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Motivation

Cavity and circuit QED: Beginning of the story
I. Cavity QED (1980s — 1990s): Rydberg atoms in optical cavities

LA S

. Circuit QED (2004): SC qubits in transmission line resonators

“Cooper pair box” in a microwave resonator

Nature 431, 162 (2004)




Motivation

Circuit QED: New generation of quantum circuits
IIl. Quantum dot strictures integrated with resonators (2011-2012)

SWNTs-based QDs

2DEG-based DQDs InAs nanowire-based DQDs
H2 = AR - TR
s LN ey -
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PRL 108, 046807 (2012) Nature 490, 380 (2012)

PRL 107, 256504 (2011)
Possibility to experimentally study many-body
physics and transport in interacting systems SH UD

strongly coupled to cavity photons




Motivation

Cavity QED: “Chemistry-in-cavity”

IV. Molecules in optical cavities (2012)

“Modifying Chemical Landscapes by Coupling to Vacuum Fields”

Angew. Chem. Int. Ed. 51, 1592 (2012); Nature Mat. 11, 272 (2012)
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Cavity QED: “Chemistry-in-cavity”

IV. Molecules in optical cavities (2012)

“Modifying Chemical Landscapes by Coupling to Vacuum Fields”

Angew. Chem. Int. Ed. 51, 1592 (2012); Nature Mat. 11, 272 (2012)

QED-TDDFT:  IVT, Phys. Rev. Lett. 110, 233001 (2013)

@ Generalization of TDDFT for the first principle description of
non-relativistic many-electron systems interacting with
(or driven by) quantum electro-magnetic fields
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e Setting up the mathematical problem



Getting started: Classical dipole in classical cavity

Relative coordinate: x = x; — x_

Newton equation for dipole dynamics

%(t) = —02x(t) + %EL(ro,t)

Density of electric current:
j(r,t) = ex(t)6(r — rp) = 0, P(r,t)

Maxwell equations for transverse electromagnetic field, V- EX =0

OB = —cV xEt
OHE = ¢V x B+ 4 (it +ji.)

Transverse part of the current j- = 9,P+ couples to the cavity modes

PL(r,t) = ex(t)d(r —ry) = iv X (V X x() )

|r — ro|



Setting up the problem

Classical cavity (Il): the Hamiltonian structure

Electric displacement field: D+ = EL + 47P+

Maxwell equations in the Hamiltonian form

8B = —cV x (D* —47P*) — i[Hem, B]

Dt = ¢V x B  i[Hem, D]

[Bi(r)v D]J_(r,)] = —’L'Eijkak(S(I' — I")




Setting up the problem

Classical cavity (Il): the Hamiltonian structure

Electric displacement field: D+ = EL + 47P+

Maxwell equations in the Hamiltonian form ——

0B = —cV x (D' —47P*) — i[Hem, B] -

oD = ¢V x B + i[Hem, D]

[Bi(r)a D]J_(r,)] = —Z'Eijkak(S(I‘ — I")

Projection on cavity modes E, (r): —c*V?E, = w2E,, V- E, =0

D! = v4ﬁ2qawaEa, B = Vi4r Zpawiv X Eo = [qa, D8] = 10ap
« «@ e

Wor

2
g = %Za [wi (qa — iqx) —l—pi}, Ao = eVATE,, (10)




Setting up the problem

Quantum many-electron system in quantum cavity

Many-body electron-photon wave function

\Ij({xj}v {qa}v t)

N electrons — {x;}_, and M photon modes — {q¢a })L,

Hamiltonian in a “multipolar” (PWZ) gauge

H = Zj [_ ﬁvi + Vext(xj’t)] + Z¢>j Wi —x;

2 2
+ 50 |~ 302, + JuB (g — 22X - P3|

X = Zé\;l x; is the c. m. coordinate of the electronic subsystem

Z.at\p({xj}5 {qa}z t) = ﬁ\IJ({ijﬁ {Q(x}a t)

Many-electron system harmonically coupled to a 0% =
set of harmonic oscillators (cavity photons)



Setting up the problem

Photon induced electron-electron interaction

%wi(qa — —X) Zwaqa}\ X+ 3 Z (AaX;) (A aX;j)

~(at4a)pty ~o(x,x! ) (x)R(x!)

