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Cavity and circuit QED: Beginning of the story
I. Cavity QED (1980s – 1990s): Rydberg atoms in optical cavities

II. Circuit QED (2004): SC qubits in transmission line resonators

“Cooper pair box” in a microwave resonator

Nature 431, 162 (2004)
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Circuit QED: New generation of quantum circuits

III. Quantum dot strictures integrated with resonators (2011-2012)

SWNTs-based QDs

PRL 107, 256804 (2011)

2DEG-based DQDs

PRL 108, 046807 (2012)

InAs nanowire-based DQDs

Nature 490, 380 (2012)

Possibility to experimentally study many-body
physics and transport in interacting systems

strongly coupled to cavity photons
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Cavity QED: “Chemistry-in-cavity”

IV. Molecules in optical cavities (2012)

“Modifying Chemical Landscapes by Coupling to Vacuum Fields”

Angew. Chem. Int. Ed. 51, 1592 (2012); Nature Mat. 11, 272 (2012)
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Cavity QED: “Chemistry-in-cavity”

IV. Molecules in optical cavities (2012)

“Modifying Chemical Landscapes by Coupling to Vacuum Fields”

Angew. Chem. Int. Ed. 51, 1592 (2012); Nature Mat. 11, 272 (2012)

QED-TDDFT: IVT, Phys. Rev. Lett. 110, 233001 (2013)

Generalization of TDDFT for the first principle description of
non-relativistic many-electron systems interacting with
(or driven by) quantum electro-magnetic fields
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Getting started: Classical dipole in classical cavity

Relative coordinate: x = x+ − x−

Newton equation for dipole dynamics

ẍ(t) = −Ω2x(t) +
e

m
E⊥(r0, t)

Density of electric current:
j(r, t) = eẋ(t)δ(r− r0) = ∂tP(r, t)

Maxwell equations for transverse electromagnetic field, ∇ ·E⊥ = 0

∂tB = −c∇×E⊥

∂tE
⊥ = c∇×B + 4π(j⊥ + j⊥ext)

Transverse part of the current j⊥ = ∂tP
⊥ couples to the cavity modes

P⊥(r, t) = ex(t)δ⊥(r− r0) =
e

4π
∇×

(
∇× x(t)

|r− r0|

)
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Classical cavity (II): the Hamiltonian structure

Electric displacement field: D⊥ = E⊥ + 4πP⊥

Maxwell equations in the Hamiltonian form

∂tB = −c∇× (D⊥ − 4πP⊥) 7→ i[He-m,B]

∂tD
⊥ = c∇×B 7→ i[He-m,D

⊥]

He-m = 1
8π

∫
dr
{
E2
⊥ + B2

}
= 1

8π

∫
dr
{

(D⊥ − 4πP⊥)2 + B2
}

[Bi(r), D⊥j (r′)] = −iεijk∂kδ(r− r′)
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Classical cavity (II): the Hamiltonian structure

Electric displacement field: D⊥ = E⊥ + 4πP⊥

Maxwell equations in the Hamiltonian form

∂tB = −c∇× (D⊥ − 4πP⊥) 7→ i[He-m,B]

∂tD
⊥ = c∇×B 7→ i[He-m,D

⊥]

He-m = 1
8π

∫
dr
{
E2
⊥ + B2

}
= 1

8π

∫
dr
{

(D⊥ − 4πP⊥)2 + B2
}

[Bi(r), D⊥j (r′)] = −iεijk∂kδ(r− r′)

Projection on cavity modes Eα(r): −c2∇2Eα = ω2
αEα , ∇ ·Eα = 0

D⊥ =
√

4π
∑
α

qαωαEα, B =
√

4π
∑
α

pα
c

ωα
∇×Eα ⇒ [qα, pβ ] = iδαβ

He-m = 1
2

∑
α

[
ω2
α

(
qα − λα

ωα
x
)2

+ p2
α

]
, λα = e

√
4πEα(r0)
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Quantum many-electron system in quantum cavity

Many-body electron-photon wave function

Ψ({xj}, {qα}, t)

N electrons 7→ {xj}Nj=1 and M photon modes 7→ {qα}Mα=1

Hamiltonian in a “multipolar” (PWZ) gauge

Ĥ =
∑
j

[
− 1

2m∇
2
j + Vext(xj , t)

]
+
∑
i>jWxi−xj

+
∑
α

[
− 1

2∂
2
qα + 1

2ω
2
α

(
qα − λα

ωα
X̂− 1

ωα
Pαext

)2]
X̂ =

∑N
j=1 xj is the c. m. coordinate of the electronic subsystem

i∂tΨ({xj}, {qα}, t) = ĤΨ({xj}, {qα}, t)

