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Outline

1. Quantum Field Theory: Gauge Theories
> The symmetry principle
> Quantization of gauge theories

> Spontaneous Symmetry Breaking

2. The Standard Model
> Gauge group and particle representations
> The SM with one family: electroweak interactions
> FElectroweak SSB: Higgs sector, gauge boson and fermion masses
> Additional generations: fermion mixings

> Complete Lagrangian and Feynman rules

3. Phenomenology of the Electroweak Standard Model
> Input parameters, experiments, observables, precise predictions

> Global fits



1. Gauge Theories




The symmetry principle

free Lagrangian

e Lagrangian of a free fermion field {(x):

(Dirac) Lo=y({id —m)p| J= ’)’Vay , P = l/)Jr'YO

= Invariant under global U(1) phase transformations:

P(x) — ' (x) = e Py(x), g, 0 (constants) € R

= By Noether’s theorem there is a conserved current:

and a Noether charge:

F=qyty, oyt =0

Q= [&xf a0
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The symmetry principle || free Lagrangian

e A |quantized | free fermion field:

3
S ). (ﬂp,su(s>(p)e_ip Y+ b} 0 (p)e? x)

vl = / (27)%\/2Ep

— is a solution of the Dirac equation (Euler-Lagrange):

(ig —m)yp(x) =0, (f—mu(p)=0, (f+m)o(p)=0,

— is an operator from the canonical quantization rules (anticommutation):

{ap,r, ”L,s} = {bp,r, blt,s} = (271)°0°(p — k)dys , {aprans}t=---=0,

that annihilates/creates particles/antiparticles on the Fock space of fermions
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The symmetry principle || free Lagrangian

e For a |quantized | free fermion field:

= Normal ordering for fermionic operators (H spectrum bounded from below):

. L — T . L— t
. ap,raqls « — _aqlsap’r 7 . bp’rbqls . — _bqlsbp,r

= The Noether charge is an operator:

_ d
SO 3. .7m 0 . p t F
. Q - T q/d X - l/)')/ l/) T 5]/ (27’()3 _Z (ap,sap,s T bp,sbp,s)

Qal,|0) = +qaf,|0) (particle), Q b}, |0) = —q bE,[0) (antiparticle)
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The symmetry principle

gauge symmetry dictates interactions

e To make Ly invariant under local = gauge transformations of U(1):

Pp(x) = ¢'(x) =e "Wy(x), 6=6(x) eR

perform the minimal substitution:

d, = D, =9, +ieqA, (covariant derivative)

where a gauge field A, (x) is introduced transforming as:

Au(x) > AL(x) = Ay(x) + %aye(x) = [Dw e ™D, y| Fpyinv.

= The new Lagrangian contains | interactions | between 1 and Ay,:

—eq PP PA,| { coupling e

charge g
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The symmetry principle || gauge invariance dictates interactions

e Dynamics for the gauge field = add gauge invariant kinetic term:

1
(Maxwell) L= _EFWFW < Fy=0,A,—0d,A,— Fyu

e The full U(1) gauge invariant Lagrangian for a fermion field ¢(x) reads:

— 1
ﬁsym = Qb(lw — m)ED — ZFvayv (: Lo+ Lint + El)

e The same applies to a complex scalar field ¢(x):

1
Leym = (D Mb) D¢ —m 9b ¢ — )‘(‘P 4)) — _FMVFW
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The symmetry principle || non-Abelian gauge theories

e A general gauge symmetry group G is an compact N-dimensional Lie group
gcG, g@)=eT" 4=1,. N
0" =0"(x) €« R, T, = Hermitian generators, [T, Ty =ifu.T. (Lie algebra)

structure constants: f,,. =0 Abelian
fave 70 non-Abelian

= Unitary finite-dimensional irreducible representations:

2(60) represented by U(0)
d x d matrices : U(0) [given by {T,} algebra representation]

(llh\

d-multiplet: ¥(x) — ¥'(x) = U(0)¥(x), Y=

\¥
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The symmetry principle || non-Abelian gauge theories

e Examples: G N  Abelian
u() 1 Yes
SU(n) | n? —1 No (n X n matrices with det = 1)

— U(1): 1 generator (g), one-dimensional irreps only

— SU(2): 3 generators
fave = €apc (Levi-Civita symbol)
+* Fundamental irrep (d = 2): T, = %aa (3 Pauli matrices)

+ Adjoint irrep (d = N = 3): (T;dj)bc = —ifapc

— SU(3): 8 generators

123 _ =1, f458 — f678 __ V3 f f156 — f246 — f247 f345 — f367 —
T, =

1A (8 Gell-Mann matrices)

dj
( ; ])bc — _1fabc

(for SU(n): f,p. totally antisymmetric)

2/
+* Fundamental irrep (d = 3):
= 8):

* Adjoint irrep (d =
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The symmetry principle || non-Abelian gauge theories

e To make £y invariant under local = gauge transformations of G:

¥(x) s ¥ (x) = UO)¥(x), 6=80(x)cR

substitute the covariant derivative:

W, =T, WZ

where a gauge field A (x) per generator is introduced, transforming as:

~

Wy (x) s W, (x) = U (1)U — é(ayuw

< [D,¥— UD,Y

= The new Lagrangian contains | interactions

between ¥ and Wﬁ:

