Quantum Field Theory and the Standard Model

Outline

1. Quantum Field Theory: Gauge Theories
\triangleright The symmetry principle
\triangleright Quantization of gauge theories
\triangleright Spontaneous Symmetry Breaking
2. The Standard Model
\triangleright Gauge group and particle representations
\triangleright The SM with one family: electroweak interactions
\triangleright Electroweak SSB: Higgs sector, gauge boson and fermion masses
\triangleright Additional generations: fermion mixings
\triangleright Complete Lagrangian and Feynman rules
3. Phenomenology of the Electroweak Standard Model
\triangleright Input parameters, experiments, observables, precise predictions
\triangleright Global fits

1. Gauge Theories

The symmetry principle

free Lagrangian

- Lagrangian of a free fermion field $\psi(x)$:
(Dirac)

$$
\mathcal{L}_{0}=\bar{\psi}(\mathrm{i} \gamma-m) \psi \quad \partial \equiv \gamma^{\mu} \partial_{\mu}, \quad \bar{\psi}=\psi^{\dagger} \gamma^{0}
$$

\Rightarrow Invariant under global $\mathrm{U}(1)$ phase transformations:

$$
\psi(x) \mapsto \psi^{\prime}(x)=\mathrm{e}^{-\mathrm{i} q \theta} \psi(x), \quad q, \theta \text { (constants) } \in \mathbb{R}
$$

\Rightarrow By Noether's theorem there is a conserved current:

$$
j^{\mu}=q \bar{\psi} \gamma^{\mu} \psi, \quad \partial_{\mu} j^{\mu}=0
$$

and a Noether charge:

$$
Q=\int \mathrm{d}^{3} x j^{0}, \quad \partial_{t} Q=0
$$

The symmetry principle

free Lagrangian

- A quantized free fermion field:

$$
\psi(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} \sqrt{2 E_{\boldsymbol{p}}}} \sum_{s=1,2}\left(a_{\boldsymbol{p}, s} u^{(s)}(\boldsymbol{p}) \mathrm{e}^{-\mathrm{i} p x}+b_{\boldsymbol{p}, s}^{\dagger} v^{(s)}(\boldsymbol{p}) \mathrm{e}^{\mathrm{i} p x}\right)
$$

- is a solution of the Dirac equation (Euler-Lagrange):

$$
(\mathrm{i} \not \partial-m) \psi(x)=0, \quad(\not p-m) u(\boldsymbol{p})=0, \quad(\not p+m) v(\boldsymbol{p})=0,
$$

- is an operator from the canonical quantization rules (anticommutation):

$$
\left\{a_{\boldsymbol{p}, r}, a_{\boldsymbol{k}, s}^{\dagger}\right\}=\left\{b_{\boldsymbol{p}, r}, b_{\boldsymbol{k}, s}^{\dagger}\right\}=(2 \pi)^{3} \delta^{3}(\boldsymbol{p}-\boldsymbol{k}) \delta_{r s}, \quad\left\{a_{\boldsymbol{p}, r}, a_{\boldsymbol{k}, s}\right\}=\cdots=0
$$

that annihilates/creates particles/antiparticles on the Fock space of fermions

The symmetry principle

free Lagrangian

- For a quantized free fermion field:
\Rightarrow Normal ordering for fermionic operators (H spectrum bounded from below):

$$
: a_{\boldsymbol{p}, r} a_{\boldsymbol{q}, s}^{\dagger}: \equiv-a_{\boldsymbol{q}, s}^{\dagger} a_{\boldsymbol{p}, r}, \quad: b_{\boldsymbol{p}, r} r_{\boldsymbol{q}, s}^{\dagger}: \equiv-b_{\boldsymbol{q}, s}^{\dagger} b_{\boldsymbol{p}, r}
$$

