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Motivation and strategy

Linear response TD-DFT, which is a time-dependent single-reference perturbation theory, does not
treat quasi-degenerate states adequately.

This is problematic for describing strongly correlated molecular systems (transition metal and
actinide chemistry, avoided crossings, conical intersections, ...).

For such systems, the standard quantum chemical approach is multi-state multireference
perturbation theory (MS-CASPT2, QD-NEVPT?2). In contrast to MP2, the zeroth-order
wavefunctions are multiconfigurational. They are all described with the same set of orbitals that are
optimized by state averaging.

We want to develop a rigorous and computationally cheaper alternative to these methods by using
DFT.

State averaging can be performed in principle exactly in ensemble DFT (eDFT) for excited states.

Multiconfigurational wavefunctions can be introduced in standard (ground-state) DFT by means of
range separation.

Therefore range-separated eDFT provides a rigorous framework for merging state-averaged
multiconfigurational methods with DFT.




Ensemble DFT

Variational principle for an equi-ensemble (Theophilou):  if ¥ and ¥’ are orthonormal then

(U|H|T) + (V|H|W) > Eo + By

Generalization: for a given ensemble weight w,

(1 — w)(U|H|®) +w(¥'|H|V') = (1 —2w) (V|H|T) +w(§qf|ﬁ|w> + <qf’|ﬁ1|xp’>/)

-~

> Eo > Eo + En
Gross-Oliveira-Kohn (GOK) variational principle:

for0 <w<1/2, (1 —w)(V|H|T) +w(¥|H|V') > EY

where E" is the exact ensemble energy: E* = (1 — w)Eo + wE}

E™ is a functional of the ensemble density n"(r) = (1 — w)no(r) + wni(r)




Ensemble DFT

Trial ensemble density matrix operator: A% = (1 — w)| W) (V| + w|¥’) (V’|.

The GOK variational principle can be written in a compact form as

With H =T+ Wee + / dr vpe(r)a(r) itcomes E* < Tr [&w(TJrWee)] + / dr vne (r)nsw (r)

where the trial ensemble density equals n4w (r) = Tr [¥n(r)] = (1 — w)ny (r) + wnyg/ (r)

Hohenberg—Kohn theorem for ensembles*: | £ = min {F“’ [n] + / dr vne(r)n(r)}

where the ensemble Levy-Lieb functional equals

F¥%[n] = min {Tr[ T—I—Wee)}}

AW —n

“E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)




Kohn-Sham eDFT

e Kohn-Sham decomposition of the ensemble Levy-Lieb functional: | F*“[n] = T,"[n] + Efx.["]

where the ensemble non-interacting kinetic energy equals

T:"[n] = min {Tr[ wT]} Tr [I’ n ]T]

S
AW —n

Ef.In] = Euln] + Ex[n] with  FEyln] = / / drdr’ |r——r’|)

e Exact KS-eDFT variational ensemble energy expression:

A

EY = min {Tr [ﬁwT} + Efyc[nsw] + /dr Une (T)N4w (r)}

“E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)




e The minimizing density matrix operator is a non-interacting one,

Y = (1= w)| &g ™) (@ "] + w|@r ™) ("],

S

which reproduces the exact physical ensemble density n* (r). It is obtained from the self-consistent
KS-eDFT equations

5Eﬁuxc |:’n’f‘§”:|
on(r)
e According to the Hellmann-Feynman theorem,

dEY

dw

~ KS, KS, KS,
n(r) |(I)7; w>:57; w|q)i w>>

T—l—/dr Une(r) +

OEX [n]

e If the first excitation is a single electron excitation then

o OB L oBup
W=eL ‘H ow w—0 W= L =H ow

\

n=nw w=0
J/
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Axc: derivative discontinuity (DD)*
“M. Levy, Phys. Rev. A 52, R4313 (1995).




Weight-independent density-functional approximation (WIDFA):  E¥__[n] — Euxc[n], E* — EV
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Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).




Linear interpolation method (LIM)

In the exact theory:
The WIDFA ensemble energy E™ has curvature.

