Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in A

DSR model at second order in Λ and space-time

Conclusions

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Universidad de Zaragoza

Beyond Special Relativity and DSR theory

José Javie Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in A and space-time

Conclusions

1 Introduction

2 DSR model at first order in Λ

3 DSR model at second order in Λ and space-time

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

4 Conclusions

Motivation

Beyond Special Relativity and DSR theory

> José Javien Relancio Martínez

Introduction

DSR model at first orde in Λ

DSR model at second order in A and space-time

Conclusions

Space-time: the last frontier

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in Λ and space-time

Conclusions

- Any answer has to include matter and also the space-time structure \rightarrow Gravity
- If fundamental constituents of matter exist, does it happen the same for space-time?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Do space «atoms» exist?

QFT y GR: incompatibilities

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in A and space-time

Conclusions

- One of the challenges for the present physics is the unification of GR and QFT → QGT.
- In QFT, one asumes a given space-time and one studies in detail the properties and the movement of particles in it.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 In GR, one asumes that the properties of matter and radiation are given and one describes in detail the resultant space-time (curvature).

QFT y GR: incompatibilities

Beyond Special Relativity and DSR theory

> José Javier Relancio Martínez

Introduction

DSR model at first orden in Λ

DSR model at second order in A and space-time

Conclusions

Why do we need a QGT?

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first orde in Λ

DSR model at second order in Λ and space-time

Conclusions

Study of the first moments of the universe.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Black holes: Singularity, information?
- Answers→ QGT.

Quantum Gravity Theories

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in ∧ and space-time

Conclusions

- Approaches to QGT: string theory, quantum loop gravity, supergravity, causal set theory...
- There are no experimental evidences of a fundamental QGT.
- New approach: study the low energy theory of QGT. Doubly Special Relativity (DSR) →posible experimental evidences.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Doubly Special Relativity (DSR)

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in ∧ and space-time

Conclusions

- Two invariants in every inertial frame: speed of light c and Planck length I_P.
- We can obtain t_P , M_P y Λ

 $\frac{\Lambda}{c^2}$

$$l_P = \sqrt{rac{\hbar G}{c^3}} = 1, 6 imes 10^{-35} \,\mathrm{m}$$

 $t_P = \sqrt{rac{\hbar G}{c^5}} = 5, 4 imes 10^{-44} \,\mathrm{s}$
 $= M_P = \sqrt{rac{\hbar c}{G}} = 2, 2 imes 10^{-8} \,\mathrm{kg} = 1, 2 imes 10^{19} \,\mathrm{GeV}/c^2$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Quantum Gravity Phenomenology

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first orden in Λ

DSR model at second order in A and space-time

Conclusions

- Planck energy $ightarrow 10^{19}$ GeV
- \blacksquare Particle accelerators \rightarrow 1.3 \times 10 4 GeV
- Cosmic rays $\rightarrow 10^{11}$ GeV.
- Phenomenology?→ Amplifications at low energy.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Photon time delay

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in ∧ and space-time

Conclusions

- A «foamy» structure of space-time could produce stochastic variations of the speed of particles.
- These deviations can be obtained through modified dispersion relations (MDR), that for $E \ll \Lambda$

$$E^2 - \vec{p}^2 - m^2 \simeq \xi_n E^2 \left(\frac{E}{\Lambda}\right)^n$$

With the Hamiltonian concept of speed

$$v = \frac{dE}{dp}$$

this causes a difference in the flight time

$$\Delta t \sim \left(\frac{d}{c}\right) \xi_n \left(\frac{E}{\Lambda}\right)^n$$

Photon time delay

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in A and space-time

Conclusions

- This delay can be measured for photons with different energies coming from a *gamma ray burst*.
- Recent experiments impose strong restrictions to deviations respect to SR at leading order (n = 1)

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

Relative locality

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in ∧ and space-time

Conclusions

- When SR was formulated, space-time was flat.
- With the development of GR, Einstein introduces the concept of curved space-time.
- Born: why not to consider also a curved momentum space?
- This happens when one considers a modified composition law (MCL) of momenta

$$(p\oplus q)^\mu = p^\mu + q^\mu + \Gamma^\mu_{
u\lambda}p^
u q^\lambda + ...$$

where $\Gamma^{\mu}_{\nu\lambda}$ is the affine connection. This composition law is not neccessrely commutative

$$p\oplus q \neq q\oplus p$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Relative locality

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in Λ

DSR model at second order in A anc space-time

Conclusions

 Alice sees the production local and the detection non local, while Bob sees production non local and detection local.

