OPE of Green functions in the odd sector of QCD

Tomáš Kadavý
with Karol Kampf and Jirí Novotný
Institute of Particle and Nuclear Physics
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Taller de Altas Energías 2016
Benasque, Spain, September 4-17, 2016

Supported by the Charles University, project GA UK no. 700214
September 14, 2016

What is it about?

- What do we do?
- We study QCD at low energies using Green functions.
- What do we need?
- Chiral perturbation theory $(\chi \mathrm{PT})$ and Resonance chiral theory $(\mathrm{R} \chi \mathrm{T})$.
- What is it?
- Effective description low-energy QCD.
- χ PT for $E \leq M_{\rho}$.
- Spontaneous breaking of the chiral $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ symmetry down to $\mathrm{SU}(3)_{V}$ in QCD leads to the presence of Goldstone bosons.
- We identify them with the octet of pseudoscalar mesons (π, K, η) as the lightest hadronic observable states.
- $\mathrm{R} \chi \mathrm{\top}$ for $M_{\rho} \leq E \leq 2 \mathrm{GeV}$.
- $\mathrm{R} \chi \mathrm{T}$ increases the number of degrees of freedom of $\chi \mathrm{PT}$ by including massive $\mathrm{U}(3)$ multiplets of vector $V\left(1^{--}\right)$, axial-vector $A\left(1^{++}\right)$, scalar $S\left(0^{++}\right)$and pseudoscalar $P\left(0^{-+}\right)$resonances.
- What is it good for?
- To study important theoretical and phenomenological aspects of QCD.

Green functions of chiral currents

- QCD introduces an octet of noether currents:
- vector and axial-vector currents:

$$
V_{\mu}^{a}=\bar{q}(x) \gamma_{\mu} T^{a} q(x), \quad A_{\mu}^{a}=\bar{q}(x) \gamma_{\mu} \gamma_{5} T^{a} q(x)
$$

- scalar and pseudoscalar densities:

$$
S^{a}=\bar{q}(x) T^{a} q(x), \quad P^{a}=i \bar{q}(x) \gamma_{5} T^{a} q(x)
$$

- The amplitudes of physical processes can be computed using LSZ reduction formula from the Green functions, the time ordered products of quantum fields (the group and Lorentz indices are suppresed):

$$
\int \mathrm{d}^{4} x_{1} \int \mathrm{~d}^{4} x_{2} e^{i\left(p_{1} x_{1}+p_{2} x_{2}\right)}\langle 0| \mathrm{T}\left[\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}(0)\right]|0\rangle
$$

- Only five nontrivial Green functions in the odd-intrinsic parity sector of QCD.
- $V V P, V A S, A A P, V V A$ and $A A A$.

How to calculate Green functions?

- We assume the saturation of dynamics with the lightest resonances.
- We restrict ourselves only to the three-point Green functions at tree level.
- Ingredients at the LO:

$$
\begin{aligned}
\mathcal{L}_{\chi \mathrm{PT}}^{(2)} & =\frac{F^{2}}{4}\left\langle u_{\mu} u^{\mu}+\chi_{+}\right\rangle \\
\mathcal{L}_{R}^{(4)} & =\frac{F_{V}}{2 \sqrt{2}}\left\langle V_{\mu \nu} f_{+}^{\mu \nu}\right\rangle+\frac{i G_{V}}{2 \sqrt{2}}\left\langle V_{\mu \nu}\left[u^{\mu}, u^{\nu}\right]\right\rangle+\frac{F_{A}}{2 \sqrt{2}}\left\langle A_{\mu \nu} f_{-}^{\mu \nu}\right\rangle \\
& +c_{d}\left\langle S u^{\mu} u_{\mu}\right\rangle+c_{m}\left\langle S \chi_{+}\right\rangle+i d_{m}\left\langle P \chi_{-}\right\rangle+\frac{i d_{m 0}}{N_{F}}\langle P\rangle\left\langle\chi_{-}\right\rangle .
\end{aligned}
$$

- At the NLO, relevant Lagrangian in the odd-intrinsic parity sector, was formulated for the first time in [K. Kampf and J. Novotny '11]

$$
\mathcal{L}_{R}^{(6)}=\sum_{X} \sum_{i} \kappa_{i}^{X} \widehat{\mathcal{O}}_{i \mu \nu \alpha \beta}^{X} \varepsilon^{\mu \nu \alpha \beta} .
$$

- X stands for the single-resonance fields V, A, S, P, double-resonance fields $V V, A A, S A, S V, V A, P A, P V$ and triple-resonance fields $V V P, V A S, A A P$.

