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Adiabatic dynamics

Slow driving of a system

Provides good control

No excitations

So, why shortcuts?
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Well …
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Shortcuts to adiabaticity

Fast non-adiabatic process that mimics adiabatic dynamics
e.g. to prepare a state 

[Review: Adv. At. Mol. Opt. Phys. 62, 117 (2013)]

Processes: Expansion, transport, splitting, adiabatic passage, phase transitions, …

Systems: ultracold atoms, ions chains, quantum dots, spin systems, NVC, …

Experiments: Nice, NIST, Mainz, PTB, MPQ, Florence, Trento, Tsukuba, …

Adolfo del Campo:   adolfo.delcampo@umb.edu



Loading optical lattice
Masuda, Nakamura, AdC PRL 113, 063003 (2014)
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Transport
Deffner, Jarzynski, AdC PRX 4, 021013 (2014)
An,  Lv, AdC, Kihwan Kim,  arXiv:1601.05551

Adiabatic crossing of 
quantum phase transition

AdC, Rams, Zurek PRL 109, 115703 (2012)
Saberi, Opatrný, Mølmer, AdC, PRA 90, 060301(R) 

AdC & Sengupta, EPJ ST 224, 189 (2015)
Rams, Mohseni, AdC, TBS (2015)

Topological Defect suppression 
AdC et al. PRL105, 075701 (2010) 
AdC et al. NJP 13, 083022 (2011)

Pyka et al. Nat. Commun. 4, 2291 (2013)
AdC, Kibble, Zurek, JPCM 25, 404210 (2013)

AdC & Zurek Int. J. Mod. Phys. A 29, 1430018 (2014)

Quantum microscopy
AdC, EPL 96, 60005 (2011)

AdC, PRA 84, 031606(R) (2011)
AdC, PRL 111, 100502 (2013)

Quantum thermodynamics
Chen et al, PRL 104, 063002 (2010)

AdC & Boshier, Sci. Rep. 2, 648 (2012)
AdC, Goold, Paternostro Sci. Rep. 4, 6208 (2014)
Jaramillo, Beau, AdC, arXiv:1510.04633 (2016)
Beau, Jaramillo, AdC, Entropy 18, 168 (2016) 

Shortcuts to adiabaticity

And  many other applications
(chemical rate processes, quantum logic gates,  soliton dynamics, atom interferometry, …) 



Consider driving a system Hamiltonian

Write the adiabatic approximation

Universal approach: Counterdiabatic driving

Ĥ0(t)|n(t)� = En(t)|n(t)�

|�n(t)⇤ = exp


� i

~

Z t

0
En(s)ds�

Z t

0
⇥n(s)|⇥sn(s)⇤ds

�
|n(t)⇤
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Consider driving a system Hamiltonian

Write the adiabatic approximation

Is there a Hamiltonian for which the adiabatic approximation is exact?

Ĥ0(t)|n(t)� = En(t)|n(t)�

i~⇥t|�n(t)� = Ĥ(t)|�n(t)�

|�n(t)⇤ = exp


� i

~

Z t

0
En(s)ds�

Z t

0
⇥n(s)|⇥sn(s)⇤ds

�
|n(t)⇤
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Universal approach: Counterdiabatic driving



Consider driving a system Hamiltonian

Write the adiabatic approximation

Is there a Hamiltonian for which the adiabatic approximation is exact?

Yes, indeed!

Ĥ0(t)|n(t)� = En(t)|n(t)�

Ĥ(t) ⌘ Ĥ0(t) + Ĥ1(t)

Ĥ1(t) = i~
X

n

(|�tn⇤⇥n|� ⇥n|�tn⇤|n⇤⇥n|)
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|�n(t)⇤ = exp
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Universal approach: Counterdiabatic driving



\

Is there a Hamiltonian for which the adiabatic approximation is exact?

Yes, indeed!

Counterdiabatic driving

Ĥ(t) ⌘ Ĥ0(t) + Ĥ1(t)

i~⇥t|�n(t)� = Ĥ(t)|�n(t)�

Ĥ1(t) = i~
X

n 6=m

X

m

|m⇤⇥m|�tĤ0|n⇤⇥n|
En(t)� Em(t)
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Theory: Demirplak & Rice 2003; = M. V. Berry 2009 “Transitionless quantum driving”
CD inspired experiment for TLS: Morsch’s group Nature Phys. 2012; NVC: Suter’s group PRL 2013



Counterdiabatic driving: Experiments

Adolfo del Campo

CD for 2 & 3 Level systems

CD for systems with Continuous Variables



Shortcuts to adiabaticity:
superadiabatic expansion?

Adolfo del Campo:   adolfo.delcampo@umb.edu



Standard expansion

Excitation of the breathing mode of the cloud

Opening the trap

from sudden to adiabatic

: width of the cloud

Adolfo del Campo



Quantum gases

Interacting quantum fluids

Scaling-invariant dynamics when 

Adolfo del Campo

V (�r) = ��2V (r)

Ĥ =
NX

i=1


� ~2
2m

r2 +
1

2
m!(t)2r2i

�
+

X

i<j

V (ri � rj)

A. del Campo, PRL 111, 100502 (2013)



Quantum gases

Interacting quantum fluids

Counterdiabatic
Driving?