\Rightarrow The Noether charge is an operator:

$$
\begin{gathered}
: Q:=q \int \mathrm{~d}^{3} x: \bar{\psi} \gamma^{0} \psi:=q \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} \sum_{s=1,2}\left(a_{p, s}^{\dagger} a_{p, s}-b_{p, s}^{\dagger} b_{p, s}\right) \\
Q a_{k, s}^{\dagger}|0\rangle=+q a_{k, s}^{\dagger}|0\rangle \text { (particle), } Q b_{k, s}^{\dagger}|0\rangle=-q b_{k, s}^{\dagger}|0\rangle \text { (antiparticle) }
\end{gathered}
$$

The symmetry principle

gauge symmetry dictates interactions

- To make \mathcal{L}_{0} invariant under local \equiv gauge transformations of $\mathrm{U}(1)$:

$$
\psi(x) \mapsto \psi^{\prime}(x)=\mathrm{e}^{-\mathrm{i} q \theta(x)} \psi(x), \quad \theta=\theta(x) \in \mathbb{R}
$$

perform the minimal substitution:

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+\mathrm{ieq} A_{\mu} \quad \text { (covariant derivative) }
$$

where a gauge field $A_{\mu}(x)$ is introduced transforming as:

$$
A_{\mu}(x) \mapsto A_{\mu}^{\prime}(x)=A_{\mu}(x)+\frac{1}{e} \partial_{\mu} \theta(x) \Leftarrow D_{\mu} \psi \mapsto \mathrm{e}^{-\mathrm{i} q \theta(x)} D_{\mu} \psi \quad \bar{\psi} D D \psi \text { inv. }
$$

\Rightarrow The new Lagrangian contains interactions between ψ and A_{μ} :

$$
\begin{gathered}
\mathcal{L}_{\mathrm{int}}=-e q \bar{\psi} \gamma^{\mu} \psi A_{\mu}
\end{gathered} \propto\left\{\begin{array}{r}
\text { coupling } \\
\text { charge }
\end{array} \quad q\right.
$$

The symmetry principle

gauge invariance dictates interactions

- Dynamics for the gauge field \Rightarrow add gauge invariant kinetic term:
(Maxwell)

$$
\mathcal{L}_{1}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \Leftarrow \quad F_{\mu v}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \mapsto F_{\mu v}
$$

- The full $\mathrm{U}(1)$ gauge invariant Lagrangian for a fermion field $\psi(x)$ reads:

$$
\mathcal{L}_{\text {sym }}=\bar{\psi}(\mathrm{i} \not D-m) \psi-\frac{1}{4} F_{\mu v} F^{\mu \nu} \quad\left(=\mathcal{L}_{0}+\mathcal{L}_{\mathrm{int}}+\mathcal{L}_{1}\right)
$$

- The same applies to a complex scalar field $\phi(x)$:

$$
\mathcal{L}_{\text {sym }}=\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi-m^{2} \phi^{\dagger} \phi-\lambda\left(\phi^{\dagger} \phi\right)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

The symmetry principle

non-Abelian gauge theories

- A general gauge symmetry group G is an compact N-dimensional Lie group

$$
\mathrm{g} \in G, \quad \mathrm{~g}(\boldsymbol{\theta})=\mathrm{e}^{-\mathrm{i} T_{a} \theta^{a}}, \quad a=1, \ldots, N
$$

$$
\theta^{a}=\theta^{a}(x) \in \mathbb{R}, \quad T_{a}=\text { Hermitian generators }, \quad\left[T_{a}, T_{b}\right]=\mathrm{i} f_{a b c} T_{c} \quad \text { (Lie algebra) }
$$

$$
\begin{array}{lll}
\operatorname{Tr}\left\{T_{a} T_{b}\right\} \equiv \frac{1}{2} \delta_{a b} & \text { structure constants: } & f_{a b c}=0 \\
& f_{a b c} \neq 0 & \text { Abelian } \\
& \text { non-Abelian }
\end{array}
$$

\Rightarrow Unitary finite-dimensional irreducible representations:
$g(\boldsymbol{\theta})$ represented by $U(\boldsymbol{\theta})$

$$
d \times d \text { matrices : } \quad U(\theta) \text { [given by }\left\{T_{a}\right\} \text { algebra representation] }
$$

$$
d \text {-multiplet : } \quad \Psi(x) \mapsto \Psi^{\prime}(x)=U(\theta) \Psi(x), \quad \Psi=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{d}
\end{array}\right)
$$

