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The symmetry principle free Lagrangian

• Lagrangian of a free fermion field y(x):

(Dirac) L0 = y(i/∂ � m)y /∂ ⌘ g

µ

∂

µ

, y = y

†
g

0

) Invariant under global U(1) phase transformations:

y(x) 7! y

0(x) = e�iqq

y(x) , q, q (constants) 2 R

) By Noether’s theorem there is a conserved current:

jµ = q yg

µ

y , ∂

µ

jµ = 0

and a Noether charge:

Q =
ˆ

d3x j0, ∂tQ = 0
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The symmetry principle free Lagrangian

• A quantized free fermion field:

y(x) =
ˆ

d3p
(2p)3

p

2Ep
Â

s=1,2

⇣

ap,su(s)(p)e�ipx + b†
p,sv

(s)(p)eipx
⌘

– is a solution of the Dirac equation (Euler-Lagrange):

(i/∂ � m)y(x) = 0 , (/p � m)u(p) = 0 , (/p + m)v(p) = 0 ,

– is an operator from the canonical quantization rules (anticommutation):

{ap,r, a†
k,s} = {bp,r, b†

k,s} = (2p)3
d

3(p� k)drs , {ap,r, ak,s} = · · · = 0 ,

that annihilates/creates particles/antiparticles on the Fock space of fermions
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The symmetry principle free Lagrangian

• For a quantized free fermion field:

) Normal ordering for fermionic operators (H spectrum bounded from below):

: ap,ra†
q,s : ⌘ �a†

q,sap,r , : bp,rb†
q,s : ⌘ �b†

q,sbp,r

) The Noether charge is an operator:

: Q : = q
ˆ

d3x : yg

0
y : = q

ˆ
d3p
(2p)3 Â

s=1,2

⇣

a†
p,sap,s � b†

p,sbp,s

⌘

Q a†
k,s |0i = +q a†

k,s |0i (particle) , Q b†
k,s |0i = �q b†

k,s |0i (antiparticle)
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The symmetry principle gauge symmetry dictates interactions

• To make L0 invariant under local ⌘ gauge transformations of U(1):

y(x) 7! y

0(x) = e�iqq(x)
y(x) , q = q(x) 2 R

perform the minimal substitution:

∂

µ

! D
µ

= ∂

µ

+ ieqA
µ

(covariant derivative)

where a gauge field A
µ

(x) is introduced transforming as:

A
µ

(x) 7! A0
µ

(x) = A
µ

(x) +
1
e

∂

µ

q(x) ( D
µ

y 7! e�iqq(x)D
µ

y y /Dy inv.

) The new Lagrangian contains interactions between y and A
µ

:

Lint = �eq yg

µ

yA
µ

µ

(

coupling e
charge q

(= �e jµ A
µ

)
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The symmetry principle gauge invariance dictates interactions

• Dynamics for the gauge field ) add gauge invariant kinetic term:

(Maxwell) L1 = �1
4

F
µn

Fµn ( F
µn

= ∂

µ

A
n

� ∂

n

A
µ

7! F
µn

• The full U(1) gauge invariant Lagrangian for a fermion field y(x) reads:

Lsym = y(i /D � m)y � 1
4

F
µn

Fµn (= L0 + Lint + L1)

• The same applies to a complex scalar field f(x):

Lsym = (D
µ

f)†Dµ

f � m2
f

†
f � l(f†

f)2 � 1
4

F
µn

Fµn
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The symmetry principle non-Abelian gauge theories

• A general gauge symmetry group G is an compact N-dimensional Lie group

g 2 G , g(✓) = e�iTaq

a
, a = 1, . . . , N

q

a = q

a(x) 2 R , Ta = Hermitian generators , [Ta, Tb] = i fabcTc (Lie algebra)

Tr{TaTb} ⌘ 1
2 dab structure constants: fabc = 0 Abelian

fabc 6= 0 non-Abelian

) Unitary finite-dimensional irreducible representations:

g(✓) represented by U(✓)

d ⇥ d matrices : U(✓) [given by {Ta} algebra representation]

d-multiplet : Y(x) 7! Y0(x) = U(✓)Y(x) , Y =

0

B

B

B

@

y1
...