Spectral properties unavailable, even by numerical methods

Adolfo del Campo

Ĥ =
NX

i=1


� ~2
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r2 +
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2
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+

X

i<j

V (ri � rj)

A. del Campo, PRL 111, 100502 (2013)



More general case

Ĥ0(t) =
NX

i=1


� ~2
2m

�qi +
1

2
m⇥2(t)q2

i + U(qi, t)

�
+ �(t)

X

i<j

V (qi � qj)
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�(t) =


!(0)

!(t)

�1/2
U(q, t) =

1
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✓
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�(t)
, 0

◆
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Quantum gases

A. del Campo, PRL 111, 100502 (2013)



Quantum gases

More general case

Scaling ansatz

Nonlocal auxiliary Hamiltonian

Ĥ0(t) =
NX

i=1


� ~2
2m

�qi +
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2
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i + U(qi, t)
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A. del Campo, PRL 111, 100502 (2013)



Quantum gases

More general case

Scaling ansatz

Unitary transformation 

LOCAL auxiliary Hamiltonian

Ĥ0(t) =
NX
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A. del Campo, PRL 111, 100502 (2013)
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Experiments: Thermal cloud, BEC and 1D Bose gas

Shortcut vs standard expansion

Experiments: 1D Bose gas
Rohringer et al. Sci. Rep. 5, 9820 (2015)
Experiments: mean-field BEC
J.-F. Schaff et al. EPL 93, 23001 (2011) 
Experiments: single-particle 
J.-F. Schaff et al. Phys. Rev. A 82, 033430 (2010)

Adolfo del Campo:   adolfo.delcampo@umb.edu

Theory (quantum fluids) 
Chen et al.  PRL 104, 063002 (2010) 
AdC PRA 84, 031606(R) (2011)
AdC PRL 111, 100502 (2013)



Experiments: Strongly-coupled quantum fluids

Adolfo del Campo:   adolfo.delcampo@umb.edu

Theory
Quantum fluids 
AdC PRA 84, 031606(R) (2011)
AdC PRL 111, 100502 (2013)
Papoular & Stringari
PRL 115, 025302 (2015)

Experiment
Self-similar dynamics
Deng et al Science 353, 371 (2016)
STA in anisotropic unitary Fermi gas
Deng et al arXiv:1610.09777

Non-STA at ideal Fermi gas

Non-STA at unitary Fermi gas

0 2000 4000 6000 8000 10000 12000

1

2

3

4

t (μs)

A

3D anisotropic Fermi gas:
• Non-interacting
• At unitarity: emergent scale invariance (broken at finite coupling)



Nonharmonic traps? Boxes?

UT Austin all optical box 
at Raizen’s Lab  
PRA, 71, 041604(R) (2005). 

Cambridge’s boxes
A. L. Gaunt, Z. Hadzibabic, 
Sci. Rep. 2, 721 (2012)

Boshier’s group at LANL
New J. Phys. 11, 043030 (2009)

+ implementations in atom chips



Quantum piston

Adolfo del Campo

AdC & Boshier, Sci. Rep 2, 648 (2012)
AdC, PRL 111, 100502 (2013)

!  Condensed'ma*er/quantum'simula2on:'Defect'suppression'

! 'Classical'&'Quantum'thermodynamics:'cooling,'engines'

! 'Quantum'informa2on'&'op2cs:'decoherence,'noise'

Shortcuts'to'adiab2city'(STA):'
Fast'nonEadiaba2c'processes'that'mimic'adiaba2c'dynamics''

by'controlling'excita2ons'

!!normal!expansion!!!!!!!!!!!shortcut!to!adiaba3city!!!
Quantum!Piston!!



Quantum piston

Adolfo del Campo

AdC & Boshier, Sci. Rep 2, 648 (2012)
AdC, PRL 111, 100502 (2013)

!  Condensed'ma*er/quantum'simula2on:'Defect'suppression'

! 'Classical'&'Quantum'thermodynamics:'cooling,'engines'

! 'Quantum'informa2on'&'op2cs:'decoherence,'noise'

Shortcuts'to'adiab2city'(STA):'
Fast'nonEadiaba2c'processes'that'mimic'adiaba2c'dynamics''

by'controlling'excita2ons'

!!normal!expansion!!!!!!!!!!!shortcut!to!adiaba3city!!!
Quantum!Piston!!It already implies transport!



Fast-forward technique

Theory: Masuda & Nakamura 2008, 2010, 2011
Experiments: ???

Adolfo del Campo

Scale invariance is kind of classical

Really needed?



Consider the dynamics (mean-field)

Ansatz for the evolution

where

Fast-forward technique

Theory: Masuda & Nakamura 2008, 2010, 2011
Experiments: ???

i~�t� = � ~2
2m

⇥2�+ (V + Vau)�+ g|�|2�,

�(q, t) = �[q, R(t)]ei�(q,t)e�
i
~
R t
0 µ[R(t0)]dt0

� ~2
2m

⇥2� + V� + g|�|2� = µ�.
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Consider the dynamics (mean-field)

Ansatz for the evolution

where

Substituting ansatz, separating real and imaginary parts

determine the auxiliary driving potential

Fast-forward technique

Theory: Masuda & Nakamura 2008, 2010, 2011
Experiments: ???

i~�t� = � ~2
2m

⇥2�+ (V + Vau)�+ g|�|2�,

�(q, t) = �[q, R(t)]ei�(q,t)e�
i
~
R t
0 µ[R(t0)]dt0

� ~2
2m

⇥2� + V� + g|�|2� = µ�.

