Novel approaches to A T O M T R O N I C devices in optical potentials

TECHNISCHE UNIVERSITÄT DARMSTADT

Gerhard Birkl

Institut für Angewandte Physik Technische Universität Darmstadt

www.iap.physik.tu-darmstadt.de/apq

DFG

Deutsche Forschungsgemeinschaft

Bundesministerium für Bilduna und Forschung

Research Program

Projects, Group Members, and Co-Workers

BEC and Integrated Atom Optics

Felix Schmaltz, Johannes Küber, Philip Prediger, Patrick van Beek, Felix Weigand, Mathias Hagen

Quantum Information Processing

Malte Schlosser, Daniel Ohl de Mello, Dominik Schäffner, Tilmann Preuschoff Lars Kohfahl, Jan-Niklas Schmidt

Interactions of Metastable Neon Atoms

Jan Schütz, Alexander Martin, Thomas Feldker, Holger John, Lars Bannow

Laser Spectroscopy with Highly Charged Ions (@GSI/FAIR)

Sebastian Albrecht, Alexander Martin, Tobias Murböck, Marco Wiesel, Patrick Baus, Manuel Vogel, Wolfgang Quint, and the SPECTRAP and ARTEMIS collaborations

Collaborations

Jordi Mompart, Anna Sanpera, Veronica Ahufinger, Alex Turpin, Maciej Lewenstein(Barcelona) R. Dumke (NTU), Jürgen Jahns (FernUniversität Hagen), Reinhold Walser (Darmstadt)

+ Gabriele Jenny-Deußer (Management)

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 4

Novel approaches to A T O M T R O N I C devices in optical potentials

TECHNISCHE UNIVERSITÄT DARMSTADT

Part 1:

Coherent Matter Wave Optics in Waveguides and Optical Storage Rings: ATOMTRONICS

ATOMTRONICS: Matter Wave Optics in Complex Geometries

Matter wave optics in optimized and complex micro- and nano- structures

- Compact atom interferometer geometries as quantum sensors
- Resonator for atomic matter waves

Bose-Einstein Condensation in Dipole Trap

- ⁸⁷Rb Atoms loaded directly from MOT
 - approx. 500 000 atoms
 - T = 100 μK
- Crossed optical dipole trap
 - 25 W multi-frequency fiber laser at 1070 nm
 - Beam waists ~45 µm
 - Trapping frequencies around 1 kHz
- Bose-Einstein condensate
 - N=30 000
 - T=27nK

■ N_C/N>0.8

Position (µm)

T. Lauber, J. Küber, O. Wille, and G. Birkl, Phys. Rev. A 84, 043641 (2011)

Position (µm)

Density (arb. units)

Position (µm)

Ramsey-type Interferometer for BEC wave function

Ramsey-type interferometry with $\pi/2 - \pi/2$ pulses

J.E. Simsarian, et al., Phys. Rev. Lett. 85, 2040 (2000)

$0\hbar k >$ $-2\hbar k >$ $+2\hbar k >$ $\pm 2\hbar k >$ 0.75 Population 0.5 0.25 100 200 400 500 300 Pulse duration $[\mu s]$

J. Küber, F. Schmaltz, G. Birkl, 'Experimental realization of double Bragg diffraction: robust beamsplitters, mirrors, and interferometers for Bose-Einstein condensates', arXiv:1603.08826.

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 9

Interferometer based on Double Bragg Diffraction

- After creation of BEC, it is released from crossed dipole trap
- Immediatley afterwards a double Bragg pulse of varying duration is applied
- After an additional waiting time of 18ms the density distribution is imaged
- Up to 99% of the atoms are transfered into $+/-2\hbar k$ for a pulse duration of 230 µs

Autocorrelation Measurement of BEC Phase Evolution

J.E. Simsarian, et al., Phys. Rev. Lett. 85, 2040 (2000)

Interference of two freely expanding BECs

Two superimposed BECs show interference.

Bose-Einstein condensates behave like waves.

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 11

Guiding Structures based on Cylindrical Microlenses

Micro-optical Lens Arrays:

Guiding of atoms along the linear potential minimum in the focus of a cylindrical lens

⇒ Waveguide for atoms similar to optical fibers

Phase Evolution of Expanding BEC in 1D Waveguide

ATOMTRONICS: Matter Wave Optics in Complex Geometries

Matter wave optics in optimized and complex micro- and nano- structures

- Compact atom interferometer geometries as quantum sensors
- Resonator for atomic matter waves

Ring Potentials for Neutral Atoms

• Magnetic Ring Traps:

macroscopic, rf-dressed, atom chips, super-conducting chips (Georgia Tech, Strathclyde, Berkeley, Amsterdam, Paris-Nord, Tuscon, Harvard, Singapore, Vienna, Oxford, ...)