Many-electron system harmonically coupled to a
set of harmonic oscillators (cavity photons)
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Photon induced electron-electron interaction

1

2
ω2
α

(
qα −

λα
ωα

X̂
)2

7→ −
∑
j

ωαq̂αλαx̂j︸ ︷︷ ︸
∼(â†+â)ψ†ψ

+
1

2

∑
i,j

(λαx̂i)(λαx̂j)︸ ︷︷ ︸
∼v(x,x′)n̂(x)n̂(x′)

Effective interaction

Wα
eff(x, t;x′, t′) = λαx̂

[
ω2
α〈q̂α(t)q̂α(t′)〉+ δ(t− t′)

]︸ ︷︷ ︸
D(t−t′)

λαx̂
′
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Photon induced electron-electron interaction

1

2
ω2
α

(
qα −

λα
ωα

X̂
)2

7→ −
∑
j

ωαq̂αλαx̂j︸ ︷︷ ︸
∼(â†+â)ψ†ψ

+
1

2

∑
i,j

(λαx̂i)(λαx̂j)︸ ︷︷ ︸
∼v(x,x′)n̂(x)n̂(x′)

Effective interaction

Wα
eff(x, t;x′, t′) = λαx̂

[
ω2
α〈q̂α(t)q̂α(t′)〉+ δ(t− t′)

]︸ ︷︷ ︸
D(t−t′)

λαx̂
′

D(ω) =
ω2
α

ω2 − ω2
α︸ ︷︷ ︸

〈D⊥·D⊥〉ω

+1 =
ω2

ω2 − ω2
α︸ ︷︷ ︸

〈E⊥·E⊥〉ω

7→ ẍ

Physical electron-electron interaction is mediated by the electric field.

Only accelerated electron generates the transverse electric field felt
by another electron!
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Direct map: {Ψ0, Vext, P
α
ext} 7→ {Ψ, n,Qα}

i∂tΨ({xj}, {qα}, t) = ĤΨ({xj}, {qα}, t); Ψ(t = 0) = Ψ0

Ĥ =
∑
j

[
−
∇2
j

2m
+ Vext(xj , t)

]
+
∑
i>j

Wxi−xj

+
∑
α

[
−1

2
∂2
qα︸ ︷︷ ︸

B2

+
ω2
α

2

(
qα −

λα
ωα

X̂− 1

ωα
Pαext

)2

︸ ︷︷ ︸
E2

⊥

]

Basic variables: mean photon coodinates and the electronic density

Qα(t) = 〈Ψ(t)|qα|Ψ(t)〉 ∼ electric displacement
n(x, t) = 〈Ψ(t)|n̂(x)|Ψ(t)〉

X̂ =
∫
xn̂(x)dx, R(t) = 〈Ψ(t)|X̂|Ψ(t)〉 =

∫
xn(x, t)dx
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Inverse map: {Ψ0, n,Qα} 7→ {Ψ, Vext, P
α
ext} via NLSE

Starting point: Equations of motion for basic variables

“Maxwell”: Q̈α + ω2
αQα − ωαλαR = ωαP

α
ext,

“Force balance”: mn̈+∇Fstr +
∑
α

∇fα = ∇
[
n(∇Vext + λαP

α
ext)
]
,

Fstr(x, t) = im〈Ψ|[T̂ + Ŵ , ĵp]|Ψ〉 = −∇
↔
Π stress force

fα(x, t) = λα〈Ψ|(ωαqα − λαX̂)n̂(x)|Ψ〉 force from α-mode
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Inverse map: {Ψ0, n,Qα} 7→ {Ψ, Vext, P
α
ext} via NLSE

Starting point: Equations of motion for basic variables

“Maxwell”: Q̈α + ω2
αQα − ωαλαR = ωαP

α
ext,

“Force balance”: mn̈+∇Fstr +
∑
α

∇fα = ∇
[
n(∇Vext + λαP

α
ext)
]
,

Fstr(x, t) = im〈Ψ|[T̂ + Ŵ , ĵp]|Ψ〉 = −∇
↔
Π stress force

fα(x, t) = λα〈Ψ|(ωαqα − λαX̂)n̂(x)|Ψ〉 force from α-mode

Vext[n,Ψ], Pαext[Qα, n] : Ĥ[Vext, P
α
ext] 7→ Ĥ[n,Qα,Ψ] =⇒ NLSE

This NLSE defines the TDDFT map: {Ψ0, n,Qα} 7→ {Ψ, Vext, P
α
ext}

QED-TDDFT mapping theorem

|Ψ(t)〉, Vext(x, t), and Pαext(t) are unique functionals of the initial state
|Ψ0〉 and the basic observables n(x, t), and Qα(t).
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Comments on mathematical issues