Vau(q, t) = � ~2
2m

(⇥�)2 � ~⇥t�

�2�+ 2� ln⇥ ·��+
2m

~ Ṙ⇤R ln⇥ = 0

Adolfo del Campo



Tapas selection
Matter wave splitting Ground-state 

optical lattice loading

Adolfo del Campo

Masuda, Nakamura, AdC
PRL 113, 063003 (2014) 

Masuda & Nakamura,
PRSA 466, 1135 (2010)
Torrontegui et al
PRA 87, 033630 (2013) 

Generation of 
NOON states

Schloss et al.
NJP 18, 035012 (2016)

Auxliary potential 
≈ bichromatic lattice

Require shaping potential:   Ideally suited for painted-potential techniques



Fast-forward technique

Adolfo del Campo

Scale invariance is kind of classical

Really needed?

Protocols become energy/state dependent

Critical systems:
AdC, Rams, Zurek PRL 109, 115703 (2012)

Saberi,  Opatrný, Mølmer, AdC PRA 90, 060301(R) (2014)
Optical lattices:

Masuda, Nakamura, AdC PRL 113, 063003 (2014)
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Part II
Shortcuts to adiabatic transport

Adolfo del Campo:   adolfo.delcampo@umb.edu

Shuoming An, Dingshun Lv, AdC, Kihwan Kim, Nat. Commun 7, 12999 (2016) 



Counterdiabatic transport

Transport of quantum fluids

Scale-invariant evolution of an initial stationary state

NONLOCAL counterdiabatic term

Adolfo del Campo

S. Deffner, C. Jarzynski, A. del Campo, PRX 4, 021013 (2014)

Ĥ =
NX

i=1

h
� ~2

2m
�2 + U [ri � f(t)]

i
+

X

i<j

V (ri � rj),

�(r1, . . . , rN ; t) = e�iµt/~� [r1 � f(t), . . . , rN � f(t); 0]

Ĥ1 = �i~
NX

i=1

ḟ@ri =
NX

i=1

ḟ · pi.



Counterdiabatic transport

Transport of quantum fluids

Scale-invariant evolution of an initial stationary state

LOCAL CD term 
via unitary transformation

Adolfo del Campo

Ĥ =
NX

i=1

h
� ~2

2m
�2 + U [ri � f(t)]

i
+

X

i<j

V (ri � rj),

�(r1, . . . , rN ; t) = e�iµt/~� [r1 � f(t), . . . , rN � f(t); 0]

U = exp

⇢
im

~

NX

i=1

˙f · ri � i
m

2

Z t

0

˙f(t0)2dt0
�
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NX

i=1

mf̈ · ri

S. Deffner, C. Jarzynski, A. del Campo, PRX 4, 021013 (2014)



Counterdiabatic transport

Transport of quantum fluids

Scale-invariant evolution of an initial stationary state

LOCAL CD term 
via unitary transformation

Adolfo del Campo

Ĥ =
NX

i=1

h
� ~2

2m
�2 + U [ri � f(t)]

i
+

X

i<j

V (ri � rj),

�(r1, . . . , rN ; t) = e�iµt/~� [r1 � f(t), . . . , rN � f(t); 0]

U = exp

⇢
im

~

NX

i=1
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m

2

Z t

0

˙f(t0)2dt0
�

ĤCD =Ĥ �
NX

i=1

mf̈ · ri

S. Deffner, C. Jarzynski, A. del Campo, PRX 4, 021013 (2014)

Single-particle:
S. Masuda, K. Nakamura, Proc. R. Soc. A 466, 1135 (2010)
E. Torrontegui et al, Phys.  Rev.  A83,013415 (2011).
Many-particle:
S. Masuda, Phys. Rev. A 86, 063624 (2012)
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• Single trapped 171Yb+ ion

• Raman beams exert the force

• Dipole approximation

• Rotating Wave approximation (RWA)

• Lamb-Dicke regime

Ĥe↵ = p̂2/2m+m!2x̂2 + f(t)x̂

Ĥe↵ = f(t)x0

⇣
âe�i(!t+� + â†e+i(!t+�

⌘

Recipe for a dragged harmonic oscillator 

ĤCD = � ḟ(t)

m!2
p̂
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Comparison of transport protocols

Counterdiabatic driving is maximally robust

Shuoming An et al. Nat. Commun 7, 12999 (2016) 



Adolfo del Campo:   adolfo.delcampo@umb.edu

Robustness against trap frequency errors

Maximally robust STA via Counterdiabatic Driving

Shuoming An et al. Nat. Commun 7, 12999 (2016) 



Contents

1. Shortcuts: a survey

2. Superadiabatic transport

3. Transport in bent waveguides

4. Quantum thermodynamics

Adolfo del Campo



Part III
Design of bent waveguides
Tailoring curvature effects

Adolfo del Campo

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)
Ryu & Boshier New J. Phys 17, 092002 (2015) 