The symmetry principle

non-Abelian gauge theories

- Examples: | G | N | Abelian | | |
| :--- | :--- | :--- | :--- | :--- |
| | $\mathrm{U}(1)$ | 1 | Yes | |
| | $\mathrm{SU}(n)$ | $n^{2}-1$ | No | $(n \times n$ matrices with det $=1)$ |
- $\mathrm{U}(1): 1$ generator (q), one-dimensional irreps only
- SU(2): 3 generators

$$
f_{a b c}=\epsilon_{a b c}(\text { Levi-Civita symbol })
$$

* Fundamental irrep $(d=2): T_{a}=\frac{1}{2} \sigma_{a}$ (3 Pauli matrices)
* Adjoint irrep $(d=N=3):\left(T_{a}^{\text {adj }}\right)_{b c}=-\mathrm{i} f_{a b c}$
- SU(3): 8 generators

$$
f^{123}=1, f^{458}=f^{678}=\frac{\sqrt{3}}{2}, f^{147}=f^{156}=f^{246}=f^{247}=f^{345}=-f^{367}=\frac{1}{2}
$$

* Fundamental irrep $(d=3): T_{a}=\frac{1}{2} \lambda_{a}$ (8 Gell-Mann matrices)
* Adjoint irrep $(d=N=8):\left(T_{a}^{\mathrm{adj}}\right)_{b c}=-\mathrm{i} f_{a b c}$
(for $\operatorname{SU}(n): f_{a b c}$ totally antisymmetric)

The symmetry principle

non-Abelian gauge theories

- To make \mathcal{L}_{0} invariant under local \equiv gauge transformations of G :

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=U(\boldsymbol{\theta}) \Psi(x), \quad \boldsymbol{\theta}=\boldsymbol{\theta}(x) \in \mathbb{R}
$$

substitute the covariant derivative:

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}-\mathrm{i} g \widetilde{W}_{\mu}, \quad \widetilde{W}_{\mu} \equiv T_{a} W_{\mu}^{a}
$$

where a gauge field $A_{\mu}^{a}(x)$ per generator is introduced, transforming as:

$$
\widetilde{W}_{\mu}(x) \mapsto \widetilde{W}_{\mu}^{\prime}(x)=U \widetilde{W}_{\mu}(x) U^{\dagger}-\frac{\mathrm{i}}{g}\left(\partial_{\mu} U\right) U^{\dagger} \Leftarrow D_{\mu} \Psi \mapsto U D_{\mu} \Psi \quad \bar{\Psi} \not D \Psi \text { inv. }
$$

\Rightarrow The new Lagrangian contains interactions between Ψ and W_{μ}^{a} :

$$
\begin{gathered}
\mathcal{L}_{\mathrm{int}}=g \bar{\Psi} \gamma^{\mu} T_{a} \Psi W_{\mu}^{a} \\
\left(=g j_{a}^{\mu} W_{\mu}^{a}\right)
\end{gathered}
$$

The symmetry principle

non-Abelian gauge theories

- Dynamics for the gauge fields \Rightarrow add gauge invariant kinetic terms:

$$
\text { (Yang-Mills) } \mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left\{\widetilde{W}_{\mu \nu} \widetilde{W}^{\mu \nu}\right\}=-\frac{1}{4} W_{\mu \nu}^{a} W^{a, \mu \nu}
$$

$$
\begin{aligned}
& \widetilde{W}_{\mu \nu} \\
& \Rightarrow \quad D_{\mu} \widetilde{W}_{v}-D_{\nu} \widetilde{W}_{\mu}=\partial_{\mu} \widetilde{W}_{v}-\partial_{\nu} \widetilde{W}_{\mu}-\mathrm{i} g\left[\widetilde{W}_{\mu}, \widetilde{W}_{\nu}\right] \quad \Rightarrow \quad \widetilde{W}_{\mu \nu} \mapsto U \widetilde{W}_{\mu \nu} U^{\dagger} \\
& W_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{a b c} W_{\mu}^{b} W_{v}^{c}
\end{aligned}
$$

