ 5s ² 5p ⁴ 9.0097	[Kr]4d ¹⁰ 5s ² 5p ⁵ 10.4513	[Kr]4d ¹⁰ 5s ² 5p ⁶ 12.1298
	55 ² S _{1/2}	5.6949 56 ¹ S ₀	6.2173	72 ³ F ₂	73 ⁴ F _{3/2}	74 ⁵ D ₀		7.5005 76 ⁵ D ₄	7.4589 77 ⁴ F _{9/2}			80 ¹ S ₀	81 ² P ^o _{1/2}	82 ³ P ₀	83 ⁴ S _{3/2}	84 ³ P ₂	85 ² P _{3/2}	86 ¹ S ₀
-	Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6	Cesium 132.9054520*	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200,592	Thallium 204.38*	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
	[Xe]6s 3.8939	[Xe]6s ² 5.2117		[Xe]4f ¹⁴ 5d ² 6s ² 6.8251	[Xe]4f ¹⁴ 5d ³ 6s ² 7.5496	[Xe]4f ¹⁴ 5d ⁴ 6s ² 7.8640	[Xe]4f ¹⁴ 5d ⁵ 6s ² 7.8335	[Xe]4f ¹⁴ 5d ⁶ 6s ² 8.4382	[Xe]4f ¹⁴ 5d ⁷ 6s ² 8.9670	[Xe]4f ¹⁴ 5d ⁹ 6s 8.9588			[Hg]6p 6.1083	[Hg]6p ² 7,4167	[Hg]6p ³ 7.2855	[Hg]6p ⁴ 8,414	[Hg]6p ⁵ 9.3175	[Hg]6p ⁶ 10.7485
	87_2 ^s 1/2	88 ¹ S ₀		104 ³ F ₂	105 4F3/2		107 5/2	108 4	109	110	111	112	113	114	115	116	117	118
_	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
7	Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (271)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)
	[Rn]7s 4.0727	[Rn]7s ² 5.2784		[Rn]5f ¹⁴ 6d ² 7s ² 6.01	[Rn]5f ¹⁴ 6d ³ 7s ² 6.8	[Rn]5f ¹⁴ 6d ⁴ 7s ² 7.8	[Rn]5f ¹⁴ 6d ⁵ 7s ² 7.7	[Rn]5f ¹⁴ 6d ⁶ 7s ² 7.6				(200)	(200)	(200)	(200)	(200)	(20.1)	(10.1)
	4.0727	0.2704				1.0												
	Atomic Number	Ground-state Level	ese es	57 ² D _{3/2}			60 ⁵ I ₄	61 ⁶ H ^o _{5/2}		63 ⁸ S ^o _{7/2}				67 ⁴ 1° _{15/2}		69 ² F ^o _{7/2}		71 ² D _{3/2}
	58	۱ ¹ G₄°	Lanthanides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu
S	ymbol	\mathbf{C}	anth	Lanthanum 138.90547	Cerium 140.116	Praseodymium 140.90766	144.242	Promethium (145)	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158.92535	Dysprosium 162.500	Holmium 164.93033	Erbium 167.259	Thulium 168.93422	Ytterbium 173.045	Lutetium 174.9668
Na	me	Ce erium	4	5.5769	[Xe]4f5d6s ² 5.5386	[Xe]4f ³ 6s ² 5.473	[Xe]4f ⁴ 6s ² 5.5250	[Xe]4f ² 6s ² 5.582	[Xe]4f ⁵ 6s ² 5.6437	[Xe]4f ⁷ 6s ² 5.6704	[Xe]4f ⁷ 5d6s ² 6.1498	[Xe]4f ⁹ 6s ² 5.8638	[Xe]4f ¹⁰ 6s ² 5.9391	[Xe]4f ¹¹ 6s ² 6.0215	[Xe]4f ¹² 6s ² 6.1077	[Xe]4f ¹³ 6s ² 6.1843	[Xe]4f ¹⁴ 6s ² 6.2542	[Xe]4f ¹⁴ 5d6s ² 5.4259
Stan	dard14	40.116	S	89 ² D _{3/2}	90 ³ F ₂	91 ⁴K _{11/2}		93 ⁶ L _{11/2}	94 ⁷ F ₀	95 ⁸ S ^o _{7/2}	96 ⁹ D ₂ °	97 ⁶ H ^o _{15/2}	98 ⁵ I ₈	99 ⁴ I ^o _{15/2}	100 ³ H ₆	101 ² F ^o _{7/2}	102 ¹ S ₀	103 ² P ^o _{1/2}
Ator Weigh	tt (De)]4f5d6s ² .5386~	Actinides	Ac Actinium	Th Thorium	Pa Protactinium	Uranium	Neptunium	Pu Plutonium	Am	Curium	Berkelium	Cf Californium	Es	Fm Fermium	Mandakavium	No Nobelium	Lr
0	round-state	lonization	Acti		232.0377	231.03588	238.02891	(237)	(244)	Americium (243)	(247)	(247)	(251)	Einsteinium (252)	(257)	Mendelevium (258)	(259)	Lawrencium (266)
	onfiguration	Energy (e)		[Rn]6d7s ² 5.3802	[Rn]6d ² 7s ² 6.3067	[Rn]5f ² 6d7s ² 5.89	[Rn]5f ³ 6d7s ² 6.1941	[Rn]5f ⁴ 6d7s ² 6.2655	[Rn]5f ⁶ 7s ² 6.0258	[Rn]5f ⁷ 7s ² 5.9738	[Rn]5f ² 6d7s ² 5.9914	(Rn]5f ⁹ 7s ² 6.1978	[Rn]5f ¹⁰ 7s ² 6.2817	[Rn]5f ¹¹ 7s ² 6.3676	[Rn]5f ¹² 7s ² 6.50	[Rn]5f ¹³ 7s ² 6.58	[Rn]5f ¹⁴ 7s ² 6.65	[Rn]5f ¹⁴ 7s ² 7p 4.96
†Bas	ed upon ¹² C	() indicates t	the mass nu	umber of the lo	ongest-lived i	sotone		*For th	he most accu	irate value v	visit ciaaw.org			For	a descriptio	n of the data	, visit pml n	ist.gov/data
	aperi di	0			geet in our													nuary 2017)

Atoms

- Identical
- Stable
- Quantum
- Diverse
- Electronic "vibrations"
- Light excitations

The "virtual orchestra" of atomic oscillators in the Sun's atmosphere.

Alfred Landé 1888-1976

Atomtronics timeline

Image: E. Edwards, JQI

Atomtronics timeline

Atomtronics applications

Image: JILA

New Journal of Physics Focus on Atomtronics-enabled Quantum Technologies http://j.mp/At0mtr0nics

> Precision measurement – quantum-enhanced clocks, matter-wave interferometry Sensing: magnetometry, gravity/gradiometry, rotation, acceleration Novel scanning probe microscopy Novel superconductivity and superfluidity Experimental quantum logic Novel magnetism and synthetic magnetic fields

Simulating complex quantum systems

Recent atomtronic devices

Portable BEC chamber (2014)

Bartin L

nature

Battery (2017)

ColdQuanta

Atomtronics today

CIANTUS

SOS

First Bose-Einstein condensate in space

0.5 m

Elektronik

Batterien

MAIUS 1 Sounding Rocket Mission

- MAIUS: Matter-Wave Interferometry in Microgravity
- Launched 23 January 2017 in northern Sweden
- Produced Bose-Einstein condensate on board
- Performed 100 experiments in matter-wave interferometry