Curvature-induced potential (CIP)

Adolfo del Campo

u Waveguide with non-zero curvature

u Dimensional reduction of the Schrödinger equation 
under tight transverse confinement

u Emergence of quantum-mechanical local attractive potential

Curvature: rate of change of unit tangent vector  

Switkes, Russel & Skinner, J. Chem. Phys. 67, 3061(1977)
da Costa, Phys. Rev. A 23, 1982 (1981)
Exner & Seba, J. Math. Phys. 30, 2574 (1989)

VCIP(q) = � ~2

8m
(q)2

(q) =

����
dT

dq

����



Curvature effects in atomtronics

Adolfo del Campo

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)

Curvature affects scattering properties in atom circuits

Example: wavepacket splitting

time



Supersymmetric Quantum Mechanics

Adolfo del Campo

Cooper, Khare, Sukhatme, Phys. Rep. 251, 267 (1995)

u Supersymmetric quantum mechanics identifies families of reflectionless potentials

SUSY partner Hamiltonians share scattering properties



Supersymmetric Quantum Mechanics

Adolfo del Campo

SUSY QM identifies families of reflectionless potentials via a superpotential

SUSY partner Hamiltonians share scattering properties

H± =
p2

2m
+ V±(x) V±(x) = ⌥ ~p

2m
�(q)0 + �(q)2

Cooper, Khare, Sukhatme, Phys. Rep. 251, 267 (1995)

�(q)



Supersymmetric reflectionless waveguides

Adolfo del Campo

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)

u Supersymmetric quantum mechanics identifies families of reflectionless potentials

SUSY partner Hamiltonians share scattering properties

Goal: 
Design reflectionless bent waveguides with unit transmission probability

Idea: 
Choose curvature-induced potential that is SUSY partners of  V(x)=0 
(free dynamics/straight waveguide)



Supersymmetric reflectionless waveguides

Adolfo del Campo

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)

u Supersymmetric quantum mechanics identifies families of reflectionless potentials

Unit transmission probability at any energy

u Curvature relation between SUSY waveguides

u Curvature specifies uniquely the waveguide shape (Frenet-Serret equations)

u Choose curvature to make CIP reflectionless, isospectral to straight waveguide

2
+(q1) = 2

�(q1)�
8
p
2m

~ �0(q1)



Supersymmetric reflectionless waveguides

Adolfo del Campo

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)

u Supersymmetric quantum mechanics identifies families of reflectionless potentials
u Choose curvature to make CIP reflectionless

Curved waveguide Curved SUSY waveguide

isospectral to straight waveguide



Curvature-induced effects: Elliptical waveguide potentials

Adolfo del Campo

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)



Elliptical waveguide potentials: Quantum carpets 

Adolfo del Campo

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)

Released  localized wavepacket
Talbot oscillations 

in the density profile

a) Periodic pattern in the density 
profile in a ring trap 

[see Friesch et al. New J. Phys. 2, 4 (2000)]

b) Suppressed by curvature in c       
elliptical trap

c) Recovered in elliptical trap with 
cancelled curvature-induced 
potential: isospectral to ring trap
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del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014)

Released  localized wavepacket
Talbot oscillations 

in the density profile

a) Periodic pattern in the density 
profile in a ring trap 

[see Friesch et al. New J. Phys. 2, 4 (2000)]

a) Suppressed by curvature in 
elliptical trap

b) Recovered in elliptical trap with 
cancelled curvature-induced 
potential: isospectral to ring trap

Coming developments

UAB group/V. Ahufinger & J. Mompart

SUSY QM + Spatial Adiabatic Passage

Elliptical waveguide potentials: Quantum carpets 



Part IV
Quantum thermal machines

Adolfo del Campo:   adolfo.delcampo@umb.edu



Quantum Heat Engines (e.g. Otto Cycle)

Adolfo del Campo:   adolfo.delcampo@umb.edu



Performance of a QHE

Efficiency: work done/heat absorbed Power: work done per cycle time

Adolfo del Campo:   adolfo.delcampo@umb.edu

P = �hW i1 + hW i3P4
j=1 ⌧j

⌘ = �hW1i+ hW3i
hQ2i

hW i = hHf i � hHii
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(Phys.org)—A lot of attention has been given to the differences 
between the quantum and classical worlds. […] 
However, when it comes to certain areas of thermodynamics—
specifically, thermal engines and refrigerators—quantum and 
classical systems so far appear to be nearly identical. 

When is quantum thermo really quantum?



Many-particle thermal machines

Adolfo del Campo:   adolfo.delcampo@umb.edu



Many-particle QHE

Single N-particle engine       vs N single-particle engines?

…

What substance is optimal  as working medium?