$\Rightarrow \mathcal{L}_{\mathrm{YM}}$ contains cubic and quartic self-interactions of the gauge fields W_{μ}^{a} :

$$
\begin{aligned}
\mathcal{L}_{\text {kin }} & =-\frac{1}{4}\left(\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}\right)\left(\partial^{\mu} W^{a, v}-\partial^{v} W^{a, \mu}\right) \\
\mathcal{L}_{\text {cubic }} & =-\frac{1}{2} g f_{a b c}\left(\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}\right) W^{b, \mu} W^{c, v} \\
\mathcal{L}_{\text {quartic }} & =-\frac{1}{4} g^{2} f_{a b e} f_{c d e} W_{\mu}^{a} W_{v}^{b} W^{c, \mu} W^{d, v}
\end{aligned}
$$

Quantization of gauge theories

propagators

- The (Feynman) propagator of a scalar field:

$$
D(x-y)=\langle 0| T\left\{\phi(x) \phi^{\dagger}(y)\right\}|0\rangle=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{\mathrm{i}}{p^{2}-m^{2}+\mathrm{i} \epsilon} \mathrm{e}^{-\mathrm{i} p \cdot(x-y)}
$$

is a Green's function of the Klein-Gordon operator:

$$
\left(\square_{x}+m^{2}\right) D(x-y)=-\mathrm{i} \delta^{4}(x-y) \quad \Leftrightarrow \quad \widetilde{D}(p)=\frac{\mathrm{i}}{p^{2}-m^{2}+\mathrm{i} \epsilon}
$$

- The propagator of a fermion field:

$$
S(x-y)=\langle 0| T\{\psi(x) \bar{\psi}(y)\}|0\rangle=\left(\mathrm{i} \gamma_{x}+m\right) \int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{\mathrm{i}}{p^{2}-m^{2}+\mathrm{i} \epsilon} \mathrm{e}^{-\mathrm{i} p \cdot(x-y)}
$$

is a Green's function of the Dirac operator:

$$
\left(\mathrm{i} \not \partial_{x}-m\right) S(x-y)=\mathrm{i} \delta^{4}(x-y) \quad \Leftrightarrow \quad \widetilde{S}(p)=\frac{\mathrm{i}}{\not p-m+\mathrm{i} \epsilon}
$$

Quantization of gauge theories

propagators

- BUT the propagator of a gauge field cannot be defined unless \mathcal{L} is modified:
(e.g. modified Maxwell) $\quad \mathcal{L}=-\frac{1}{4} F_{\mu v} F^{\mu v}-\frac{1}{2 \tilde{\xi}}\left(\partial^{\mu} A_{\mu}\right)^{2}$

Euler-Lagrange: $\frac{\partial \mathcal{L}}{\partial A_{\nu}}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}=0 \quad \Rightarrow \quad\left[g^{\mu v} \square-\left(1-\frac{1}{\xi}\right) \partial^{\mu} \partial^{\nu}\right] A_{\mu}=0$

- In momentum space the propagator is the inverse of:

$$
-k^{2} g^{\mu v}+\left(1-\frac{1}{\xi}\right) k^{\mu} k^{\nu} \quad \Rightarrow \quad \widetilde{D}_{\mu v}(k)=\frac{\mathrm{i}}{k^{2}+\mathrm{i} \epsilon}\left[-g_{\mu v}+(1-\xi) \frac{k_{\mu} k_{\nu}}{k^{2}}\right]
$$

\Rightarrow Note that $\left(-k^{2} g^{\mu v}+k^{\mu} k^{\nu}\right)$ is singular!
\Rightarrow One may argue that \mathcal{L} above will not lead to Maxwell equations ... unless we fix a (Lorenz) gauge where:

$$
\partial^{\mu} A_{\mu}=0 \Leftarrow A_{\mu} \mapsto A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \Lambda \text { with } \partial^{\mu} \partial_{\mu} \Lambda \equiv-\partial^{\mu} A_{\mu}
$$