yd

1

C

C

C

A
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The symmetry principle non-Abelian gauge theories

• Examples: G N Abelian

U(1) 1 Yes

SU(n) n2 � 1 No (n ⇥ n matrices with det = 1)

– U(1): 1 generator (q), one-dimensional irreps only

– SU(2): 3 generators
fabc = eabc (Levi-Civita symbol)

⇤ Fundamental irrep (d = 2): Ta = 1
2 sa (3 Pauli matrices)

⇤ Adjoint irrep (d = N = 3): (Tadj
a )bc = �i fabc

– SU(3): 8 generators

f 123 = 1, f 458 = f 678 =
p

3
2 , f 147 = f 156 = f 246 = f 247 = f 345 = � f 367 = 1

2
⇤ Fundamental irrep (d = 3): Ta = 1

2 la (8 Gell-Mann matrices)
⇤ Adjoint irrep (d = N = 8): (Tadj

a )bc = �i fabc

(for SU(n): fabc totally antisymmetric)
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The symmetry principle non-Abelian gauge theories

• To make L0 invariant under local ⌘ gauge transformations of G:

Y(x) 7! Y0(x) = U(✓)Y(x) , ✓ = ✓(x) 2 R

substitute the covariant derivative:

∂

µ

! D
µ

= ∂

µ

� ig eW
µ

, eW
µ

⌘ TaWa
µ

where a gauge field Aa
µ

(x) per generator is introduced, transforming as:

eW
µ

(x) 7! eW 0
µ

(x) = U eW
µ

(x)U† � i
g
(∂

µ

U)U† ( D
µ

Y 7! UD
µ

Y Y /DY inv.

) The new Lagrangian contains interactions between Y and Wa
µ

:

Lint = g Yg

µTaYWa
µ

µ

(

coupling g
charge Ta

(= g jµ

a Wa
µ

)
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The symmetry principle non-Abelian gauge theories

• Dynamics for the gauge fields ) add gauge invariant kinetic terms:

(Yang-Mills) LYM = �1
2

Tr
n

eW
µn

eWµn

o

= �1
4

Wa
µn

Wa,µn

eW
µn

⌘ D
µ

eW
n

� D
n

eW
µ

= ∂

µ

eW
n

� ∂

n

eW
µ

� ig[ eW
µ

, eW
n

] ) eW
µn

7! U eW
µn

U†

) Wa
µn

= ∂

µ

Wa
n

� ∂

n

Wa
µ

+ g fabcWb
µ

Wc
n

) LYM contains cubic and quartic self-interactions of the gauge fields Wa
µ

:

Lkin = �1
4
(∂

µ

Wa
n

� ∂

n

Wa
µ

)(∂µWa,n � ∂

nWa,µ)

Lcubic = �1
2

g fabc (∂µ

Wa
n

� ∂

n

Wa
µ

)Wb,µWc,n

Lquartic = �1
4

g2 fabe fcde Wa
µ

Wb
n

Wc,µWd,n
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Quantization of gauge theories propagators

• The (Feynman) propagator of a scalar field:

D(x � y) = h0| T{f(x)f†(y)} |0i =
ˆ

d4p
(2p)4

i
p2 � m2 + ie

e�ip·(x�y)

is a Green’s function of the Klein-Gordon operator:

(⇤x + m2)D(x � y) = �id4(x � y) , eD(p) =
i

p2 � m2 + ie

• The propagator of a fermion field:

S(x � y) = h0| T{y(x)y(y)} |0i = (i/∂x + m)
ˆ

d4p
(2p)4

i
p2 � m2 + ie

e�ip·(x�y)

is a Green’s function of the Dirac operator:

( /i∂x � m)S(x � y) = id4(x � y) , eS(p) =
i

/p � m + ie
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Quantization of gauge theories propagators