How to calculate Green functions?

- Example: a set of operators with one vector resonance field:

i	$\widehat{\mathcal{O}}_{i \mu \nu \alpha \beta}^{V}$	i	$\widehat{\mathcal{O}}_{i \mu \nu \alpha \beta}^{V}$
1	$i\left\langle V^{\mu \nu}\left(h^{\alpha \sigma} u_{\sigma} u^{\beta}-u^{\beta} u_{\sigma} h^{\alpha \sigma}\right)\right\rangle$	10	$\left\langle V^{\mu \nu} u^{\alpha} \chi-u^{\beta}\right\rangle$
2	$i\left\langle V^{\mu \nu}\left(u_{\sigma} h^{\alpha \sigma} u^{\beta}-u^{\beta} h^{\alpha \sigma} u_{\sigma}\right)\right\rangle$	11	$\left\langle V^{\mu \nu}\left\{f_{+}^{\alpha \rho}, f_{-}^{\beta \sigma}\right\}\right\rangle g_{\rho \sigma}$
3	$i\left\langle V^{\mu \nu}\left(u_{\sigma} u^{\beta} h^{\alpha \sigma}-h^{\alpha \sigma} u^{\beta} u_{\sigma}\right)\right\rangle$	12	$\left\langle V^{\mu \nu}\left\{f_{+}^{\alpha \rho}, h^{\beta \sigma}\right\}\right\rangle g_{\rho \sigma}$
4	$i\left\langle\left[V^{\mu \nu}, \nabla^{\alpha} \chi+\right] u^{\beta}\right\rangle$	13	$i\left\langle V^{\mu \nu} f_{+}^{\alpha \beta}\right\rangle\langle\chi-\rangle$
5	$i\left\langle V^{\mu \nu}\left[f_{-}^{\alpha \beta}, u_{\sigma} u^{\sigma}\right]\right\rangle$	14	$i\left\langle V^{\mu \nu}\left\{f_{+}^{\alpha \beta}, \chi-\right\}\right\rangle$
6	$i\left\langle V^{\mu \nu}\left(f_{-}^{\alpha \sigma} u^{\beta} u_{\sigma}-u_{\sigma} u^{\beta} f_{-}^{\alpha \sigma}\right)\right\rangle$	15	$i\left\langle V^{\mu \nu}\left[f_{-}^{\alpha \beta}, \chi+\right]\right\rangle$
7	$i\left\langle V^{\mu \nu}\left(u_{\sigma} f_{-}^{\alpha \sigma} u^{\beta}-u^{\beta} f_{-}^{\alpha \sigma} u_{\sigma}\right)\right\rangle$	16	$\left\langle V^{\mu \nu}\left\{\nabla^{\alpha} f_{+}^{\beta \sigma}, u_{\sigma}\right\}\right\rangle$
8	$i\left\langle V^{\mu \nu}\left(f_{-}^{\alpha \sigma} u_{\sigma} u^{\beta}-u^{\beta} u_{\sigma} f_{-}^{\alpha \sigma}\right)\right\rangle$	17	$\left\langle V^{\mu \nu}\left\{\nabla_{\sigma} f_{+}^{\alpha \sigma}, u^{\beta}\right\}\right\rangle$
9	$\left\langle V^{\mu \nu}\left\{\chi_{-}, u^{\alpha} u^{\beta}\right\}\right\rangle$	18	$\left\langle V^{\mu \nu} u^{\alpha} u^{\beta}\right\rangle\langle\chi-\rangle$