Adolfo del Campo:   adolfo.delcampo@umb.edu



Many-particle QHE (Otto cycle)

Adolfo del Campo:   adolfo.delcampo@umb.edu



Many-particle working medium

Interacting quantum fluids

Scaling-invariant dynamics when 

A. del Campo, PRL 111, 100502 (2013)
Adolfo del Campo

V (�r) = ��2V (r)

Ĥ =
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2
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X

i<j
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Exact Finite-time thermodynamics

Scale-invariant dynamics with dynamical symmetry [SU(1,1)]

Scaling factor obeys Ermakov equation

Nonadiabatic factor

Adolfo del Campo:   adolfo.delcampo@umb.edu

hH(t)i = 1

b2
hH(0)i+

NX

i=1

ḃ

2b
h{zi, pi}(0)i+

NX

i=1

m

2
(ḃ2 � bb̈)hz2i (0)i

Q⇤(t) =
!0

!(t)

 
1

2b2
+

!(t)2

2!2
0

b2 +
ḃ2

2!2
0

!

b̈+ !(t)2b = !2
0/b

3

hH(t)i = Q⇤(t)hH(t)iadiab Q⇤(t) � 1

Jaramillo et al NJP 18, 075019 (2016); Beau et al Entropy 18, 168 (2016)



Example: interacting Bose gas as working medium

Working medium - interacting many-particles with tunable interactions

[1971: Calogero, J. Math. Phys. 12, 419;  Sutherland, ibid 12, 246]

Adolfo del Campo:   adolfo.delcampo@umb.edu

H =
NX

i=1


� ~2
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@2

@x2
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+
1

2
m!(t)2x2

i

�
+

~2

m

NX

i<j=1

�(� � 1)

(xi � xj)2

Jaramillo et al NJP 18, 075019 (2016); Beau et al Entropy 18, 168 (2016)



Example: interacting Bose gas as working medium

Working medium - interacting many-particles with tunable interactions

[1971: Calogero, J. Math. Phys. 12, 419;  Sutherland, ibid 12, 246]

u Includes ideal bosons and hard-core bosons (= fermions) for λ=0,1

u Exact finite-time quantum thermodynamics – no approximations

u Equivalent to ideal gas of particles obeying fractional exclusion
[Haldane PRL 67, 937 (1991); Murthy & Shankar PRL 73, 3331 (1994)]

u Universal behavior (Luttinger liquid) of 1D many-body systems

u Tunable zero-point energy + linear spectrum 
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Universal Bound to Quantum Efficiency

Mean work 

Quantum efficiency of many-particle QHE

Upper bound to quantum efficiency via nonadiabatic compression factor
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Quest for Quantum Supremacy
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Comparison                                       vs …
Worst case: sudden-quench limit (sq)

u Efficiency ratio at maximum power 

u Power ratio

r(N)
sq :=

P (N)
sq

NP (1)
sq

⇢(N)
sq :=

⌘(N)
sq

⌘(1)
sq

Jaramillo et al NJP 18, 075019 (2016)



Quantum Supremacy: noninteracting case
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Simultaneous enhancement of efficiency and power

Up to 50% efficiency enhancement

N=150

N=200

N=250

N=300

N=300

N=150

Jaramillo et al NJP 18, 075019 (2016)



Quantum Supremacy: interacting case
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λ=0
λ=0.05

λ=0.1

λ=0.2

Jaramillo et al NJP 18, 075019 (2016)



Quantum Supremacy
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Simultaneous enhancement of efficiency and power (N=200)
QS suppressed by strong interactions

λ=0
λ=1/5

λ=1/2

λ=1

Jaramillo et al NJP 18, 075019 (2016)



Quantum Supremacy

Simultaneous Enhancement 

of Efficiency and Power 

in finite-time thermodynamics
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uQuantum / low T

uMany-particle             effect

uNon-adiabatic

[Jaramillo, Beau, AdC, NJP 18, 075019]



Efficiency vs Power
Quantum efficiency

Nonadiabatic Efficiency e.g.  of a single-particle Otto cycle

Essence of finite-time thermodynamics:

Trade-off between efficiency and power
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Shortcuts as a way out of the tragedy

Shortcuts to adiabaticity

• AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014) (single-particle)

• M. Beau, J. Jaramillo, AdC, Entropy 18, 168 (2016) (many-particle)
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Quantum Heat Engines (e.g. Otto Cycle)

Adolfo del Campo:   adolfo.delcampo@umb.edu

STA to 
expansion and 

compression



Superadiabatic quantum engine
STA in unitary strokes, slower than thermalization time

Cycle at finite power and zero friction i.e., maximum efficiency

Initial state thermal

3

which can be recast as DSirr = S(rt ||req
t ) [22] with

S(rA||rB) = Tr(rAlnrA � rAlnrB) the relative entropy be-
tween two density matrices rA and rB [23], rt the time-
evolving state, and req

t = e�bĤ (t)/Tr[e�bĤ (t)] the corre-
sponding equilibrium reference state at the initial temperature
1/b . Here, hWirri quantifies the degree of friction caused by
the finite-time protocol on the expansion or compression stage
of the engine cycle at hand. When a bath is reconnected this
friction is manifested by dissipation into the bath and hence
the decrease in the overall efficiency of the motor. For sim-
plicity and for the point of demonstration we allow only this
form of irreversibility in our engine cycle although in princi-
ple the same analysis can be done for fluctuating heat flows
[24, 25].

III. FRICTION-FREE FINITE-TIME ENGINE

Recently there has been a significant amount of work de-
voted to the design of so-called super-adiabatic protocols, i.e.
shortcuts to states which are usually reached by slow adia-
batic processes [6, 7, 9]. A typical approach for shortcuts
to adiabaticity is to use ad hoc dynamical invariants to engi-
neer a Hamiltonian model that connects a specific eigenstate
of a model from an initial to a final configuration determined
by a dynamical process. Here we will rely on an approach
based on engineered non-adiabatic dynamics achieved using
self-similar transformations [8, 26].