(a)

э

First order model

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in A

DSR model at second order in Λ and space-time

Conclusions

Most general MDR rotational invariant at first order

$$p_0^2-ec{p}^2+rac{lpha_1}{\Lambda}p_0^3+rac{lpha_2}{\Lambda}ec{p}^2p_0=m^2$$

- Lorentz invariance violation (LIV) vs. M_P-Deformed Lorentz invariance (DSR)
- In DSR, the presence of an energy scale requires that the deformed transformations act non-linearly
- Then, a linear (p_0, \vec{p}) -conservation law is not compatible with a relativity principle (RP) \implies MCL.

$$p_{1} \oplus p_{2}|^{0} = p_{1}^{0} + p_{2}^{0} + \frac{\beta_{1}}{\Lambda} p_{1}^{0} p_{2}^{0} + \frac{\beta_{2}}{\Lambda} \vec{p}_{1} \vec{p}_{2}$$

$$\overrightarrow{p_{1} \oplus p_{2}} = \vec{p}_{1} + \vec{p}_{2} + \frac{\gamma_{1}}{\Lambda} p_{1}^{0} \vec{p}_{2} + \frac{\gamma_{2}}{\Lambda} \vec{p}_{1} p_{2}^{0} + \frac{\gamma_{3}}{\Lambda} \vec{p}_{1} \times \vec{p}_{2}$$

Lorentz Transformations

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

```
DSR model
at first order
in A
```

DSR model at second order in A and space-time

Conclusions

Deformed infinitesimal Lorentz transformation (one particle sector):

 $\lambda_1\,,\,\lambda_2\,,\,\lambda_3$

Two particle sector

 $\eta_1^L, \eta_2^L, \eta_1^R, \eta_2^R$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Now we impose the Relativity Principle: all observers agree with conservation law.

Relations

Beyond Special Relativity and DSR theory

José Javie Relancio Martínez

Introduction

DSR model at first order in A

DSR model at second order in A and space-time

Conclusions

 One can obtain the relations between the coefficients of MDR and MCL and those of the Lorentz transformation.

$$\boldsymbol{\alpha_1} = -2\left(\lambda_1 + \lambda_2 + 2\lambda_3\right) \quad \boldsymbol{\alpha_2} = 2\left(\lambda_1 + 2\lambda_2 + 3\lambda_3\right)$$

$$\beta_1 = 2 (\lambda_1 + \lambda_2 + 2\lambda_3) \quad \beta_2 = -2\lambda_3 - \eta_1^L - \eta_1^R$$
$$\gamma_1 = \lambda_1 + 2\lambda_2 + 2\lambda_3 - \eta_1^L \quad \gamma_2 = \lambda_1 + 2\lambda_2 + 2\lambda_3 - \eta_1^R$$
$$\gamma_3 = \eta_2^L - \eta_2^R$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

Relations

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first order in A

DSR model at second order in A and space-time

Conclusions

From the previous relations, one can obtain the relations (golden rules) between the MDR and the MCL:

$$\alpha_1 = -\beta_1 \qquad \alpha_2 = \gamma_1 + \gamma_2 - \beta_2$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Not every coefficients satisfy a RP.

Modified Heisenberg algebra: Snyder algebra

Beyond Special Relativity and DSR theory

José Javier Relancio Martínez

Introduction

DSR model at first orde in Λ

DSR model at second order in A and space-time

Conclusions

The Snyder algebra is

$$[x_{\mu}, x_{\nu}] = -\frac{i}{\Lambda^2} J_{\mu\nu} \qquad [x_{\mu}, p_{\nu}] = i \left(\eta_{\mu\nu} - \frac{1}{\Lambda^2} p_{\mu} p_{\nu} \right)$$

This algebra is related to momentum space with the following MCL (at leading order in Λ^2)

$$(p\oplus q)^{\mu}=p^{\mu}\!+\!q^{\mu}\!-\!rac{1}{\Lambda^{2}}\,(p.q)\,q^{\mu}\!-\!rac{1}{2\Lambda^{2}}\,(p.q)\,p^{\mu}\!-\!rac{1}{2\Lambda^{2}}p^{2}q^{\mu}$$

イロト 不得 とうき イヨト

-

Conclusions

・ロッ ・ 雪 ・ ・ ヨ ・ ・ 日 ・

æ.

Conclusions

Conclusions

José Javier Relancio Martínez

Introduction

DSR model at first order in A

DSR model at second order in A and space-time

Conclusions