Effective interaction
W (x, 6%, ') = Aok [w2 (Ga(t)da(t)) + 0(t — )] Ao’

D(t—t')




Setting up the problem

Photon induced electron-electron interaction

%wi(qa — —X) Zwaqa}\ X+ 3 Z (AaX;) (A aX;j)

~(at4a)pty ~o(x,x! ) (x)R(x!)

Effective interaction
W (x, 6%, ') = Aok [w2 (Ga(t)da(t)) + 0(t — )] Ao’

D(t—t')

2 2
W, w .
Dw)= 5= +l=——5 %
w? —w?2 w? —w?2
N—— —
(D1-Di)o (EL-El)w

Physical electron-electron interaction is mediated by the electric field.

Only accelerated electron generates the transverse electric field felt
by another electron!
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© Electron-photon TDDFT



Cavity TDDFT

Direct map: {‘Ij07 Véxta P&t} = {\Ija Uz Qa}

O
Q
=
~~
~
I

(P (t)|ga|®(t)) ~ electric displacement
n(x,t) = (U(8)|a(x)|¥(t))

X = [xa(x)dx,  R(t) = (U()|X|T(t)) = [xn(x,t)dx



Cavity TDDFT

Inverse map: {Vy,n, Qu} — {V, Vexs, P2} via NLSE

Starting point: Equations of motion for basic variables

“Maxwell”: Qu + w2 Qa — WaraR = wa P2

ext)

“Force balance”: mii + VFs + Y Vs = V[n(VVest + Aa P,

Fuw(x,t) = im(U|[T + W, },]|¥) = —V I stress force
£.(%,1) = A (V] (Waga — AaX)A(x)|¥)  force from a-mode



Cavity TDDFT

Inverse map: {Vy,n, Qu} — {V, Vexs, P2} via NLSE

Starting point: Equations of motion for basic variables

“Maxwell”:  Qu + w2Qo — WaraR = wa P2,
“Force balance”: mii + VFg, + Z Vi, = V[(VVext + AaPl) ]

Fuw(x,t) = im(U|[T + W, },]|¥) = —V I stress force
£.(%,1) = A (V] (Waga — AaX)A(x)|¥)  force from a-mode



Cavity TDDFT

Inverse map: {Vy,n, Qu} — {V, Vexs, P2} via NLSE

Starting point: Equations of motion for basic variables

“Maxwell”:  Qn +w2Qu — waAaR = wo P

a
ext)

“Force balance”: mii + VFgy, + Z Vi, = V[(VVext + AaPl) ]

Fuw(x,t) = im(U|[T + W, },]|¥) = —V I stress force
£.(%,1) = A (V] (Waga — AaX)A(x)|¥)  force from a-mode

Vet |1, U], P2 [Qasn] : H[Vexs, P2 = H[n,Qq,¥] = NLSE
This NLSE defines the TDDFT map: {Uo,n, Qo } — {V, Vexs, P2 }

QED-TDDFT mapping theorem

[T (%)), Vext(x,t), and P%,(t) are unique functionals of the initial state
|¥o) and the basic observables n(x, t), and Q. (t).




Comments on mathematical issues

Nonlinear many-body problem for QED-TDDFT

i04|¥) = H[Vexs, Pl |¥),  |[¥(¢ = 0)) = Vo)
Qa + waQa waA R = waP

ext

mn + VFstr[\Il] + Z Vfa [\Il] =V [n(vv;’d‘ + Aapg(t)]

Solve for |¥(t)), Vext(x,t), and P, (t), given |Uy), n(x,t), and Q. (1)

Existence of a unique solution: QED-TDDFT mapping theorem

|W (%)), Vext(x,1), and P%,(t) are unique functionals of the initial state
|¥o) and the basic observables n(x, t), and Q. (t).




