LHCb data analysis: $\Lambda^{0}{}_{b} \rightarrow \Lambda^{0} + \gamma$ decay for downstream tracks

Arnau Brossa September 14th, 2016

Outline

- Decay Description
- Samples:
 - Data
 - Monte Carlo
 - Background selection
- Analysis:
 - Preselection cuts
 - MVA's
 - FOM optimization
- "Results"
- Decay recostruction improvement:
 - Leaf-by-leaf method
 - Kalman filter
- Conclusions

Decay:

$$\Lambda^{0}{}_{b} \rightarrow \Lambda^{0} + \gamma \rightarrow \pi^{-} + p^{+}$$

Motivation:

- Improve the upper limit for the branching ratio of the Λ_{h} .
- Constrain new physics from the polarization of the emmited photon.

Main issues:

- Impossibility to locate the secondary Vertex (SV)
- Extremely low branching ratio (predicted by the SM) $B(\Lambda_{b}^{0} \rightarrow \Lambda^{0} \gamma) \simeq (3-10) \cdot 10^{-5}$

Penguin diagram:

- Electromagnetic penguin process $b \rightarrow s \gamma$

Data samples taken in 2011 ($\sqrt{s}=7 TeV$) and in 2012 ($\sqrt{s}=8 TeV$) by the LHCb.

Long tracks (LL): 44%

Downstream tracks (DD): 56%

Stripping:

Particle	Variable	Cut	
p, π^- tracks	$\chi^2_{\rm IP}$ from PV Min($\chi^2/$ NDOF) of track fit Max($\chi^2/$ NDOF) of track fit Ghost probability	> 16 < 2 < 3 < 0.4	
π^{-}	p_{T} Momentum	> 300 > 2000	${ m MeV}/c$ ${ m MeV}/c$
p	p_{T} Momentum	> 800 > 7000	${ m MeV}/c$ ${ m MeV}/c$
Λ^0	$\begin{array}{l} M_{\Lambda^0}(\text{PDG}) - M_{\Lambda^0} \\ \text{Vertex } \chi^2 \\ p_{\text{T}} \\ \text{IP} \end{array}$	< 20 < 9 > 1000 > 0.05	$\frac{\text{MeV}/c^2}{\text{MeV}/c}$ mm
γ	$E_{\rm T}$ Confidence level	> 2500 > 0.2	MeV
Λ_b^0	$egin{aligned} & M_{\Lambda_b^0}(\mathrm{PDG}) - M_{\Lambda_b^0} \ & p_\mathrm{T} \ & \mathrm{Sum \ of} \ p_\mathrm{T} \ & \mathrm{of} \ \Lambda^0 \ & \mathrm{and} \ \gamma \ & \chi^2_\mathrm{MTDOCA} \end{aligned}$	< 1100 > 1000 > 5000 < 7	$\frac{\text{MeV}/c^2}{\text{MeV}/c}$ $\frac{\text{MeV}/c}{\text{MeV}/c}$

Background cut:

 $|M_{\Lambda_{0_{b}}}(PDG) - M_{\Lambda_{0_{b}}}| < 544.0 MeV/c^{2}$

Montecarlo (MC):

-Data generated by PYTHIA, simulating the data from 2012 ($\sqrt{s} = 8 TeV$)

-Stripping applied too

Preselection cuts:

 Λ^0 mass sidebands:

 $|M_{\Lambda^{0}}(PDG) - M_{\Lambda^{0}}| < 6.5 MeV/c^{2}$

-Linear fit to get the background entries in the mass window.

-"fake" Λ^{0} 's behaviour approximated from the behaviour in the sidebands

Background:

Selected from the cut:

 $|M_{\Lambda_{b}^{o}}(PDG) - M_{\Lambda_{b}^{o}}| > 544.0 MeV/c^{2}$

 $\varepsilon_{background} = 69.59\%$

Arnau Brossa 5

$\Lambda^{0}{}_{b} \rightarrow \Lambda^{0} + \gamma$

Preselection cuts

Total Events: 2 962 132

Expected Signal Events: 767 (0.025%)

 $FOM = \frac{S}{\sqrt{S+B}}$

FOM: 0.446

$\Lambda^{0}{}_{b} \rightarrow \Lambda^{0} + \gamma$

MVA's

Signal sample (MC): 20 945 events

Background sample (Λ, mass sidebands): 2 609 129 events

Arnau Brossa 7

NN study:

-There is no overtraining

-Low separation power expected

"Results"

$\Lambda_{_{\rm b}}$ mass:

Cut	Background ε	Signal ε
M _{^0} (PDG)-M _{^0} <6.5 MeV/c ²	69.59 %	97.24 %
PID/γ PT cuts	49.72 %	78.90 %
NN	0.50 %	18.62%
Total	0.17%	14.29%

And... what now?