Optical Ring Traps:

Laguerre-Gaussian beams, scanning beam traps (NIST, St. Andrews, Los Alamos, Monash, Wisconsin, LKB, Paris-Sud, Brisbane, ...)

• Our Optical Approaches:

Red-detuned ring based on diffractive optics Blue detuned double ring based on conical refraction

(c)

20 µm

[1] A. Arnold, C. Garvie, and E. Riis, Physical Review A 73, 041606 (2006)
[2] A. Ramanathan, et. al., Physical Review Letters 106, 130401 (2011)
[3] A. Turpin et al., Opt. Express 23, 1638-1650 (2015).

[2]

[3]

0

[1]

Conical Refraction

In collaboration with Jordi Mompart, Yury Loiko, Todor Kirilov (UAB, Barcelona)

- Linear optical effect in biaxial crystals (predicted in 1832 by Hamilton)
 First observed by Lloyd in aragonite crystals the same year
- Light is diffracted into a cone, under the following conditions:
 - Propagating in a biaxial crystal ($n_1 < n_2 < n_3$)
 - Light is unpolarized (or circularly polarized)
 - Incidence along one of the optical axes
 - Surface of the crystal is polished perpendicular to this optical axis

biaxial crystal Incident beam

R=Al

See e.g.: M. V. Berry, Journal of Optics A: Pure and Applied Optics 6, 289-300 (2004)

Important Parameters for Conical Refraction

Parameters of Crystal:

- Material: KGd(WO₄)₂ or KGW
- Length: /=16,55 mm

• Cone Angle:
$$\alpha = 1^{\circ}$$

Different Regimes of Conical Refraction

A. Turpin, J. Polo, Yu V. Loiko, J. Küber, F. Schmaltz, T.K. Kalkandjiev, V. Ahufinger, G. Birkl, J. Mompart, 'Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction', Optics Express **23**, 1638-1650 (2015). arXiv: 1411.1587

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 18

Different Regimes of Conical Refraction

Optical Setup for a Storage Ring Potential

Storage Ring for Bose-Einstein Condensates

- Production of BEC in crossed dipole trap
- Loading by linear ramping of intensities
- Acceleration and autocorrelation measurements using Bragg lattice
- Free propagation along the ring

Rotating BECs in Optical Storage Ring

- Transferred Momentum: n x 2ħk
- Achieved: 2ħk, 4ħk, 6ħk, ± 2ħk
- Up to two round trips observed for 4ħk
- Spread of wave packet given by mean-field expansion

BEC momentum: 2ħk

BEC momentum: 4ħk

Split BEC: ± 2ħk

Phase Coherence after Rotation in Storage Ring

Ramsey type interferometer after propagation inside the ring potential

- π-Pulse (4ħk) after loading the BEC into storage ring
- 26 ms of free evolution (atoms travel half way along the ring, 530 µm); limited for avoiding overlap with atoms remaining at original position of BEC
- Autocorrelation measurement (± 4ħk) with pulse separation τ =100 µs
- Free expansion: 14 ms

Different Regimes of Conical Refraction

ATOMTRONICS Device Based on Dynamical Ring Trap

- Tunable lenses*: focal length of 50 to 120 mm
- Magnification 0.4 to 2.4
- W₀ = 25 µm → ρ₀ = 1.6
- Changing magnification from 0.7 to 1.0
 - → transform geometry dynamically from simply to multiply connected

*Optotune "EL-10-30 LD"

Light field in focal plane with 1:1 telescope

ATOMTRONICS Device Based on Dynamical Ring Trap

light field

- BEC loaded into static repulsive ring potential from crossed dipole trap within 40 ms
- Almost homogenous density distribution after 120 ms expansion time

Towards complex ATOMTRONICS Circuits

 First steps towards more complex and integrated circuits:

Transfer of an externally created coherent matter wave packet into the toroidal potental

(a) $t_w = 0ms$

(c) $t_w = 10.5 ms$

(d) $t_w = 26ms$

Towards complex ATOMTRONICS Circuits

- A two-dimension register of toroidal trapping potentials or dark focus traps is created by combining focusing with a microlens array and conical refraction
- The pitch of the microlens array introduces a third independent parameter
- Separated or connected potential geometries can be generated