Comments on mathematical issues

Nonlinear many-body problem for QED-TDDFT

i04|¥) = H[Vexs, Pl |¥),  |[¥(¢ = 0)) = Vo)
Qa + waQa waA R = waP

ext

mn + VFstr[\IJ] + Z Vfa [\Il] =V [n(vv;’d‘ + Aapg(t)]

Solve for |¥(t)), Vext(x,t), and P, (t), given |Uy), n(x,t), and Q. (1)

Existence of a unique solution: QED-TDDFT mapping theorem

|W (%)), Vext(x,1), and P%,(t) are unique functionals of the initial state
|¥o) and the basic observables n(x, t), and Q. (t).

Currently we have (assuming a finite number of photon modes):

@ “Standard” proof of uniqueness under the assumption of
t-analyticity [IVT, PRL 110, 233001 (2013)]

@ Rigorous proof of uniqueness and existence for lattice electrons
[M. Farzanepour and IVT, PRB 90, 195149 (2014)]



Cavity TDDFT

Kohn-Sham construction for the QED-TDDFT

“Maxwell-Schrédinger” dynamics for NV noninteracting KS particles
iy = — o b; + [Vs + 3 (WaQa — AR — Pg(t))\ax} i,

Qa + wiQa - wa()‘aR"' Peo;ct) =0

The KS density reproduces the physical density, ng(x,t) = n(x,t), if
Vs = Vext + Ve[, Qo] + 22, Ve[, Qal

The “electronic” Vi .[n, Q] and “photonic” V& [n, Q,] xc potentials

V(nVViske) = V(ES, — Far) = V(V Tliixe),
V(nVVE) = VA (U] (AL AX — waAgy) AR|T)




Cavity TDDFT

Kohn-Sham construction for the QED-TDDFT

“Maxwell-Schrédinger” dynamics for NV noninteracting KS particles
iy = — o b; + [Vs + 3 (WaQa — AR — Pg(t))\ax} i,

Qa + wiQa - wa()‘aR + Peo;ct) =0

The KS density reproduces the physical density, ng(x,t) = n(x,t), if
Vs = Vext + Ve[, Qo] + 22, Ve[, Qal

The “electronic” Vi .[n, Q] and “photonic” V& [n, Q,] xc potentials

el S i
V(nVVi.) = V(F5, — Foir) = V(V Haxe),

XC

V(nVVE) = VA (U] (AL AX — waAgy) AR|T)

Zero force theorem holds true for both xc potentials Vj5.. and V,&
[nVVE dx = [nVVidx =0




The problem of approximations

We succeeded to define xc potentials in the electron-photon TDDFT
in such a way, that they have similar general properties and satisfy
similar constraints as V.. in the usual purely electronic TDDFT.

Natural approximation strategies

I. “Velocity gradient expansion”:

@ At “zero level” we set V.2 = 0 and take V! = VALDA,
This 0-approximation correctly reproduces a “HPT-type” rigid
motion with a uniform velocity — analog of ALDA

@ Quantum/nonadiabatic corrections ~ Vv (x,t) — similar to
Vignale-Kohn construction in the electronic TDCDFT



The problem of approximations

We succeeded to define xc potentials in the electron-photon TDDFT
in such a way, that they have similar general properties and satisfy
similar constraints as V.. in the usual purely electronic TDDFT.