Nonlinear many-body problem for QED-TDDFT

i∂t|Ψ〉 = Ĥ[Vext, P
α
ext]|Ψ〉, |Ψ(t = 0)〉 = |Ψ0〉

Q̈α + ω2
αQα − ωαλαR = ωαP

α
ext

mn̈+∇Fstr[Ψ] +
∑
α

∇fα[Ψ] = ∇
[
n(∇Vext + λαP

α
ext)
]

Solve for |Ψ(t)〉, Vext(x, t), and Pαext(t), given |Ψ0〉, n(x, t), and Qα(t)

Existence of a unique solution: QED-TDDFT mapping theorem

|Ψ(t)〉, Vext(x, t), and Pαext(t) are unique functionals of the initial state
|Ψ0〉 and the basic observables n(x, t), and Qα(t).
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Comments on mathematical issues

Nonlinear many-body problem for QED-TDDFT

i∂t|Ψ〉 = Ĥ[Vext, P
α
ext]|Ψ〉, |Ψ(t = 0)〉 = |Ψ0〉

Q̈α + ω2
αQα − ωαλαR = ωαP

α
ext

mn̈+∇Fstr[Ψ] +
∑
α

∇fα[Ψ] = ∇
[
n(∇Vext + λαP

α
ext)
]

Solve for |Ψ(t)〉, Vext(x, t), and Pαext(t), given |Ψ0〉, n(x, t), and Qα(t)

Existence of a unique solution: QED-TDDFT mapping theorem

|Ψ(t)〉, Vext(x, t), and Pαext(t) are unique functionals of the initial state
|Ψ0〉 and the basic observables n(x, t), and Qα(t).

Currently we have (assuming a finite number of photon modes):
“Standard” proof of uniqueness under the assumption of
t-analyticity [IVT, PRL 110, 233001 (2013)]
Rigorous proof of uniqueness and existence for lattice electrons
[M. Farzanepour and IVT, PRB 90, 195149 (2014)]
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Kohn-Sham construction for the QED-TDDFT

“Maxwell-Schrödinger” dynamics for N noninteracting KS particles

i∂tφj = −∇
2

2mφj +
[
VS +

∑
α(ωαQα − λαR− Pαext)λαx

]
φj ,

Q̈α + ω2
αQα − ωα(λαR + Pαext) = 0

The KS density reproduces the physical density, nS(x, t) = n(x, t), if

VS = Vext + V el
Hxc[n,Qα] +

∑
α V

α
xc[n,Qα]

The “electronic” V el
Hxc[n,Qα] and “photonic” V αxc[n,Qα] xc potentials

∇(n∇V el
Hxc) = ∇(FSstr − Fstr) = ∇(∇

↔
ΠHxc),

∇(n∇V αxc) = ∇λα〈Ψ|(λα∆X̂− ωα∆qα)∆n̂|Ψ〉
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Kohn-Sham construction for the QED-TDDFT

“Maxwell-Schrödinger” dynamics for N noninteracting KS particles

i∂tφj = −∇
2

2mφj +
[
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α(ωαQα − λαR− Pαext)λαx

]
φj ,

Q̈α + ω2
αQα − ωα(λαR + Pαext) = 0

The KS density reproduces the physical density, nS(x, t) = n(x, t), if

VS = Vext + V el
Hxc[n,Qα] +

∑
α V

α
xc[n,Qα]

The “electronic” V el
Hxc[n,Qα] and “photonic” V αxc[n,Qα] xc potentials

∇(n∇V el
Hxc) = ∇(FSstr − Fstr) = ∇(∇

↔
ΠHxc),

∇(n∇V αxc) = ∇λα〈Ψ|(λα∆X̂− ωα∆qα)∆n̂|Ψ〉

Zero force theorem holds true for both xc potentials V el
Hxc and V αxc∫

n∇V el
Hxcdx =

∫
n∇V αxcdx = 0
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The problem of approximations

We succeeded to define xc potentials in the electron-photon TDDFT
in such a way, that they have similar general properties and satisfy
similar constraints as Vxc in the usual purely electronic TDDFT.

Natural approximation strategies

I. “Velocity gradient expansion”:
At “zero level” we set V αxc = 0 and take V el

xc = V ALDA
xc .

This 0-approximation correctly reproduces a “HPT-type” rigid
motion with a uniform velocity – analog of ALDA
Quantum/nonadiabatic corrections ∼ ∇v(x, t) – similar to
Vignale-Kohn construction in the electronic TDCDFT
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The problem of approximations

We succeeded to define xc potentials in the electron-photon TDDFT
in such a way, that they have similar general properties and satisfy
similar constraints as Vxc in the usual purely electronic TDDFT.