Let us consider a quantum harmonic oscillator with time-
dependent frequency w(t) as the working medium of the en-
gine cycle [8]. The Hamiltonian model that we consider is
thus Ĥ (t) = Ĥ [w(t)] = p̂2/(2m) + mw2(t)x̂2/2, where x̂
and p̂ are the position and momentum operators of an oscil-
lator of mass m. Inspired by the scheme put forward in [19],
we will use the tunable harmonic frequency to implement the
compression and expansion steps of the Otto cycle. In line
with the experimental proposal for the realisation of a mi-
croscopic Otto motor put forward in [19], the frequency of
the harmonic trap embodies the volume of the chamber into
which the working medium is placed, while the correspond-
ing pressure is defined in terms of the change of energy per
unit frequency.

Needless to say, in the compression or expansion stage of
the Otto cycle, the frequency of the trap will have to be varied,
so that w(t) takes here the role of the work parameter l (t) in-
troduced when discussing FTs. We now suppose to subject the
working medium to a change in the work parameter occurring
in a time t and corresponding to, say, one of the friction-prone
steps of the Otto cycle. Our goal is to design an appropriate
shortcut to adiabaticity to arrange for a fast, frictionless evo-
lution between the equilibrium configuration of the working
medium at t = 0 and that at t = t . In order to do this, we re-
mind that the wavefunction fn(x, t = 0) = hx|n(0)i of an initial
eigenstate |n(0)i of Ĥ (0) is known to follow the self-similar
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FIG. 2: Work fluctuations along a shortcuts to an adiabaticity ex-
pansion. (a) Average work; (b) Standard deviation of the work; (c)
Nonequilibrium deviations from the adiabatic average mean work;
(d) We show S(rt ||req

t )/b (•) and S(rad
t ||req

t )/b (⇧) [cf. Eq. (9)]
for the same processes shown in the other panels. All quantities are
plotted in units of h̄w0 (b = 1).

evolution [8]

fn(x, t)=
1p
b(t)

exp
✓

i
mḃ(t)x2

2h̄b(t)
� i

en(0)h(t)
h̄

◆
hx/b(t)|n(0)i,

(6)
where h(t) =

R t
0 dt 0/b2(t 0), en(0) is the energy of the eigen-

state being considered at t = 0, and the scaling factor b is the
solution of the Ermakov equation

b̈(t)+w2(t)b2(t) = w2
0/b3, (7)

with the initial conditions b(0) = 1 and ḃ(0) = 0. The short-
cut to adiabaticity that we seek is then found by inverting
the Ermakov equation and complementing the previous set
of boundary conditions with ḃ(0) = b̈(0) = ḃ(t) = b̈(t) = 0,
and b(t) =

p
w0/w f with w0 = w(0) and w f = w(t). In-

stances of solutions to this problem can be found as illustrated
in the Appendix, where we give the explicit form of the scal-
ing factor b(t) such that the finite-time dynamics that takes
the initial state fn(x, t = 0) = hx|n(0)i to the final one fn(x, t =
t) = hx|n(t)i= hx/b(t)|n(t = 0)i/

p
b(t) actually mimics the

wanted adiabatic evolution (albeit for any t 2 (0,t), fn(x, t) is
in general different from the eigenstate |n(t)i of Ĥ (t)). The
choice of a harmonic oscillator is not a unique example as
similar self-similar dynamics can be induced in a large fam-
ily of many-body systems [26] and other trapping potentials,
such as a quantum piston [27].

Let us consider the fluctuations induced in the expansion
and compression stages of the Otto cycle when the above
shortcut to adiabaticity is implemented. Let us consider a
driving Hamiltonian with instantaneous eigenstates |n(t)i and
eigenvalues en(t). In the adiabatic limit, the corresponding
transition probabilities pt

nk tend to |hn(t)|k(t)i|2 = dk,n(t) for
all t 2 [0,t]. The average work simplifies then to hWad(t)i =
Ân[en(t)� en(0)]pn =

h̄[w(t)�w0]
2 coth b h̄w0

2 . On the other hand,

�W = hW i � hWadi =
1

�t
S(⇢t||⇢adt ), �t = �0✏n(0)/✏n(t)

E
max

= 1 � !(⌧)

!(0)

⇢ad
t =

X

n

p0
n|n(t)ihn(t)|
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Scalable QHE assisted by shortcuts to adiabaticity

u Thermodynamic cycle working at tunable finite power and zero friction 

u Quantum speed limits impose ultimate performance bounds

Eco-friendly Lamborghini!