- Topology of the Feynman diagrams (the crossing is implicitly assumed):

Determination of the couplings κ_{i}^{X}

- Reminder:

$$
\mathcal{L}_{R}^{(6)}=\sum_{X} \sum_{i} \kappa_{i}^{X} \widehat{\mathcal{O}}_{i \mu \nu \alpha \beta}^{X} \varepsilon^{\mu \nu \alpha \beta} .
$$

- $\mathcal{L}_{R}^{(6)}: 67$ operators and 67 corresponding unknown couplings κ_{i}^{X} in total.
- Three-point Green functions contain 32 couplings κ_{i}^{X} together.
- Not every coupling can be determined.
- How to determine the coupling constants?
- High-energy behavior of Green functions.
- Brodsky-Lepage behavior of the transition formfactor.
- Matching calculations in $\mathrm{R} \chi \mathrm{T}$ with $\chi \mathrm{PT}$.
- Experiments.

Operator Product Expansion (OPE)

- OPE is a framework to study short-distance behaviour of Green functions.
- Formalism independent - purely mathematical property (no Lagrangians, no Feynman diagrams etc.).
- The OPE is equivalent to an assumption that at large external momentum p, the two-point Green function of the operators above can be rewritten in the form

$$
\begin{gathered}
A(x) B(y)=\sum_{i=0}^{\infty} C_{i}(x-y) \mathcal{O}_{i}\left(\frac{x-y}{2}\right) \\
i \int \mathrm{~d}^{4} x e^{i p x}\langle 0| \mathrm{T}[A(x) B(0)]|0\rangle=\sum_{n} C_{n}^{A B}\left(p^{2}\right)\langle 0| \mathcal{O}_{n}|0\rangle
\end{gathered}
$$

- QCD condensates \mathcal{O}_{D} with dimension $D \leq 6$:

$$
\begin{array}{ll}
\mathcal{O}_{0}=1, & \mathcal{O}_{5}=\langle 0| \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q|0\rangle \\
\mathcal{O}_{3}=\langle 0| \bar{q} q|0\rangle, & \mathcal{O}_{6}^{q}=\langle 0|(\bar{q} \Gamma q)(\bar{q} \Gamma q)|0\rangle, \\
\mathcal{O}_{4}=\langle 0| G_{\mu \nu} G^{\mu \nu}|0\rangle, & \mathcal{O}_{6}^{G}=\langle 0| G_{\mu \nu} G_{\sigma}^{\nu} G^{\sigma \mu}|0\rangle
\end{array}
$$

- Γ stands for a combination of $\left\{\mathbb{1}_{4}, \gamma_{5}, \gamma^{\mu}, \gamma_{5} \gamma^{\mu}, \sigma^{\mu \nu}\right\}$ and $\left\{\mathbb{1}_{3}, T^{a}\right\}$.

OPE for three-point Green functions: Example on $V V P$

- Vector currents $V_{\mu}^{a}(p), V_{\nu}^{b}(q)$ and pseudoscalar density $P^{c}(r), r=-p-q$.
- Ward identities, P, C and Lorentz invariance gives the structure

$$
\left(\Pi_{V V P}(p, q ; r)\right)_{\mu \nu}^{a b c}=\Pi_{V V P}\left(p^{2}, q^{2}, r^{2}\right) d^{a b c} \varepsilon_{\mu \nu(p)(q)} .
$$

- All three momenta are considered to be large.
- OPE is easily obtained with two contractions as the lowest order contribution (only the quark condensate contributes):

$$
\langle 0| \rightarrow \otimes \rightarrow \otimes-\otimes \rightarrow|0\rangle .
$$

- The result: $\Pi_{V V P}\left(p^{2}, q^{2}, r^{2}\right)$ at high energies behaves as

$$
\Pi_{V V P}^{\mathrm{OPE}}\left((\lambda p)^{2},(\lambda q)^{2} ;(\lambda r)^{2}\right)=\frac{B_{0} F^{2}}{2 \lambda^{4}} \frac{p^{2}+q^{2}+r^{2}}{p^{2} q^{2} r^{2}}+\mathcal{O}\left(\frac{1}{\lambda^{6}}\right) \text { for } \lambda \rightarrow \infty
$$