Novel approaches to A T O M T R O N I C devices in optical potentials

TECHNISCHE UNIVERSITÄT DARMSTADT

Part 2:

Quantum information processing and simulation with arrays of trapped neutral atoms

Architecture for Single-Atom-Array ATOMTRONICS

Complex processor architecture based on 2D quantum shift register with single-site addressability

Outline

Neutral atoms in dipole trap arrays as a scalable system for QIP

Two-dimensional arrays of single atoms

Interleaved trap arrays with adjustable separation

Coherent manipulation of single atoms

Outline

Neutral atoms in dipole trap arrays as a scalable system for QIP

Coherent manipulation of single atoms

2D Register of Neutral-Atom Qubits

Microlens array

Dipole trap array

Fluorescence Image of trapped ⁸⁵Rb atoms

Typical Parameters	
• Trapping wavelength:	796 - 810 nm
Trap depth:	up to $k_B \cdot 10 \text{ mK}$
 Trap waist: 	down to 1.3 μm
 Trap separation: 	down to 3 µm
Number of Atoms:	1 per site

R. Dumke et al., Phys. Rev. Lett. 89, 097309 (2002)
M. Schlosser et al., Quant. Inf. Proc. 10, 907 (2011)
M. Schlosser et al., New J. Phys. 14, 123034 (2012)

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 33

Reconfigurable Addressing of Selected Traps

Reconfigurable Addressing of Selected Traps

Reconfigurable Addressing of Selected Traps

- Global illumination of microlens register:
 2D periodic trap array
- Reconfigurable addressing of selected lenses: Versatile geometries

M. Schlosser et al., Quant. Inf. Proc. 10, 907 (2011)

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 36

Coherent Qubit Manipulation in Selected Traps

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 37

Outline

Neutral atoms in dipole trap arrays as a scalable system for QIP

Two-dimensional arrays of single atoms

Interleaved trap arrays with adjustable separation

Coherent manipulation of single atoms

380 Site Single-Atom Array

-	

15x15 site detail (averaged)

Single shot images

380 Site Single-Atom Array \rightarrow More Than 100 Qubits

Atom number statistics (individual site resolution in 380 traps)

More than 380 traps with ≥ 37% single atom events

About 160 single-atom qubits in each realization

Outline

Neutral atoms in dipole trap arrays as a scalable system for QIP

Interleaved trap arrays with adjustable separation

Coherent manipulation of single atoms

Interleaved Trap Arrays

Superimposing two dipole trap registers

Averaged images

Adjustable trap separation

Outline

Neutral atoms in dipole trap arrays as a scalable system for QIP

Two-dimensional arrays of single atoms

Interleaved trap arrays with adjustable separation

Coherent manipulation of single atoms

Qubit Basis

Fast Qubit Rotation

Work in Progress: 2-Qubit Gates and Entanglement

2-Qubit Gates using Rydberg Blockade

Requirement: Trap separation d < 10µm

D. Jaksch *et al.,* Phys. Rev. Lett. **85**, 2208 (2000) T. Wilk *et al.,* Phys. Rev. Lett. **104**, 010502 (2010) L. Isenhower *et al.,* Phys. Rev. Lett. **104**, 010503 (2010)

Rydberg Excitation in Arrays of Single Atoms

Coupling to Rydberg state $|r\rangle$ via two-photon transition

Many-Body Rydberg Physics with Interaction Control

Investigation of Excitation Transport and XY Spin Exchange Hamiltonians in Rydberg Arrays with Controlled Interactions: Resonant dipolar or van der Waals Couplings with MHz Strengths

Rydberg Many Body Physics in Single-Atom Arrays

Large-Scale Array of Individually Controlled Rydberg Atoms in Versatile Geometries for Quantum Simulation and Many Body Physics

Single-Atom Array Setup with Local Control

Rydberg Many Body Physics in Single-Atom Arrays

Large-Scale Array of Individually Controlled Rydberg Atoms in Versatile Geometries for Quantum Simulation and Many-Body Physics

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 52

Tunneling-Coupled Many Body Physics in Atom Arrays

Quantum simulators by design: many-body physics in reconfigurable arrays of tunnel-coupled traps

See:

Talk by Reinhold Walser and

Poster by Martin Sturm

M. Sturm, M. Schlosser, R. Walser, G. Birkl, 'Quantum simulators by design – many- body physics in reconfigurable arrays of tunnel-coupled traps', arXiv: 1705.01271

Technische Universität Darmstadt | ATOMS - PHOTONS - QUANTA | Gerhard Birkl | 53

ATOMTRONICS based Quantum Technology