Natural approximation strategies

I. “Velocity gradient expansion”:
@ At “zero level” we set V.2 = 0 and take V! = VALDA,
This 0-approximation correctly reproduces a “HPT-type” rigid
motion with a uniform velocity — analog of ALDA
@ Quantum/nonadiabatic corrections ~ Vv (x,t) — similar to
Vignale-Kohn construction in the electronic TDCDFT

II. “OEP-strategy”: p=
@ Making a connection to the many-body Y
theory via electron-photon = ouoooens

generalization of the Sham-Schlitter
equation.



Cavity TDDFT

Electron-photon Optimized Effective Potentiall!

Formulation in terms of orbital xc functionals: V... = §Ex./dn

Ground state' Interpret Lamb shift as xc orbital functional

Be=3 3 Al e—w«w oX| 01 ) (@[ AaX[0;)

akj

Dynamics: Schwinger-Keldysh xc action functional

A= /d71d7'2fk(1_fJ)W>(Tlv7'2)<¢J|)‘ax|¢k>|ﬁ (k| Xax|Dj)]r,

a,k,j

v

[1] C. Pellegrini, et. al., PRL 115, 093001 (2015)



Cavity TDDFT

Test case: 2-site “molecule” coupled to a singe mode
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e Implications for the theory of open quantum systems



Open quantum systems

Connection to the theory of open quantum systems

Electron-photon dynamics without a “photon driving field”, PS5, (¢) =0

i00({x,}, {g}, 1) = HU{x,}, {ga} 1) Wt = 0) = W,

X \%
H = ; |:_ ﬁ +‘/Ye:xt(xj7t) +2Wxi_xj

Many-electron system harmonically coupled to a
set of harmonic oscillators (cavity photons)

Caldeira-Leggett model of dissipative quantum
systems [Ann. Phys. 149, 374 (1983)]




Open quantum systems

TDDFT for open quantum systems

KS equations in the cavity TDDFT with P%,(t) =0
Z.at(lsj = _%Qsj + [‘/ext + Vch[na Qa] + Za(waQa - )\aR))\aX:| ¢j!

Qo + w2 Q0 = WadaR(t), R(t) = [xn(x,t)dx

“Tracing out” photons (bath): Q. [n](t) = fot sinfwy (t — )] AR(t)dt

Closed KS equations for an open quantum system

10105 = — o + (Vext + Ver[n]) 85,
Ve [TL] = Vixe [n> Qa[n]] + Ea (waQa[n] - )\aR)AaX




Open quantum systems

TDDFT for open quantum systems

KS equations in the cavity TDDFT with P%,(t) =0
Z.3t¢j = _%Qsj + [‘/ext + Vch[na Qa] + Za(waQa - )\aR))\aX:| ¢j!

Qo + w2 Q0 = WadaR(t), R(t) = [xn(x,t)dx

“Tracing out” photons (bath): Q. [n](t) = fot sinfwy (t — )] AR(t)dt

Closed KS equations for an open quantum system

10105 = — o + (Vext + Ver[n]) 85,
Ve [TL] = Vixe [n> Qa[n]] + Ea (waQa[n] - )\aR)AaX

Ohmic spectral density of the bath 7" M AL (w — wq) = 2no*" =
Vet = Vixe + nIVRx

In “zero-level” approximation we recover Albrecht’s dissipative NLSE
[Phys. Lett. B 56,127 (1975)]
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Summary
Summary

@ It is possible to formulate a rigorous TDDFT approach to address
dynamics of many-electron systems strongly coupled to
cavity/resonator photons

@ General properties of corresponding xc potentials suggest
several strategies for constructing approximations. We
constructed and tested an electron-photon QED-OEP functional
(work is still in progress)

@ QED-TDDFT leads to a very natural formulation of TDDFT for
open/dissipative quantum systems:

(i) first set up TDDFT together with approximation, and
(i) then “trace out” the bath

@ QED-TDDFT is naturally formulated in the dipole approximation.
Beyond dipole approximation coupling to the photon’s magnetic
field has to be considered. Hence one should use the electron
current j(x,t) as a basic variable = QED-TDCDFT.
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