- In a condensed notation:

$$
\Pi_{V V P}^{\mathrm{OPE}} \sim(+,+,+), \quad \Pi_{V A S}^{\mathrm{OPE}} \sim(+,-,-), \quad \Pi_{A A P}^{\mathrm{OPE}} \sim(+,+,-)
$$

VV P Green function

- Reminder:

$$
\left(\Pi_{V V P}(p, q ; r)\right)_{\mu \nu}^{a b c}=\Pi_{V V P}\left(p^{2}, q^{2}, r^{2}\right) d^{a b c} \varepsilon_{\mu \nu(p)(q)} .
$$

- Our task is to calculate $\Pi_{V V P}\left(p^{2}, q^{2}, r^{2}\right)$ using our Lagrangian \mathcal{L}_{R}^{6} and determine the couplings κ_{i}^{X}.
- χ PT
- Comparison with the calculation in χ PT leads to an isolation of two low-energy constants C_{7}^{W} and C_{22}^{W} in terms of κ_{i}^{X} couplings.
- OPE
- High-energy behaviour dictates the coupling constants constraints:

$$
\begin{aligned}
& \kappa_{14}^{V}=\frac{N_{c}}{256 \sqrt{2} \pi^{2} F_{V}}, \quad \kappa_{16}^{V}+2 \kappa_{12}^{V}=-\frac{N_{c}}{32 \sqrt{2} \pi^{2} F_{V}}, \quad \kappa_{17}^{V}=-\frac{N_{c}}{64 \sqrt{2} \pi^{2} F_{V}}, \\
& \kappa_{2}^{V V}=\frac{F^{2}+16 \sqrt{2} d_{m} F_{V} \kappa_{3}^{P V}}{32 F_{V}^{2}}-\frac{N_{c} M_{V}^{2}}{512 \pi^{2} F_{V}^{2}}, \quad 8 \kappa_{2}^{V V}-\kappa_{3}^{V V}=\frac{F^{2}}{8 F_{V}^{2}} .
\end{aligned}
$$

- $\Pi_{V V P}^{R \times T}\left(p^{2}, q^{2}, r^{2}\right)$: substituing the constraints back into $\Pi_{V V P}\left(p^{2}, q^{2}, r^{2}\right)$.

$V V P$ Green function: $\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}$ formfactor

- The transition $\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}$ formfactor:

$$
\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{~T}}\left(p^{2}, q^{2}, r^{2}\right)=\frac{2 r^{2}}{3 B_{0} F} \Pi_{V V P}^{\mathrm{R} \chi \mathrm{~T}}\left(p^{2}, q^{2}, r^{2}\right)
$$

- The Brodsky-Lepage behaviour for large momentum [G. P. Lepage and S. J. Brodsky '80, '81]:

$$
\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{~T}}\left(0,-Q^{2}, m_{\pi}^{2}\right) \sim-\frac{1}{Q^{2}} \text { for } Q^{2} \rightarrow \infty .
$$

- B-L behaviour leads to the constraint

$$
\kappa_{3}^{P V}=-\frac{F^{2}}{32 \sqrt{2} d_{m} F_{V}} .
$$

- BABAR measurement shows phenomenological disagreement with this condition that leads to the deviation with $\delta_{\mathrm{BL}}=-0,055 \pm 0.025$,

$$
\kappa_{3}^{P V}=-\frac{F^{2}}{32 \sqrt{2} d_{m} F_{V}}\left(1+\delta_{\mathrm{BL}}\right) .
$$

$V V P$ Green function: $\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}$ formfactor

Figure: A plot of BABAR (green) and CLEO (blue) data fitted with the formfactor $\mathcal{F}_{\pi^{0} \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}\left(0,-Q^{2} ; 0\right)$ using the modified Brodsky-Lepage condition. The full black line represents fit with $\delta_{\mathrm{BL}}=-0.055$, and blue dotted line is a fit with standard $\delta_{\mathrm{BL}}=0$.