Adolfo del Campo:   adolfo.delcampo@umb.edu

• AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014) (single-particle)

• M. Beau, J. Jaramillo, AdC, Entropy 18, 168 (2016) (many-particle)



Summary

Shortcuts to adiabaticity speed up processes by tailoring excitations

u Superadiabatic expansions/compressions and other processes

u Test of counterdiabatic transport with matter-waves: max. robust STA

u Waveguides: Tailoring curvature via SUSY QM and the painting potential technique

u Quantum Thermal machines: nonadiabatic effects and STA

Adolfo del Campo
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Adolfo del Campo

Energy Cost of Shortcuts to Adiabaticity

4

in a shortcut to adiabaticity, only the weaker condition pt
nk =

|hfn(t)|k(t)i|2 ! dk,n(t ! 0,t) holds. For the time-dependent
harmonic oscillator, it follows that

hW i =
h̄
2


ḃ2(t)+w2(t)b2(t)+w2

0 /b2(t)
2w0

�w0

�
coth

b h̄w0

2
.(8)

In the adiabatic limit ḃ(t) ! 0 and b(t) ! bad(t) =
[w2

0 /w2(t)]1/4.
Figure 2(a) shows that the average work hW i along a short-

cut to an adiabatic expansion in comparison with in the cor-
responding adiabatic processes hWad(t)i (the behaviour ob-
served during a shortcut to a compression is mirrored in time).
It is very important to stress that hW i is the work done on ei-
ther adiabat until the reconnection with the bath, i.e. just prior
to the isochoric heating or cooling stage. The standard devi-
ation of the work distribution DW = [hW 2i� hW i2]1/2 is dis-
played in Fig. 2(b). In turn, this provides a further characteri-
sation of the work fluctuations along the shortcut through the
width of P(W ; t). It is interesting to notice that upon comple-
tion of the stroke, the non-equilibrium deviation of both the
average work and the standard deviation from the adiabatic
trajectory disappear.

We shall now analyse the non-equilibrium deviation dW =
hW i � hWad(t)i with respect to the adiabatic work hWad(t)i.
Note that this expression is equivalent to the deviation of the
mean energy of the motor along the super-adiabats from its
(instantaneous) adiabatic expression. For an isothermal re-
versible process hWadi= DF and dW = hWirri. Differently, for
the adiabatic dynamics associated to stages 1 and 3 of the Otto
cycle, conservation of the population in |n(t)i is satisfied pro-
vided that bt = b0en(0)/en(t), as it is the case for a large-class
of self-similar processes (here, bt is introduced by noticing
that the physical adiabatic state at time t is characterised by the
occupation probabilities pt

n = e�bt et
n/Ân e�bt et

n ) [8, 26, 27].
As a result, the reference state req

t is not the physical instanta-
neous equilibrium state rad

t = Ân p0
n|n(t)ihn(t)| resulting from

the adiabatic dynamics, and we find

dW =
1
b

[S(rt ||req
t )�S(rad

t ||req
t )]. (9)

From this result, it is clear that, in general, dW 6= 0. However,
it is straightforward to check that, at the final time of the pro-
cess t = t , we have pt

nk = dk,n, which implies dW = 0 and,
in turn, the frictionless nature of the process [cf. Fig. 2(c)].
The time-evolution of the different contribution to dW , i.e.
S(rt ||req

t )/b and S(rad
t ||req

t )/b , are displayed in Figure 2(d).
This result is remarkable in the context of the quantum Otto
cycle: If the baths are reconnected at just the right time t
after both the compression and expansion stages, then the ef-
ficiency of an ideal reversible engine can be reached in finite-
time, therefore implementing a perfectly frictionless finite-
time cycle. As we have built our engine so that friction is
the only source of irreversibility, the super-adiabatic engine
clearly reaches the maximum efficiency of an ideal quasi-
static engine in a finite-time only.

Let us address a final important point. The efficiency in
Eq. (1) of an Otto cycle diminishes explicitly with the break-
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FIG. 3: Quantum cost of running the super-adiabatic expansion stage
of the quantum Otto cycle. We plot the time-averaged deviation
hdW i of the mean energy of the system from the adiabatic eigenen-
ergies. In all cases there is an effective power-law scaling of the
form hdW i ⇠ 1/t . The cut-off time is such that the confining poten-
tial remains a trap along the process, without the need for transiently
inverting it to achieved the required speed up.

down of adiabaticity [19]. In contrast, the super-adiabatic en-
gine put forward in this proposal does achieve the maximum
possible value E = 1�w(t)/w(0). It should be noted, quite
strikingly, that if unlimited resources are available, there is no
fundamental lower-bound on the running time of the adiabats
t1,3. However, it is worth taking a pragmatic approach here
and attempt at the quantification of the energy costs associ-
ated with the running of our super-adiabatic engine. To this
end, we have considered the time-averaged dissipated work
hdW i = t�1 R t

0 dWdt for t > tc, ensuring w2(t) > 0 for all
t 2 [0,t]. The cut-off time tc was taken to be the maximum
running time along the shortcut of the super-adiabat before
the trap is inverted. Indeed, when this occurs, the adiabatic
eigenenergies are not well defined, implying the break-down
of our formalism. The explicit expression for hdW i are re-
ported in the Appendix. Figure 3 shows that the cost of run-
ning the super-adiabatic engine exhibits a neat power-law be-
haviour hdW i ⇠ 1/t for a wide range of parameters. An ex-
plicit upper bound for the power of an engine run can be calcu-
lated using the fundamental limitations set by quantum speed
limit, as shown in the Appendix.

