

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

SERGIO SÁNCHEZ CRUZ UNIVERSIDAD DE OVIEDO Taller de Altas Energías 2016 (Benasque)

SEARCHES FOR SUSY IN EVENTS WITH TWO OPPOSITE-SIGN SAME-FLAVOUR LEPTONS IN CMS

INTRODUCTION

This presentation covers

- Motivation of the search
- SUSY models we will be sensitive to
- Short review of the history and state-of-the-art of the analysis
- Presenting results almost hot of the press
- ► Dataset: $\sqrt{s} = 13$ TeV, 12.9 fb⁻¹ presented in early August in ICHEP
- Analysis fully documented in CMS-SUS-16-021

WHY TWO OPPOSITE-SIGN SAME-FLAVOUR LEPTONS?

- Two opposite-sign same-flavour leptons can appear in decay of SUSY particles
- Decays involving an on-shell Z boson will produce an excess on the Z invariant mass peak
- Off-shell Z boson or slepton decays will lead to a characteristic "edge" shape

SUSY MODELS CONSIDERED

GMSB scenario

Would be observed as an excess in events

- compatible with a Z boson
- additional jets
- ► E^{miss}

Slepton-edge scenario

 Would be observed as an kinematic edge in the M_{II} distribution

CMS-PAS-SUS-12-019

Sergio Sánchez Cruz

AN ANALYSIS WITH QUITE OF A HISTORY

SEARCH FOR AN EDGE

- Edge-like excess (2.6 σ) reported by CMS in Run I
- Compatible with SM predictions by ATLAS

arXiv:1502.06031, CMS-PAS-SUS-15-011, ATLAS-CONF-2015-082, arXiv:1503.03290

AN ANALYSIS WITH QUITE OF A HISTORY

SEARCH FOR AN EDGE

Analysis under careful scrutiny in the CMS Collaboration

Very precise background estimation performed

- "Interpreting a CMS Iljj/pT Excess with the Golden Cascade of the MSSM", B. Allanach et al. (arXiv:1409:3532v2)
- "CMS kinematic edge from s-bottoms", Peisi Huang and Carlos E.M. Wagner (arXiv:1410.4998v3)
- "A closer look at a hint of SUSY at the 8 TeV LHC", P. Grothaus, S. P. Liew, K. Sakurai (arXiv:1502.0571v1)
- Interpreting a CMS lljj/pT excess with a Leptoquark Model", B. Allanach et al.

AN ANALYSIS WITH QUITE OF A HISTORY

ON-Z SEARCH

- Excess in ATLAS in runs I (3 σ) and II (2.2 σ)
- CMS reported results compatible with SM expectations

arXiv:1502.06031, CMS-PAS-SUS-15-011, ATLAS-CONF-2015-082, arXiv:1503.03290

ANALYSIS STRATEGY

- Keep regions in which excess was observed
- Add additional regions to improve sensitivity

Baseline selection

- ► 2 OSSF leptons (p_T > 25(20) GeV)
- ► E^{miss}_T > 150 GeV
- ► at least two jets (p_T > 35 GeV)

SRA: 2-3 jets, $H_T >$ 400 GeV SRB: 4+ jets Sergio Sánchez Cruz

BACKGROUND CLASSIFIER - NLL

- $t\bar{t}$ is the dominant SM background in off-Z searches
- A likelihood discriminator is built out of four variables
 - ► Δφ_{||}

- ► E^{miss}
- ► dilepton p_T

- $\sum_{m_{bjets}} \min m_{lb} \ (m_{lj} \ \text{if} n_{bjets} < 2)$
- Independence of the variables is assumed

• 95% $t\bar{t}$ rejection working point is chosen

STANDARD MODEL BACKGROUNDS

FLAVOUR SYMMETRIC

- Main background in many of the signal regions
- Mainly $t\bar{t}$ (98%). Additional contribution from $Z \rightarrow \tau \tau$, WW,...
- Estimated from data-driven methods
- Assumption: flavour symmetric backgrounds produce OF as frequently as SF
- OF channel is used as a control region
- Corrected by different object identification and trigger efficiencies

STANDARD MODEL BACKGROUNDS

DRELL-YAN. $E_{\rm T}^{\rm MISS}$ TEMPLATES

- ► Data-driven approach is followed to estimate Z + jets contribution
- Assumption: E_T^{miss} in photon + jets is the same as in Z + jets

- ► E^{miss}_T distribution is taken from γ+jets data sample
- Distribution normalized in low E^{miss}_T (< 50 GeV) region

STANDARD MODEL BACKGROUNDS

DRELL-YAN. JZB METHOD

- JZB method is used as a cross-check in the ATLAS search region
- ► JZB is a measure of the momentum unbalance, defined as $JZB = |p_T''| - |\sum p_T^{jets}|$

RESULTS - ON Z SEARCH

- Results on in the on Z region
- Overall good agreement
- No sign of new physics in the ATLAS region

CMS-specifical regions

ATLAS excess region

RESULTS - SEARCH FOR AN EDGE

- Good agreement with SM expectations
- No sign of the excess observed in Run II data

		ttbar-like	non-ttbar-like
nll < 81 GeV	pred. total	1387.9 ± 48.3	113.1 ± 11.2
	obs	1417	135
ll > 101 GeV	pred. total	2443.4 ± 72.3	212.4 ± 15.7
	obs	2347	285

Events / 5 Ge

12.9 fb⁻¹ (13 TeV

m, [GeV]

- ▶ Excess observed in non-ttbar-like, high m_{ll} class
- 3.1 σ local significance

INTERPRETATION OF THE RESULTS

SUMMARY

- Shown results of the search for SUSY with two opposite-sign same-flavour leptons
- Targeted two kind of topologies
 - Z bosons produced in sparticle decays
 - Search for a kinematic edge \Rightarrow exploit the m_{\parallel} resolution
- New search regions + ATLAS and CMS excess regions
- No significant sign of new physics observed
- ► Data taking continues (so far 27 fb⁻¹ recorded by CMS).

Stay tuned for more results at the end of the year

Thanks for your attention! Questions?