VV P Green function: Decays of $\pi(1300)$

- Two decay channels studied: $\pi(1300) \rightarrow \gamma \gamma$ and $\pi(1300) \rightarrow \rho \gamma$.

$$
\begin{aligned}
& \mathcal{A}_{\pi(1300) \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{~T}}=e^{2} \frac{8 \sqrt{2} F_{V}}{3}\left(\frac{2 \sqrt{2} \kappa_{3}^{P V} M_{V}^{2}-F_{V} \kappa^{V V P}}{M_{V}^{4}}\right), \\
& \mathcal{A}_{\pi(1300) \rightarrow \rho \gamma}^{\mathrm{R} \chi \mathrm{~T}}=-e \frac{4 \sqrt{2}}{3 M_{V}}\left(\frac{\sqrt{2} \kappa_{3}^{P V} M_{V}^{2}-F_{V} \kappa^{V V P}}{M_{V}^{2}}\right) .
\end{aligned}
$$

- Belle collaboration [K. Abe et al. '06] gives $\Gamma_{\pi(1300) \rightarrow \gamma \gamma}<72 \mathrm{eV}$ which leads to the estimate $\kappa^{V V P} \approx(-0.57 \pm 0.13) \mathrm{GeV}$.

Figure: The connection of decay widths for $\pi(1300) \rightarrow \gamma \gamma$ and $\pi(1300) \rightarrow \rho \gamma$.

VV P Green function: Decays of $\pi(1300)$

- Two decay channels studied: $\pi(1300) \rightarrow \gamma \sim$ apd $\pi(1300) \rightarrow \rho \gamma$.

$$
\begin{aligned}
& \mathcal{A}_{\pi(1300) \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{~T}}=e^{2} \frac{8 \sqrt{2} F_{V}}{3}\left(\frac{2 \sqrt{2} \kappa_{3}^{P V} M_{V}^{2}-F_{V} \kappa^{V V P}}{\hdashline M_{V}^{4}}\right) \\
& \mathcal{A}_{\pi(1300) \rightarrow \rho \gamma}^{\mathrm{R} \chi \mathrm{~T}}=-e \frac{4 \sqrt{2}}{3 M_{V}}\binom{\sqrt{2} \kappa_{3}^{P V} M_{V}^{2}-F_{V} \kappa^{V V P}}{\hline \multirow{3}{|c|}{M_{V}^{2}}}
\end{aligned}
$$

- Belle collaboration [K. Abe et al. '06] gives $\Gamma_{\pi(1300) \rightarrow \gamma \gamma}<72 \mathrm{eV}$ which leads to the estimate $\kappa^{V V P} \approx(-0.57 \pm 0.13) \mathrm{GeV}$.

Figure: The connection of decay widths for $\pi(1300) \rightarrow \gamma \gamma$ and $\pi(1300) \rightarrow \rho \gamma$.

VV P Green function: The muon $g-2$ factor

- Hadronic contributions: hadronic light-by-light scattering.
- The main source of theoretical error in the SM prediction.
- The four point Green function $\langle V V V V\rangle$ can be simplified into:
- $\pi^{ \pm}$and $K^{ \pm}$loops,
- $\pi^{0}, \eta, \eta^{\prime}$ exchanges: the $\langle V V P\rangle$ case etc.
- Using the fully off-shell $\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}\left(p^{2}, q^{2}, r^{2}\right)$ formfactor we get:

$$
a_{\mu}^{\mathrm{LbyL}, \pi^{0}}=(65.8 \pm 1.2) \cdot 10^{-11}
$$

- The updated result [P. Roig, A. Guevara and G. L. Castro '14]:

$$
a_{\mu}^{\pi^{0}}=(66.6 \pm 2.1) \cdot 10^{-11}
$$

VV A Green function

- The Ward identities restrict the general decomposition of the tensor part of VVA into four terms

$$
\begin{aligned}
\left(\Pi_{V V A}(p, q ; r)\right)_{\mu \nu \rho}^{a b c} & =d^{a b c} \Pi_{\mu \nu \rho}(p, q ; r) \\
\Pi_{\mu \nu \rho}(p, q ; r) & =w_{L} \varepsilon_{\mu \nu(p)(q)} r_{\rho}+w_{T}^{(1)} \Pi_{\mu \nu \rho}^{(1)}+w_{T}^{(2)} \Pi_{\mu \nu \rho}^{(2)}+w_{T}^{(3)} \Pi_{\mu \nu \rho}^{(3)}
\end{aligned}
$$