• BUT the propagator of a gauge field cannot be defined unless L is modified:

(e.g. modified Maxwell) L = �1
4

F
µn

Fµn� 1
2x

(∂µ A
µ

)2

Euler-Lagrange:
∂L
∂A

n

� ∂

µ

∂L
∂(∂

µ

A
n

)
= 0 )



gµn⇤�
✓

1 � 1
x

◆

∂

µ

∂

n

�

A
µ

= 0

– In momentum space the propagator is the inverse of:

�k2gµn +

✓

1 � 1
x

◆

kµkn ) eD
µn

(k) =
i

k2 + ie



�g
µn

+ (1 � x)
k

µ

k
n

k2

�

) Note that (�k2gµn + kµkn) is singular!

) One may argue that L above will not lead to Maxwell equations . . .

unless we fix a (Lorenz) gauge where:

∂

µ A
µ

= 0 ( A
µ

7! A0
µ

= A
µ

+ ∂

µ

L with ∂

µ

∂

µ

L ⌘ �∂

µ A
µ
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Quantization of gauge theories gauge fixing (Abelian case)

• The extra term is called Gauge Fixing:

LGF = � 1
2x

(∂µ A
µ

)2

) modified L equivalent to Maxwell Lagrangian just in the gauge ∂

µ A
µ

= 0

) the x-dependence always cancels out in physical amplitudes

• Several choices for the gauge fixing term (simplify calculations): R
x

gauges

(’t Hooft-Feynman gauge) x = 1 : eD
µn

(k) = � ig
µn

k2 + ie

(Landau gauge) x = 0 : eD
µn

(k) =
i

k2 + ie



�g
µn

+
k

µ

k
n

k2

�
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Quantization of gauge theories gauge fixing (non-Abelian case)

• For a non-Abelian gauge theory, the gauge fixing terms:

LGF = �Â
a

1
2xa

(∂µWa
µ

)2

allow to define the propagators:

eDab
µn

(k) =
idab

k2 + ie



�g
µn

+ (1 � xa)
k

µ

k
n

k2

�

BUT, unlike the Abelian case, this is not the end of the story . . .
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Quantization of gauge theories Faddeev-Popov ghosts

• Add Faddeev-Popov ghost fields ca(x), a = 1, . . . , N:

LFP = (∂µca)(Dadj
µ

)abcb = (∂µca)(∂µ

ca � g fabccbWc
µ

) ( Dadj
µ

= ∂

µ

� igTadj
c Wc

µ

Computational trick: anticommuting scalar fields, just in loops as virtual particles
) Faddeev-Popov ghosts needed to preserve gauge symmetry:

= i(g
µn

k2 � k
µ

k
n

)P(k2)

with

eDab(k) =
idab

k2 + ie
[(�1) sign for closed loops! (like fermions)]
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Quantization of gauge theories complete Lagrangian

• Then the complete quantum Lagrangian is

Lsym + LGF + LFP

) Note that in the case of a massive vector field

(Proca) L = �1
4

F
µn

Fµn +
1
2

M2A
µ

Aµ

it is not gauge invariant

– The propagator is:

eD
µn

(k) =
i

k2 � M2 + ie

✓

�g
µn

+
kµkn

M2

◆
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Spontaneous Symmetry Breaking discrete symmetry

• Consider a real scalar field f(x) with Lagrangian:

L =
1
2
(∂

µ

f)(∂µ

f)� 1
2

µ

2
f

2 � l

4
f

4 invariant under f 7! �f

) H =
1
2
(ḟ2 + (rf)2) + V(f)

V =
1
2

µ

2
f

2 +
1
4

lf

4

µ

2, l 2 R (Real/Hermitian Hamiltonian) and l > 0 (existence of a ground state)

(a) µ

2 > 0: min of V(f) at fcl = 0

(b) µ

2 < 0: min of V(f) at fcl = v ⌘ ±
r

�µ

2

l

, in QFT h0| f |0i = v 6= 0 (VEV)