Quantization of gauge theories

gauge fixing (Abelian case)

- The extra term is called Gauge Fixing:

$$
\mathcal{L}_{\mathrm{GF}}=-\frac{1}{2 \tilde{\xi}}\left(\partial^{\mu} A_{\mu}\right)^{2}
$$

$\Rightarrow \operatorname{modified} \mathcal{L}$ equivalent to Maxwell Lagrangian just in the gauge $\partial^{\mu} A_{\mu}=0$
\Rightarrow the ξ-dependence always cancels out in physical amplitudes

- Several choices for the gauge fixing term (simplify calculations): R_{ξ} gauges
('t Hooft-Feynman gauge) $\quad \zeta=1: \quad \widetilde{D}_{\mu v}(k)=-\frac{\mathrm{i} g_{\mu v}}{k^{2}+\mathrm{i} \epsilon}$
(Landau gauge) $\quad \xi=0: \quad \widetilde{D}_{\mu v}(k)=\frac{\mathrm{i}}{k^{2}+\mathrm{i} \epsilon}\left[-g_{\mu v}+\frac{k_{\mu} k_{\nu}}{k^{2}}\right]$

Quantization of gauge theories

gauge fixing (non-Abelian case)

- For a non-Abelian gauge theory, the gauge fixing terms:

$$
\mathcal{L}_{\mathrm{GF}}=-\sum_{a} \frac{1}{2 \xi_{a}}\left(\partial^{\mu} W_{\mu}^{a}\right)^{2}
$$

allow to define the propagators:

$$
\widetilde{D}_{\mu \nu}^{a b}(k)=\frac{\mathrm{i} \delta_{a b}}{k^{2}+\mathrm{i} \epsilon}\left[-g_{\mu \nu}+\left(1-\xi_{a}\right) \frac{k_{\mu} k_{\nu}}{k^{2}}\right]
$$

BUT, unlike the Abelian case, this is not the end of the story ...

Quantization of gauge theories

Faddeev-Popov ghosts

- Add Faddeev-Popov ghost fields $c_{a}(x), a=1, \ldots, N$:

$$
\mathcal{L}_{\mathrm{FP}}=\left(\partial^{\mu} \bar{c}_{a}\right)\left(D_{\mu}^{\mathrm{adj}}\right)_{a b} c_{b}=\left(\partial^{u} \bar{c}_{a}\right)\left(\partial_{\mu} c_{a}-g f_{a b c} c_{b} W_{\mu}^{c}\right) \Leftarrow \quad D_{\mu}^{\mathrm{adj}}=\partial_{\mu}-\mathrm{i} g T_{c}^{\mathrm{adj}} W_{\mu}^{c}
$$

Computational trick: anticommuting scalar fields, just in loops as virtual particles
\Rightarrow Faddeev-Popov ghosts needed to preserve gauge symmetry:

with

$$
\widetilde{D}_{a b}(k)=\frac{\mathrm{i} \delta_{a b}}{k^{2}+\mathrm{i} \epsilon} \quad[(-1) \text { sign for closed loops! (like fermions) }]
$$

Quantization of gauge theories

complete Lagrangian

- Then the complete quantum Lagrangian is

$$
\mathcal{L}_{\mathrm{sym}}+\mathcal{L}_{\mathrm{GF}}+\mathcal{L}_{\mathrm{FP}}
$$

\Rightarrow Note that in the case of a massive vector field

$$
\text { (Proca) } \quad \mathcal{L}=-\frac{1}{4} F_{\mu v} F^{\mu v}+\frac{1}{2} M^{2} A_{\mu} A^{\mu}
$$

it is not gauge invariant

- The propagator is:

$$
\widetilde{D}_{\mu \nu}(k)=\frac{\mathrm{i}}{k^{2}-M^{2}+\mathrm{i} \epsilon}\left(-g_{\mu \nu}+\frac{k^{\mu} k^{\nu}}{M^{2}}\right)
$$

Spontaneous Symmetry Breaking

discrete symmetry

- Consider a real scalar field $\phi(x)$ with Lagrangian:

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} \mu^{2} \phi^{2}-\frac{\lambda}{4} \phi^{4} \\
& \text { invariant under } \phi \mapsto-\phi \\
& \Rightarrow \quad \mathcal{H}=\frac{1}{2}\left(\dot{\phi}^{2}+(\nabla \phi)^{2}\right)+V(\phi) \\
& V=\frac{1}{2} \mu^{2} \phi^{2}+\frac{1}{4} \lambda \phi^{4}
\end{aligned} \quad \text { (a) }
$$

(b)
$\mu^{2}, \lambda \in \mathbb{R}$ (Real/Hermitian Hamiltonian) and $\lambda>0$ (existence of a ground state)
(a) $\mu^{2}>0$: min of $V(\phi)$ at $\phi_{\mathrm{cl}}=0$
(b) $\mu^{2}<0$: min of $V(\phi)$ at $\phi_{\mathrm{cl}}=v \equiv \pm \sqrt{\frac{-\mu^{2}}{\lambda}}, \quad$ in QFT $\langle 0| \phi|0\rangle=v \neq 0(\mathrm{VEV})$

- A quantum field must have $v=0$

$$
\Rightarrow \quad \phi(x) \equiv v+\eta(x), \quad\langle 0| \eta|0\rangle=0
$$

$$
a|0\rangle=0
$$

Spontaneous Symmetry Breaking

discrete symmetry

- At the quantum level, the same system is described by $\eta(x)$ with Lagrangian:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \eta\right)\left(\partial^{\mu} \eta\right)-\lambda v^{2} \eta^{2}-\lambda v \eta^{3}-\frac{\lambda}{4} \eta^{4} \quad \text { not invariant under } \quad \eta \mapsto-\eta
$$

\Rightarrow Lesson:
$\mathcal{L}(\phi)$ had the symmetry but the parameters can be such that the ground state of the Hamiltonian is not symmetric (Spontaneous Symmetry Breaking)
\Rightarrow Note:
One may argue that $\mathcal{L}(\eta)$ exhibits an explicit breaking of the symmetry. However this is not the case since the coefficients of terms η^{2}, η^{3} and η^{4} are determined by just two parameters, λ and v (remnant of the original symmetry)

Spontaneous Symmetry Breaking

continuous symmetry

- Consider a complex scalar field $\phi(x)$ with Lagrangian:

$$
\mathcal{L}=\left(\partial_{\mu} \phi^{\dagger}\right)\left(\partial^{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi-\lambda\left(\phi^{\dagger} \phi\right)^{2} \quad \text { invariant under } \mathrm{U}(1): \quad \phi \mapsto \mathrm{e}^{-\mathrm{i} q \theta} \phi
$$

$$
\lambda>0, \mu^{2}<0: \quad\langle 0| \phi|0\rangle \equiv \frac{v}{\sqrt{2}}, \quad|v|=\sqrt{\frac{-\mu^{2}}{\lambda}}
$$

Take $v \in \mathbb{R}^{+}$. In terms of quantum fields:

$$
\phi(x) \equiv \frac{1}{\sqrt{2}}[v+\eta(x)+\mathrm{i} \chi(x)], \quad\langle 0| \eta|0\rangle=\langle 0| \chi|0\rangle=0
$$

$\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \eta\right)\left(\partial^{\mu} \eta\right)+\frac{1}{2}\left(\partial_{\mu} \chi\right)\left(\partial^{\mu} \chi\right)-\lambda v^{2} \eta^{2}-\lambda \vartheta \eta\left(\eta^{2}+\chi^{2}\right)-\frac{\lambda}{4}\left(\eta^{2}+\chi^{2}\right)^{2}+\frac{1}{4} \lambda v^{4}$
\Rightarrow The actual quantum Lagrangian $\mathcal{L}(\eta, \chi)$ is not invariant under $\mathrm{U}(1)$ $\mathrm{U}(1)$ broken \Rightarrow one scalar field remains massless: $m_{\eta}=\sqrt{2 \lambda} v, m_{\chi}=0$