- The tensor part is nontrivial [M. Knecht, S. Peris, M. Perrottet and E. de Rafael '04]

$$
\begin{aligned}
& \Pi_{\mu \nu \rho}^{(1)}=p_{\nu} \varepsilon_{\mu \rho(p)(q)}-q_{\mu} \varepsilon_{\nu \rho(p)(q)}-\frac{p^{2}+q^{2}-r^{2}}{r^{2}} \varepsilon_{\mu \nu(p)(q)} r_{\rho}+\frac{p^{2}+q^{2}-r^{2}}{2} \varepsilon_{\mu \nu \rho(p-q)}, \\
& \Pi_{\mu \nu \rho}^{(2)}=\varepsilon_{\mu \nu(p)(q)}(p-q)_{\rho}+\frac{p^{2}-q^{2}}{r^{2}} \varepsilon_{\mu \nu(p)(q)} r_{\rho}, \\
& \Pi_{\mu \nu \rho}^{(3)}=p_{\nu} \varepsilon_{\mu \rho(p)(q)}+q_{\mu} \varepsilon_{\nu \rho(p)(q)}-\frac{p^{2}+q^{2}-r^{2}}{2} \varepsilon_{\mu \nu \rho(r)} .
\end{aligned}
$$

VV A Green function

- Extracted formfactors [T. Kadavý, K. Kampf and J. Novotný '16]:

$$
\begin{aligned}
w_{L} & =\frac{N_{c}}{8 \pi^{2} r^{2}}, \\
w_{T}^{(1)} & =-\frac{2 \sqrt{2} F_{V}\left[\kappa_{17}^{V}\left(p^{2}+q^{2}-2 M_{V}^{2}\right)-\sqrt{2} F_{V} \kappa_{3}^{V V}\right]}{\left(p^{2}-M_{V}^{2}\right)\left(q^{2}-M_{V}^{2}\right)}, \\
w_{T}^{(2)} & =-\frac{2 \sqrt{2} F_{V}\left(p^{2}-q^{2}\right)\left(2 \kappa_{12}^{V}+\kappa_{16}^{V}-\kappa_{17}^{V}\right)}{\left(p^{2}-M_{V}^{2}\right)\left(q^{2}-M_{V}^{2}\right)}, \\
w_{T}^{(3)} & =\frac{2 \sqrt{2} F_{V}\left(p^{2}-q^{2}\right)}{\left(p^{2}-M_{V}^{2}\right)\left(q^{2}-M_{V}^{2}\right)}\left(2 \kappa_{11}^{V}+2 \kappa_{12}^{V}-\kappa_{17}^{V}-\frac{\sqrt{2} F_{A} \kappa_{5}^{V A}}{r^{2}-M_{A}^{2}}\right) .
\end{aligned}
$$

- Phenomenologically important formfactor $w_{T}\left(Q^{2}\right)$:

$$
\begin{aligned}
w_{T}\left(Q^{2}\right) & =-16 \pi^{2}\left[w_{T}^{(1)}\left(-Q^{2}, 0,-Q^{2}\right)+w_{T}^{(3)}\left(-Q^{2}, 0,-Q^{2}\right)\right] \\
& =\frac{N_{c}}{M_{V}^{2}}+\frac{64 \pi^{2} F_{V}}{M_{V}^{2}\left(Q^{2}+M_{V}^{2}\right)}\left[Q^{2}\left(\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right)+\frac{F_{A} \kappa_{5}^{V A}}{Q^{2}+M_{A}^{2}}\right)-F_{V} \kappa_{3}^{V V}\right] .
\end{aligned}
$$