IV. CONCLUSIONS

We have demonstrated the possibility to perform a fully
frictionless quantum cycle working in a finite-time only. Our
proposal exploits the idea of shortcuts to adiabaticity, which
allowed us to bypass the detrimental effects of friction on the
compression and expansion stages in an important thermody-
namical cycle such as the Otto cycle. We believe that our
study embodies only one example of the potential brought
about by the fascinating combination of shortcuts to adiabatic-
ity and the framework for out-of-equilibrium dynamics of a
quantum system. The possibilities to achieve maximum ef-
ficiency of a quantum engine with virtually no friction, yet

�W = hW i � hWadi h�W i =
1

⌧

Z ⌧

0
�Wdt
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mean energy of the motor along the super-adiabats from its
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it is straightforward to check that, at the final time of the pro-
cess t = t , we have pt
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in turn, the frictionless nature of the process [cf. Fig. 2(c)].
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This result is remarkable in the context of the quantum Otto
cycle: If the baths are reconnected at just the right time t
after both the compression and expansion stages, then the ef-
ficiency of an ideal reversible engine can be reached in finite-
time, therefore implementing a perfectly frictionless finite-
time cycle. As we have built our engine so that friction is
the only source of irreversibility, the super-adiabatic engine
clearly reaches the maximum efficiency of an ideal quasi-
static engine in a finite-time only.
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inverting it to achieved the required speed up.

down of adiabaticity [19]. In contrast, the super-adiabatic en-
gine put forward in this proposal does achieve the maximum
possible value E = 1 � w(t)/w(0). It should be noted, quite
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and attempt at the quantification of the energy costs associ-
ated with the running of our super-adiabatic engine. To this
end, we have considered the time-averaged dissipated work
hdW i = t�1 R t

0 dWdt for t > tc, ensuring w2(t) > 0 for all
t 2 [0,t]. The cut-off time tc was taken to be the maximum
running time along the shortcut of the super-adiabat before
the trap is inverted. Indeed, when this occurs, the adiabatic
eigenenergies are not well defined, implying the break-down
of our formalism. The explicit expression for hdW i are re-
ported in the Appendix. Figure 3 shows that the cost of run-
ning the super-adiabatic engine exhibits a neat power-law be-
haviour hdW i ⇠ 1/t for a wide range of parameters. An ex-
plicit upper bound for the power of an engine run can be calcu-
lated using the fundamental limitations set by quantum speed
limit, as shown in the Appendix.

IV. CONCLUSIONS

We have demonstrated the possibility to perform a fully
frictionless quantum cycle working in a finite-time only. Our
proposal exploits the idea of shortcuts to adiabaticity, which
allowed us to bypass the detrimental effects of friction on the
compression and expansion stages in an important thermody-
namical cycle such as the Otto cycle. We believe that our
study embodies only one example of the potential brought
about by the fascinating combination of shortcuts to adiabatic-
ity and the framework for out-of-equilibrium dynamics of a
quantum system. The possibilities to achieve maximum ef-
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Beautiful history 
Passage time: Minimum time required for a state to reach an orthogonal state

Landau
Krylov
1945 Mandelstam and Tamm “MT”
1967 Fleming
1990 Anandan, Aharonov
1992 Vaidman, Ulhman
1993 Uffnik
1998 Margolus & Levitin “ML”
2000 Lloyd
2003 Giovannetti, Lloyd, Maccone: MT & ML unified 
2003 Bender: no bounds in PT-symmetric QM
2009 Levitin,Toffoli

2012 2012 Bound for open (as well as unitary) system dynamics!

Time-energy uncertainty relation
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Rate of decay of the relative purity

Master equation

Example: Markovian dynamics

2012 MT-like bound for open (as well as unitary) system dynamics

Bound to the velocity of evolution 

Time-energy uncertainty relation

Adolfo del Campo

2013
Taddei-Escher- Davidovich-de Matos Filho

AdC-Egusquiza-Plenio-Huelga
Deffner–Lutz 



Counterdiabatic terms are often nonlocal

Search for experimentally-realizable local Unitarily equivalent Hamiltonians 
(e.g. Deffner’s talk)

RAP in Two level system (spin flip)

Time-dependent harmonic oscillator

Transport of matter waves

Counterdiabatic driving: applications

Theory: Demirplak & Rice 2003; M. V. Berry 2009
Experiment for TLS: Morsch’s group Nature Phys. 2012; NVC: Suter’s group PRL 2013

Ĥ1 / p Ĥ 0
1 / x

Ĥ1 / (xp+ px) Ĥ 0
1 / x2

Ĥ1 / �y Ĥ 0
1 / �z

Ĥ � = UĤU † � i~U�tU
†

Demirplak & Rice 2003  Bason et al 2012

Muga el at 2010, Jarzynski 2013                Ibáñez et al 12, AdC 13

Deffner-Jarzynski-AdC 14
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For self-similar processes is equivalent to other techniques
Example: transport of ion chains/strongly correlated systems (beyond mean-field) 

(Masuda PRA 2012)

Auxiliary potential = linear potential 

“Favourite” technique for non-self similar driving of matter-waves

Fast-forward technique: application

Matter wave splitting
(Torrontegui et al PRA 2013)   

Loading an optical lattice
(Masuda, Nakamura, AdC PRL 2014)
Auxliary potential ≈ bichromatic lattice
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