Note: if $v \mathrm{e}^{\mathrm{i} \alpha}$ (complex) replace η by $(\eta \cos \alpha-\chi \sin \alpha)$ and χ by $(\eta \sin \alpha+\chi \cos \alpha)$

Spontaneous Symmetry Breaking

continuous symmetry

- Another example: consider a real scalar $\mathrm{SU}(2)$ triplet $\Phi(x)$

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi^{\top}\right)\left(\partial^{\mu} \Phi\right)-\frac{1}{2} \mu^{2} \Phi^{\top} \Phi-\frac{\lambda}{4}\left(\Phi^{\top} \Phi\right)^{2} \quad \text { inv. under } \mathrm{SU}(2): \quad \Phi \mapsto \mathrm{e}^{-\mathrm{i} T_{a} \theta^{a}} \Phi
$$

that for $\lambda>0, \mu^{2}<0$ acquires a VEV $\langle 0| \Phi^{\top} \Phi|0\rangle=v^{2} \quad\left(\mu^{2}=-\lambda v^{2}\right)$
Assume $\Phi(x)=\left(\begin{array}{c}\varphi_{1}(x) \\ \varphi_{2}(x) \\ v+\varphi_{3}(x)\end{array}\right)$ and define $\varphi \equiv \frac{1}{\sqrt{2}}\left(\varphi_{1}+\mathrm{i} \varphi_{2}\right)$
$\mathcal{L}=\left(\partial_{\mu} \varphi^{\dagger}\right)\left(\partial^{\mu} \varphi\right)+\frac{1}{2}\left(\partial_{\mu} \varphi_{3}\right)\left(\partial^{\mu} \varphi_{3}\right)-\lambda v^{2} \varphi_{3}^{2}-\lambda v\left(2 \varphi^{\dagger} \varphi+\varphi_{3}^{2}\right) \varphi_{3}-\frac{\lambda}{4}\left(2 \varphi^{\dagger} \varphi+\varphi_{3}^{2}\right)^{2}+\frac{1}{4} \lambda v^{4}$
\Rightarrow Not symmetric under $\mathrm{SU}(2)$ but invariant under $\mathrm{U}(1)$:

$$
\varphi \mapsto \mathrm{e}^{-\mathrm{i} q \theta} \varphi \quad(q=\text { arbitrary }) \quad \varphi_{3} \mapsto \varphi_{3} \quad(q=0)
$$

$\mathrm{SU}(2)$ broken to $\mathrm{U}(1) \Rightarrow 3-1=2$ broken generators

$$
\Rightarrow 2 \text { (real) scalar fields }\left(=1 \text { complex) remain massless: } m_{\varphi}=0, m_{\varphi_{3}}=\sqrt{2 \lambda} v\right.
$$

Spontaneous Symmetry Breaking

continuous symmetry

\Rightarrow Goldstone's theorem:
The number of massless particles (Nambu-Goldstone bosons) is equal to the number of spontaneously broken generators of the symmetry

Hamiltonian symmetric under group $G \quad \Rightarrow \quad\left[T_{a}, H\right]=0, \quad a=1, \ldots, N$

$$
\text { By definition: } H|0\rangle=0 \quad \Rightarrow \quad H\left(T_{a}|0\rangle\right)=T_{a} H|0\rangle=0
$$

- If $|0\rangle$ is such that $T_{a}|0\rangle=0$ for all generators
\Rightarrow non-degenerate minimum: the vacuum
- If $|0\rangle$ is such that $T_{a^{\prime}}|0\rangle \neq 0$ for some (broken) generators a^{\prime}
\Rightarrow degenerate minimum: chose one (true vacuum) and $\mathrm{e}^{-\mathrm{i} T_{a^{\prime}} \theta^{a^{\prime}}}|0\rangle \neq|0\rangle$
\Rightarrow excitations (particles) from $|0\rangle$ to $\mathrm{e}^{-\mathrm{i} T_{a^{\prime}} \theta^{a^{\prime}}}|0\rangle$ cost no energy: massless!