VV A Green function: Coupling constants constraints

- Expand $w_{T}\left(Q^{2}\right)$ in terms of Q^{2} up to $\mathcal{O}\left(\frac{1}{Q^{8}}\right)$.
- Why?
- Soft-wall AdS/QCD and OPE [J. J. Sanz-Cillero '12] and [P. Colangelo, F. De Fazio, J. J. Sanz-Cillero, F. Giannuzzi and S. Nicotri '12]:

$$
w_{T}\left(Q^{2}\right)=\frac{N_{c}}{Q^{2}}+\frac{128 \pi^{3} \alpha_{s} \chi\langle\bar{q} q\rangle^{2}}{9 Q^{6}}+\mathcal{O}\left(\frac{1}{Q^{8}}\right)
$$

- Two large momenta only!
- Comparison leads to a system of equations:

$$
\begin{aligned}
\frac{N_{c}}{64 \pi^{2} F_{V}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right) & =0 \\
\frac{F_{V} \kappa_{3}^{V V}-F_{A} \kappa_{5}^{V A}}{M_{V}^{2}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right) & =-\frac{N_{c}}{64 \pi^{2} F_{V}}, \\
\frac{F_{V} \kappa_{3}^{V V}-F_{A} \kappa_{5}^{V A}}{M_{V}^{2}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right)-F_{A} \kappa_{5}^{V A} \frac{M_{A}^{2}}{M_{V}^{4}} & =0 \\
\frac{F_{V} \kappa_{3}^{V V}-F_{A} \kappa_{5}^{V A}}{M_{V}^{2}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right)-F_{A} \kappa_{5}^{V A} \frac{M_{A}^{2}}{M_{V}^{4}}\left(1+\frac{M_{A}^{2}}{M_{V}^{2}}\right) & =-\frac{2 \pi \alpha_{s} \chi\langle\bar{q} q\rangle^{2}}{9 F_{V} M_{V}^{4}} .
\end{aligned}
$$

VV A Green function: Coupling constants constraints

- Expand $w_{T}\left(Q^{2}\right)$ in terms of Q^{2} up to $\mathcal{O}\left(\frac{1}{Q^{8}}\right)$.
- Why?
- Soft-wall AdS/QCD and OPE [J. J. Sanz-Cillero '12] and [P. Colangelo, F. De Fazio, J. J. Sanz-Cillero, F. Giannuzzi and S. Nicotri '12]:

$$
w_{T}\left(Q^{2}\right)=\frac{N_{c}}{Q^{2}}+\frac{128 \pi^{3} \alpha_{s} \chi\langle\bar{q} q\rangle^{2}}{9 Q^{6}}+\mathcal{O}\left(\frac{1}{Q^{8}}\right)
$$

- Two large momenta only!
- Comparison leads to a system of equations:

$$
\begin{aligned}
\frac{N_{c}}{64 \pi^{2} F_{V}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right) & =0, \\
\frac{F_{V} \kappa_{3}^{V V}-F_{A} \kappa_{5}^{V A}}{M_{V}^{2}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right) & =-\frac{N_{c}}{64 \pi^{2} F_{V}}, \\
\frac{F_{V} \kappa_{3}^{V V}-F_{A} \kappa_{5}^{V A}}{M_{V}^{2}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right)-F_{A} \kappa_{5}^{V A} \frac{M_{A}^{2}}{M_{V}^{4}} & =0, \\
\frac{F_{V} \kappa_{3}^{V V}-F_{A} \kappa_{5}^{V A}}{M_{V}^{2}}+\sqrt{2}\left(\kappa_{11}^{V}+\kappa_{12}^{V}\right)-F_{A} \kappa_{5}^{V A} \frac{M_{A}^{2}}{M_{V}^{4}}\left(1+\frac{M_{A}^{2}}{M_{V}^{2}}\right) & =-\frac{2 \pi \alpha_{s} \chi\langle\bar{q} q\rangle^{2}}{9 F_{V} M_{V}^{4}} .
\end{aligned}
$$