Natural approximation strategies

I. “Velocity gradient expansion”:
At “zero level” we set V αxc = 0 and take V el

xc = V ALDA
xc .

This 0-approximation correctly reproduces a “HPT-type” rigid
motion with a uniform velocity – analog of ALDA
Quantum/nonadiabatic corrections ∼ ∇v(x, t) – similar to
Vignale-Kohn construction in the electronic TDCDFT

II. “OEP-strategy”:
Making a connection to the many-body
theory via electron-photon
generalization of the Sham-Schlütter
equation.
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Electron-photon Optimized Effective Potential[1]

Formulation in terms of orbital xc functionals: Vxc = δExc/δn

Ground state: Interpret Lamb shift as xc orbital functional

Exc =
1

2

∑
α,k,j

fk(1− fj)
εj − εk

εj − εk + ωα
〈φj |λαx|φk〉〈φk|λαx|φj〉

Dynamics: Schwinger-Keldysh xc action functional

Axc =
∑
α,k,j

∫
C
dτ1dτ2fk(1− fj)W>(τ1, τ2)〈φj |λαx|φk〉|τ1〈φk|λαx|φj〉|τ2

[1] C. Pellegrini, et. al., PRL 115, 093001 (2015)
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Test case: 2-site “molecule” coupled to a singe mode

Ĥ = −Tσx + Vext(t)σz −
1

2
∂2
q +

ω2

2

(
q − λ

ω
σz

)2
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Connection to the theory of open quantum systems

Electron-photon dynamics without a “photon driving field”, Pαext(t) = 0

i∂tΨ({xj}, {qα}, t) = ĤΨ({xj}, {qα}, t); Ψ(t = 0) = Ψ0

Ĥ =
∑
j

[
−
∇2
j

2m
+ Vext(xj , t)

]
+
∑
i>j

Wxi−xj

+
∑
α

[
− 1

2
∂2
qα +

ω2
α

2

(
qα −

λα
ωα

X̂
)2]

Many-electron system harmonically coupled to a
set of harmonic oscillators (cavity photons)

Caldeira-Leggett model of dissipative quantum
systems [Ann. Phys. 149, 374 (1983)]
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TDDFT for open quantum systems

KS equations in the cavity TDDFT with Pαext(t) = 0

i∂tφj = −∇
2

2mφj +
[
Vext + VHxc[n,Qα] +

∑
α(ωαQα − λαR)λαx

]
φj ,

Q̈α + ω2
αQα = ωαλαR(t), R(t) =

∫
xn(x, t)dx

“Tracing out” photons (bath): Qα[n](t) =
∫ t

0
sin[ωα(t− t′)]λαR(t′)dt′

Closed KS equations for an open quantum system

i∂tφj = −∇
2

2mφj +
(
Vext + Veff [n]

)
φj ,

Veff [n] = VHxc[n,Qα[n]] +
∑
α(ωαQα[n]− λαR)λαx
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TDDFT for open quantum systems

KS equations in the cavity TDDFT with Pαext(t) = 0

i∂tφj = −∇
2

2mφj +
[
Vext + VHxc[n,Qα] +

∑
α(ωαQα − λαR)λαx

]
φj ,

Q̈α + ω2
αQα = ωαλαR(t), R(t) =

∫
xn(x, t)dx

“Tracing out” photons (bath): Qα[n](t) =
∫ t

0
sin[ωα(t− t′)]λαR(t′)dt′

Closed KS equations for an open quantum system

i∂tφj = −∇
2

2mφj +
(
Vext + Veff [n]

)
φj ,

Veff [n] = VHxc[n,Qα[n]] +
∑
α(ωαQα[n]− λαR)λαx

Ohmic spectral density of the bath π
∑
α λ

µ
αλ

ν
αδ(ω − ωα) = 2ηδµν =⇒

Veff = VHxc + ηNṘx

In “zero-level” approximation we recover Albrecht’s dissipative NLSE
[Phys. Lett. B 56,127 (1975)]
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Summary

It is possible to formulate a rigorous TDDFT approach to address
dynamics of many-electron systems strongly coupled to
cavity/resonator photons
General properties of corresponding xc potentials suggest
several strategies for constructing approximations. We
constructed and tested an electron-photon QED-OEP functional
(work is still in progress)
QED-TDDFT leads to a very natural formulation of TDDFT for
open/dissipative quantum systems:

(i) first set up TDDFT together with approximation, and
(ii) then “trace out” the bath
QED-TDDFT is naturally formulated in the dipole approximation.
Beyond dipole approximation coupling to the photon’s magnetic
field has to be considered. Hence one should use the electron
current j(x, t) as a basic variable⇒ QED-TDCDFT.
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