– A quantum field must have v = 0

a |0i = 0
) f(x) ⌘ v + h(x) , h0| h |0i = 0
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Spontaneous Symmetry Breaking discrete symmetry

• At the quantum level, the same system is described by h(x) with Lagrangian:

L =
1
2
(∂

µ

h)(∂µ

h)� lv2
h

2 � lvh

3 � l

4
h

4 not invariant under h 7! �h

) Lesson:

L(f) had the symmetry but the parameters can be such that the ground state of
the Hamiltonian is not symmetric (Spontaneous Symmetry Breaking)

) Note:

One may argue that L(h) exhibits an explicit breaking of the symmetry. However
this is not the case since the coefficients of terms h

2, h

3 and h

4 are determined by
just two parameters, l and v (remnant of the original symmetry)

1. Gauge Theories 20



Spontaneous Symmetry Breaking continuous symmetry

• Consider a complex scalar field f(x) with Lagrangian:

L = (∂
µ

f

†)(∂µ

f)� µ

2
f

†
f � l(f†

f)2 invariant under U(1): f 7! e�iqq

f

l > 0, µ

2 < 0 : h0| f |0i ⌘ vp
2

, |v| =
r

�µ

2

l

Take v 2 R+. In terms of quantum fields:

f(x) ⌘ 1p
2
[v+ h(x)+ ic(x)], h0| h |0i = h0| c |0i = 0

L =
1
2
(∂

µ

h)(∂µ

h) +
1
2
(∂

µ

c)(∂µ

c)� lv2
h

2 � lvh(h2 + c

2)� l

4
(h2 + c

2)2 +
1
4

lv4

) The actual quantum Lagrangian L(h, c) is not invariant under U(1)

U(1) broken ) one scalar field remains massless: m
h

=
p

2l v, m
c

= 0

Note: if veia (complex) replace h by (h cos a � c sin a) and c by (h sin a + c cos a)

1. Gauge Theories 21



Spontaneous Symmetry Breaking continuous symmetry

• Another example: consider a real scalar SU(2) triplet F(x)

L =
1
2
(∂

µ

FT)(∂µF)� 1
2

µ

2FTF � l

4
(FTF)2 inv. under SU(2): F 7! e�iTaq

a
F

that for l > 0, µ

2 < 0 acquires a VEV h0|FTF |0i = v2 (µ2 = �lv2)

Assume F(x) =

0

B

B

@

j1(x)

j2(x)

v + j3(x)

1

C

C

A

and define j ⌘ 1p
2
(j1 + ij2)

L = (∂
µ

j

†)(∂µ

j)+
1
2
(∂

µ

j3)(∂
µ

j3)�lv2
j

2
3 �lv(2j

†
j+ j

2
3)j3 �

l

4
(2j

†
j+ j

2
3)

2+
1
4

lv4

) Not symmetric under SU(2) but invariant under U(1):

j 7! e�iqq

j (q = arbitrary) j3 7! j3 (q = 0)

SU(2) broken to U(1) ) 3 � 1 = 2 broken generators
) 2 (real) scalar fields (= 1 complex) remain massless: m

j

= 0, m
j3 =

p
2l v
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Spontaneous Symmetry Breaking continuous symmetry

) Goldstone’s theorem: [Nambu ’60; Goldstone ’61]

The number of massless particles (Nambu-Goldstone bosons) is equal to the number of
spontaneously broken generators of the symmetry

Hamiltonian symmetric under group G ) [Ta, H] = 0 , a = 1, . . . , N

By definition: H |0i = 0 ) H(Ta |0i) = TaH |0i = 0

– If |0i is such that Ta |0i = 0 for all generators

) non-degenerate minimum: the vacuum

– If |0i is such that Ta0 |0i 6= 0 for some (broken) generators a0

) degenerate minimum: chose one (true vacuum) and e�iTa0 q
a0 |0i 6= |0i

) excitations (particles) from |0i to e�iTa0 q
a0 |0i cost no energy: massless!
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