VV A Green function: Coupling constants constraints

- It is possible to extract the following coupling constants constraints:

$$
\kappa_{11}^{V}+\kappa_{12}^{V}=-\frac{N_{c}}{64 \sqrt{2} \pi^{2} F_{V}}, \quad \kappa_{3}^{V V}=-\frac{N_{c} M_{V}^{4}}{64 \pi^{2} M_{A}^{2} F_{V}^{2}}, \quad \kappa_{5}^{V A}=\kappa_{3}^{V V} \frac{F_{V}}{F_{A}} .
$$

- Since it is not possible to solve the system of equations completely, the relevance of the constraints should be taken carefully!
- Determination of $\kappa_{5}^{V A}$:
- Numerically: $\kappa_{5}^{V A}=-0.086$.
- From the decay $f_{1}(1285) \rightarrow \rho \gamma: \kappa_{5}^{V A}=-0.062 \pm 0.030$.
- Using the constraints for $V V P$ we can also determine:
$\kappa_{2}^{V V}=\frac{1}{64 F_{V}^{2}}\left(F^{2}-\frac{N_{c} M_{V}^{4}}{8 \pi^{2} M_{A}^{2}}\right), \quad \kappa_{3}^{P V}=-\frac{F^{2}}{32 \sqrt{2} d_{m} F_{V}}\left[1+\frac{N_{c} M_{V}^{2}}{8 \pi^{2} F^{2}}\left(\frac{M_{V}^{2}}{M_{A}^{2}}-1\right)\right]$.
- Reminder: BABAR dictates $\kappa_{3}^{P V}=-\frac{F^{2}}{32 \sqrt{2} d_{m} F_{V}}\left(1+\delta_{\mathrm{BL}}\right)$ with the value $\delta_{\mathrm{BL}}=-0,055 \pm 0.025$ from $V V P$.
- However, our prediction from $V V A$ gives $\delta_{\mathrm{BL}}=-1.342$.

VV A Green function: $\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}$ formfactor revisited

Figure: A plot of BABAR (green), BELLE (red) and CLEO (blue) data fitted with the formfactor $\mathcal{F}_{\pi^{0} \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}\left(0,-Q^{2} ; 0\right)$ using the modified Brodsky-Lepage condition. The full black line represents our fit with $\delta_{\mathrm{BL}}=-1.342$, and the full brown line is a fit using the LMD formfactor. The dashed line stands for $\delta_{\mathrm{BL}}=-0.055$ and the dot-dashed line for $\delta_{\mathrm{BL}}=0$.

VV A Green functions: OPE

- $V V A$ does not have the LO contribution to the OPE with all three momenta large, i.e.

$$
\langle 0| \rightarrow \otimes \rightarrow \otimes \rightarrow \otimes \rightarrow|0\rangle=0 .
$$

- Therefore, one needs to include other contributions from QCD condensates [T. Kadavý, K. Kampf and J. Novotný '16]:
$D=3:$

$D=4:$

$D=5:$
$D=6:$

Conclusion

- Some properties of low-energy QCD and Green functions were summarized.
- We study Green functions in the odd-intrinsic parity sector, calculated in the NLO, i.e. up to $\mathcal{O}\left(p^{6}\right)$.
- Properties of Green functions and their coupling constants are studied by:
- High-energy behavior of Green functions.
- Brodsky-Lepage behavior of the transition formfactor.
- Matching calculations in $\mathrm{R} \chi \mathrm{T}$ with χ PT .
- Experiments.
- Two specific correlators were shown:
- VVP
- Transition form factor $\mathcal{F}_{\pi^{0} \rightarrow \gamma \gamma}^{\mathrm{R} \chi \mathrm{T}}\left(p^{2}, q^{2}, r^{2}\right)$, decays of $\pi(1300)$ and the contribution to the $g-2$ factor were shown.
- $V V A$
- Newest results were presented.
- OPE with two large momenta is obviously inconsistent with reality, OPE with all three large momenta is needed (and in progress).

Thank you for your attention!

Questions?