- The main problem is the precision of the SV.
- We should try a new reconstruction method.

Leaf-by-leaf fitting:

- -Step-by-step fit using the daughter tracks in every vertex
- -Used by default
- -Does not require hypothesis
- -Not very useful with multiple decay verices

Kalman fitter:

- -Least squres fit of a decay chain involving multiple decay vertices
- -High computational cost
- -Requires different hypotesis or constraints depending on the fit

Some examples (not mine).

-Fitted
$$K_s^0$$
 mass from the decay:
 $K_s^0 \rightarrow \pi^0 \pi^0$

http://www.nikhef.nl/~wouterh/topicallectures/TrackingAndVertexing/part6.pdf

In our case:

-We only have the cluster information

-In the Leaf-by-leaf method, the vertex of the photon is set to PV

Further steps:

- Reconstruct all data using the Kalman filter with diferents constraints
- With the new data, apply:

Stripping

Preselection cuts

MVA's

Objectives:

- Obtain a much higher signal/Background ratio
- Use the selected signal to:

Improve the upper limit of $B(\Lambda_b^{0} \rightarrow \Lambda^{0} \gamma)$

Study the polarization of the resulting photons and the Λ_b^{0}

Thank you

MVA's input variables:

- Λ^0 PT - p^+ IP - p^+ PT - π^- IP - π^- PT - γ CL - Λ_b^0 PT - Λ_b^0 FD - Λ_b^0 DOCA - Λ_b^0 MTDOCA - Λ_b^0 IP - Λ^0 FD

Introduction:

$$\Lambda^{0}{}_{b} \rightarrow \Lambda^{0} + \gamma \rightarrow \pi^{-} + p^{+}$$

In the data samples taken 2012 by the LHCb.

LL: 44% **DD:** 56%

-low branching ratio

B(Λ_b⁰→Λ⁰ γ)=3−10·10⁻⁵ predicted by SM B(Λ_b⁰→Λ⁰ γ)<1.9·10⁻³ CDF collaboration (2002)

-Strategy:

- Select the Background sample from the Λ_h^0 mass sidebands.
- Plot the distributions to introduce pre-selection cuts in order to reduce the data sample.
- Select the observables which show the clearest separation power between signal and background.
- Apply a multivariate analysis, studying the performance of a boosted decision tree (BDT) and a Neural net (NN).

Data sample:

Data 2012:

-Post-stripping -Downstream tracks (DD)

Cuts applied:

FOM: 0.446

MVAs analysis:

Signal sample (MC): 20 945 events

Background sample (Λ, mass sidebands): 2 609 129 events

Training sample: 1 315 038 events

S: 10 473 events

B: 1 304 565 events

Test sample: 1 315 036 events

S: 10 472 events

B: 1 304 564 events

Boosetd Decision Tree (BDT):

-12 Inputs

-1000 trees

-Max depth: 15

Input Variables:

Input Variables:

NN and BDT performance.

ROC curves obtained from the test sample.

Overtraining Study.

Overtraining

FOM vs NN output cut

Results.

Total Events: 12 620

Expected Signal Events: 143

FOM: 1.273

Recap.

- Cuts applied:

 $|M_{\Lambda^{0}_{b}}(PDG) - M_{\Lambda^{0}_{b}}| < 544.0 \, MeV/c^{2}$ $|M_{\Lambda^{0}}(PDG) - M_{\Lambda^{0}}| < 6.5 \, MeV/c^{2}$ $\pi^{-} PID > 0.2$ $p^{+} PID > 0.2$ $\gamma PT > 3000 \, MeV$ - MVA analysis: Neural Net:

-NN output > 0.129

-Data sample reduced to:

-12 620 events

-143 expected signal events

- 1.13%

-FOM: 1.273

Cut	Background ε	Signal ε
M _{^0} (PDG)-M _{^0} <6.5 MeV/c ²	69.59 %	97.24 %
PID/γ PT cuts	49.72 %	78.90 %
NN	0.50 %	18.62%
Total	0.17%	14.29%

Conclusions.

-The MVA analysis gives a great improvement to our results, even though they are still not conclusive.

-The similarity between the Signal/Background distributions suggest that there can not be major improvement by working further on the MVA analysis.

-Further improvements may come from a better reconstruction of the data sample