The WIDFA excitation energy obtained from

dE~w/dw = éf{S’w — S(E{S’w

is weight-dependent (!)

On the other hand, we have | wriv = 2 (Ew:1/2 — Eo)

that is a well-defined approximate excitation energy, by analogy with the fundamental gap problem *

T. Stein, J. Autschbach, N. Govind, L. Kronik, and R. Baer, J. Phys. Chem. Lett. 3, 3740 (2012).




Linear interpolation method (LIM)

2EW=Y2 — Ey) = E1PY — &
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curvature correction excitation energy

B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).

effective DD




Effective DD in He [11S — 219]
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B. Senjean et al., Phys. Rev. A 92,012518 (2015). Z-h. Yang et al., Phys. Rev. A 90, 042501 (2014).
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Exact range-separated ground-state energy expression (Savin):
Bo = min { ([T + WL + Vael ¥) + E5fF nw) )

The minimizing wavefunction ¥} is the ground state of a long-range interacting system whose
density equals the exact ground-state density nop.

W fulfils the self-consistent equation

ST, [

A A A 5
Ir, Hxc ~
(T VIR 4 Ve + /dr —5n(r) [n‘l,g] n(r)) ‘\116‘> — 56‘\\116L>

standard KS-DFT is recovered when . = 0

pure WFT is recovered when p — 400

Short-range functionals: stLDA, srPBE, ... (Savin, Toulouse, Gori-Giorgi, Stoll, Goll, Scuseria, ...)

Long-range-interacting wave function calculation: HF-srDFT, FCI-stDFT, ...




Range-separated ensemble DFT

Range separation of the ensemble Levy—Lieb functional®?: | F¥[n] = F'"*¥[n] 4 B n)

where Flr“w — min {Tr[ T—}—Wéé”)]}.

AW —n

Exact range-separated expression for the ensemble energy:
Y= (1= w) (T + Welk + Vae [ WE™) +w (T + Week + Vae [ W97) + Bip /0" [n],

where the auxiliary ground- and first-excited-state wavefunctions fulfil the self-consistent equations

Sr?ll/?w

- i 5
T+ Weeh + Vae + / gr itxe 1"
on(r)

w
]mr)) W) = ERTET), = 0,1

and reproduce the exact physical ensemble density n"(r) = (1 — w)nq,g,w (r) +w Mg b (r).

“ E. Pastorczak, N. I. Gidopoulos, and K. Pernal, Phys. Rev. A 87, 062501 (2013).
* O. Franck and E. Fromager, Mol. Phys. 112, 1684 (2014).




He[1'S,2'5], srLDA, aug-cc-pVQZ
Weight-independent density-functional approximation (WIDFA):  E7 /%
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).




Excitation energies obtained with LIM and range separation
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).




WIDFA, curvature and ghost interaction error

Where does the curvature of the WIDFA ensemble energy come from ?

In range-separated eDFT, the short-range Hartree energy is quadratic in w (unless no(r) = ng (r)):

erfc(u|r — r’|)

Eg" Y =(1- w)QEilr’“[no] —|—w2E§Ir’“[n1] +w(l — w)//drdr’ no(r)ni(r')

r — /|

In addition, an unphysical short-range "ghost interaction" (GI) is introduced.
This is a well-known problem in KS-eDFT* (. = 0 limit).

Both curvature and GI errors are removed in the exact theory by the complementary
weight-dependent ensemble short-range xc functional Fy. """ [n].

This is not the case at the WIDFA level since the weight-independent ground-state short-range xc
functional is used.

*N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross, Phys. Rev. Lett. 88, 033003 (2002).




Exact exchange in range-separated eDFT

e Alternative decomposition of the exact ensemble short-range xc functional:

B n] = Tr [P ] Were | B n] + B 0]

-~

explicitly linear in w

where I'*% [n] is the ensemble long-range interacting density matrix operator with density n (rather
than the usual non-interacting KS ensemble density matrix operator), hence the name
multideterminantal (md) exact exchange.

e This decomposition leads to the exact energy expression | E* = Tr [f“’wﬁ ] + BT

c,md

where '™ reproduces the exact physical ensemble density n™ (r).

e In the ;x = 0 limit, we obtain an ensemble Hartree-Fock-like energy (calculated with KS-eDFT
orbitals) complemented by a density-functional correlation energy.

Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).




GI correction in range-separated eDFT: practical calculation

We use the WIDFA long-range interacting ensemble density matrix operator 4#:*, thus avoiding the
(more rigorous) use of optimized effective potential (OEP) techniques.

We use the ground-state LDA! for the complementary md correlation functional:

ESI‘,/L,’U)[ ] N ESI‘ Ny [n]

c,md c,md

Thus we obtain an approximate Gl-corrected (GIC) range-separated ensemble energy?

Y= Tr |:’/)\/M wH:| —|— ESI‘ H [’nﬁ,u,w]

c,md

Excitation energies are then computed with the LIM, hence the name GIC-LIM for the method.

1 8. Paziani, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006).
2 Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).
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FIG. 2. Weight dependence of the WIDFA and GIC ensemble
energies in HeH" for u =0 and p = 0.4q, !, The FCI and LIM
(dashed lines) are also shown. Energies are shifted by their values at
w = 0 for ease of comparison.
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FIG. 3. Relative error with respect to the FCI obtained for the LIM
(dash-dotted lines) and GIC-LIM (solid lines) excitation energies
when varying . Inset: Zoom-in on the range 0 < u < 2.0q; .
Excitations in the stretched HeH™ (1'X* — 2!¥*) and H...H
(112; — 212;) molecules correspond to a charge transfer and a
double excitation, respectively.




Extrapolation technique in range-separated eDFT
The ground-state range-separated energy E* is ji-dependent in practice since approximate
short-range xc functionals are used.
This energy reduces to the exact ground-state energy Eg when p1 — 4-o0.

Taylor expansion? for large u:

~ a 1 OLH
E“=E0+—2+O e M =

p op
~ O EH 1
thus leading to E* + H —Eyg+ O (_)
2 Op p?
N——

extrapolation correction

e This extrapolation scheme can be applied to WIDFA range-separated ensemble energies. Its
combination with LIM gives extrapolated LIM (ELIM) excitation energies?.

1 A. Savin, J. Chem. Phys. 140, 18A509 (2014).
2 B. Senjean, E. D. Hede er, Mol. Phys. 114, 968 (2016).




Extrapolation technique in range-separated eDFT

e The GIC range-separated ensemble energy Eéfé converges faster’? (as 1/u?) towards the exact
ensemble energy £ when p1 — +o0.

e Therefore, in this case, the extrapolation scheme reads

aEHJ)w 1
RETGIC _ pw 4 o (_)
3 Ou

TR
Ecic +

\

14

7

extrapolated GIC (EGIC) energy

e Combining EGIC with LIM gives EGIC-LIM excitation energies.

1 Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).
2 Md. M. Alam, S. Knecht, and E. Fromager, to be submitted, (2016).
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FIG. 6. LIM and GIC-LIM 1'S — 21§ excitation energies ob-
tained in He with and without extrapolation corrections when varying
n. Comparison is made with the FCI. See text for further details.




Conclusions and outlook

Range-separated eDFT provides a rigorous framework for combining state-averaged
multiconfigurational methods with DFT.

Self-consistent implementation at the long-range FCI level in the DALTON program package.
Long-term project: use state-averaged CASSCEF rather than FCI — state-averaged CASDFT method !

A linear interpolation method (LIM) for computing excitation energies in KS-eDFT has been
proposed. The key idea is to use total ensemble energies rather than orbital energies.

LIM is also applicable to range-separated eDFT.
A ghost-interaction correction (GIC) has been proposed in the context of range-separated eDFT.

Very promising results have been obtained when combining GIC with LIM, even at the KS-eDFT
level (1 = 0 limit).

When range separation is used, the accuracy of GIC-LIM can be further improved by means of an
extrapolation correction.

LIM can be extended to higher excitations (linear interpolations between equiensembles up the
multiplet of interest)

We currently apply range-separated eDFT to the modeling of conical intersections.
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