Search for top squark pair production in final states with two τ leptons, jets, and missing transverse momentum in $\sqrt{s} = 13$ TeV *pp*-collisions with the ATLAS detector

Taller de Altas Energías 2016

Michael Holzbock September 7, 2016

LMU Munich

(Short) Review of Supersymmetry

Motivation

- shortcomings of SM
 - no unification of coupl. const.
 - no (cold) dark matter candidate
 - loop corrections of Higgs mass
- can be solved by SUSY

Implementation

- extend symmetries of Poincaré group
- $\bullet\,$ operator Q relating fermions and bosons:

 $\mathsf{Q}\left|\mathsf{Boson}\right\rangle = \left|\mathsf{Fermion}\right\rangle$ and v.v.

• symmetry is broken by unknown mechanism

Production & Decay

- direct production of scalar-top pairs
- 3-body decay of stop to b-quark, neutrino and stau
- stau decays into tau and gravitino (LSP)
- simplified model (BRs = 1)
- lep-had final state

Final State

- 1 electron/muon
- 1 hadronic tau

ICHEP: ATLAS-CONF-2016-048

- 2 *b*-jets
- large $E_{\rm T}^{\rm miss}$

CR, VR & SR

- define signal-enriched region
- check and normalize background predictions in CR
- extrapolate from CR to SR
- verify extrapolation in VR

Implementation

- one SR, optimized for large stau masses
- background dominated by top-anti-top events
- tau reconstruction challenging
 - \rightarrow large fake (falsely reco. objects) rates
 - \rightarrow two dedicated for $t\overline{t}$ CRs for true and fake $\tau{\rm 's}$

- triggered by ${\rm e}/\mu$ signatures
- one reconstructed isolated ${\rm e}/\mu$
- one reco. hadronic τ of OS
- at least two jets

Discrimination against BG: m_{T2}

- generalization of $m_{\mathrm{T}}{}^{\dagger}$ for FS with multiple invisible particles
- $m_{T2}^2 = \min_{\mathbf{q}_1 + \mathbf{q}_2 = \not p_T} \left[\max \left\{ m_T^2(\mathbf{p}_1, \mathbf{q}_1), m_T^2(\mathbf{p}_2, \mathbf{q}_2) \right\} \right]$
- $m_{\mathrm{T2}}(I, \tau)$ falls off steeply for BG, broad distribution for signal

 ${}^{\dagger}m_{\mathrm{T}}^{2} = m_{\mathrm{P}}^{2} + 2(E_{\mathrm{T}}^{\mathrm{P}}\not\!\!\!/_{\mathrm{T}} - \mathbf{p}_{\mathrm{T}}\not\!\!\!/_{\mathrm{T}})$

SR Definition

- verifying extrapolation of m_{T2} for true and fake au's in two VRs
- correct normalization of $t\bar{t}$ with fake τ contribution is crucial
- crosschecks using adjusted selections
 - ightarrow normalization factor varies
 - \rightarrow assign add. systematic uncertainty on this normalization

Detector related

- trigger and object identification/reconstruction efficiencies
- energy calibration and resolution
- luminosity

Theory related

- factorization & renormalization scale, radiation and hard-scattering model
- cross sections and PDF sets

Dominated by uncertainties on $t\bar{t}$ modeling and normalization

Results

	SR		
Observed events	4		
Total background	3.4± 1.9		
$t\overline{t}$ (fake $ au$)	$2.5\pm~1.8$		
$t\overline{t} + V$	$0.36{\pm}0.19$		
$tar{t}$ (real $ au$)	$0.20^+_{-} \ {}^{0.24}_{0.20}$		
diboson	$0.12^+_{-0.12}^{0.20}_{0.12}$		
W+jets	$0.07^+_{-} \ {}^{0.09}_{0.07}$		
single-top	$0.06{\pm}0.06$		
$t\overline{t} + H$	0.05±0.02		
Z + jets	$0.03{\pm}0.01$		

- good agreement between observation and SM predictions
- update exclusion limits for this model

Exclusion Limits

Summary

- search for direct stop-to-stau production with τ 's in final state
- no excess above SM predictions observed
- increased exclusion limits for stop masses up to 870 GeV and for stau masses up to 730 GeV

Outlook

- publication for Moriond 2017 planned
- include had-had and lep-lep (reinterpretation) channels

BACKUP

Variable	CR tī R5	CR tt F5	CR tī SS	CR W
N _{b-jet}	≥ 1	≥ 1	≥ 1	0
$E_{\rm T}^{\rm miss}$	$> 180 { m ~GeV}$	> 120 GeV	$> 150 { m ~GeV}$	$> 100 { m ~GeV}$
$p_{T}(\tau)$	$> 70 { m ~GeV}$	> 70 GeV	$> 20 {\rm ~GeV}$	$< 90 { m ~GeV}$
$m_{T2}(\ell, \tau)$	$< 60 { m GeV}$	$20\mathrm{GeV} < m_{T2}\left(\ell, au ight) < 60\mathrm{GeV}$	$< 60 { m GeV}$	$< 60 { m GeV}$
$m_{T}(\ell)$	$> 100 { m ~GeV}$	$< 100 { m GeV}$		$< 80 { m ~GeV}$
$m(\ell, \tau)$	_	—	_	$> 80 { m ~GeV}$

Variable	VR <i>tī</i> R5	VR <i>tī</i> F5	VR W+jets $p_{\rm T}(\tau)$	VR W +jets $m_{T2}(\ell, \tau)$
N _{b-jet}	≥ 1	≥ 1	0	0
$E_{\rm T}^{\rm miss}$	$> 180 { m ~GeV}$	> 150 GeV	$> 100 { m ~GeV}$	$> 100 { m ~GeV}$
$p_{\rm T}(\tau)$	$> 70 { m ~GeV}$	> 70 GeV	> 90 GeV	< 90 GeV
$m_{T2}(\ell, \tau)$	$60 { m GeV} < m_{ m T}$	$_{2}(\ell, \tau) < 100 \mathrm{GeV}$	$< 100 { m GeV}$	> 60 GeV
$m_{T}(\ell)$	$> 100 { m ~GeV}$	$< 100 {\rm GeV}$	< 80 GeV	< 80 GeV
$m(\ell, \tau)$	-	-	> 80 GeV	> 80 GeV

Signal channel	$\langle\epsilon\sigma angle_{ m obs}^{95}[{ m fb}]$	$S^{95}_{ m obs}$	$S_{ m exp}^{95}$	CL_B	p(s = 0) (Z)
SR	0.55	7.3	$6.6^{+2.5}_{-1.6}$	0.65	0.41 (0.23)

N-1 Plots of SR

N-1 Plots of CR $t\bar{t}$ (fake τ)

N-1 Plots of CR $t\bar{t}$ (true τ)