»Cint — & ?’YV Taquﬁ

(=g jtWy)

~ { coupling ¢

charge T,

YV inv.
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The symmetry principle || non-Abelian gauge theories

e Dynamics for the gauge fields = add gauge invariant kinetic terms:

1 ~ 1
(Yang-Mills) |Lym = _ETI {WWWW} — —EWﬁuW“’”V

~

= Wi, =0, W, — Wy + gfarc WiWS

= Lym contains cubic and quartic | self-interactions | of the gauge fields Wy;:

Lo = —%(ang — 0 W) (W — QYW
1
L cubic = _ngabc (anyf — avwﬁ)wb,ﬂwcﬂf
1

Equartic — = Zg Zf abef cde Wﬁ W5 Wer Wdlv
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Quantization of gauge theories || propagators

e The (Feynman) propagator of a scalar field:

d*p i
27)% p? — m? +ie

o ip-(x—y)

D(x ~y) = (0] T{p(x)¢" 1)} 0) = [ -
is a Green’s function of the Klein-Gordon operator:

(O +m*)D(x —y) = ~i6*(x—y) < D(p) =

e The propagator of a fermion field:

d*p i

e_ip'<x_y)
27)4 p? — m? +ie

S(x =) = O T{YEFW}0) = (@ +m) [ -
is a Green’s function of the Dirac operator:

(B —m)S(x —y) =" (x —y) & S(p)
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Quantization of gauge theories || propagators

e BUT the propagator of a gauge field cannot be defined unless £ is modified:

1 1
(e.g. modified Maxwell) L=—=Fu v _ E

1 (9" A,)?

oL oL

1
— e (1 2 argy _
e il [gD (1 6)88]/1” 0

— In momentum space the propagator is the inverse of:

Euler-Lagrange:

1 ~ i
—JPoMV [ 1 — = ) kMK —
3 (1 é)k = Dl =

— Note that (—k%¢"V + k¥kY) is singular!
8 &

k,k,
[_Sﬂv+(1—§) ZZ ]

= One may argue that £ above will not lead to Maxwell equations ...

unless we fix a (Lorenz) gauge where:

MA, =0 <« Ay A=A, +9,A with 9"9,A = -4,
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Quantization of gauge theories || gauge fixing | (Abelian case)

e The extra term is called Gauge Fixing:

1
Lcr = —E(H“Ay)z

= modified £ equivalent to Maxwell Lagrangian just in the gauge 0¥ A, =0

= the {-dependence always cancels out in physical amplitudes

e Several choices for the gauge fixing term (simplify calculations): Rz gauges

('t Hooft-Feynman gauge) ¢ =1: 5;11/(1() 8w

_ i kyky
(Landau gauge) ¢ =0: Dy (k) = 5—— [_gzw T iz ]
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Quantization of gauge theories || gauge fixing | (non-Abelian case)

e For a non-Abelian gauge theory, the gauge fixing terms:

1 a
LGr = —Zg(aywﬂz

a

allow to define the propagators:

~ 10,1 k., k
Dzlf/(k) = kz—iie —8uv Tt (1—2¢a) ;1221/

BUT, unlike the Abelian case, this is not the end of the story ...
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Quantization of gauge theories || Faddeev-Popov ghosts

e Add Faddeev-Popov ghost fields ¢,(x),a =1,...,N:

Lep = (38) (D) apey = (978a) (Buca — &fanccsWS) | & D) = 9y — igTEIWS

Computational trick: anticommuting scalar fields, just in loops as virtual particles
= Faddeev-Popov ghosts needed to preserve gauge symmetry:

(2 (b)

AAAAAAAY PAAmAAAN
\ ]

= i(guvk? — kyuky )TI(k?)

.( ;:.).
with

~ i,
Dab(k) — kz—iie

[(—1) sign for closed loops! (like fermions)]
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Quantization of gauge theories

complete Lagrangian

e Then the complete quantum Lagrangian is

Lsym + Lcr + Lrp

= Note that in the case of a massive vector field

1 1

_ 2
(Proca) L=——F,F" + -M"A,AF

it 1s not gauge invariant

— The propagator is:

4 2

1. Gauge Theories
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Spontaneous Symmetry Breaking

discrete symmetry

e Consider a real scalar field ¢(x) with Lagrangian:

L= %(ayq))(aﬂcp) — %ychz — %c/# invariant under ¢ — —¢

= H= (4 (V9 +V(9)

1 1
V= 21202 4+ A
SHP"+ AP

/

(a)

1%, A € R (Real/Hermitian Hamiltonian) and A > 0 (existence of a ground state)

(a) % > 0: min of V(¢) at ¢ = 0

(b) #? < 0: min of V(¢) at pg = v = £/ _T]ﬂ, in QFT (0| ¢ |0) = v # 0 (VEV)

— A quantum field must have v = 0

al0) =0

=

p(x) =v+n(x),

(0]7710) =0

1. Gauge Theories
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Spontaneous Symmetry Breaking || discrete symmetry

e At the quantum level, the same system is described by 7(x) with Lagrangian:

1
2

Ay

L (3u17) (9"n) — Av*n* — Aoy® — 4" not invariant under # — —y

= Lesson:

L(¢) had the symmetry but the parameters can be such that the ground state of
the Hamiltonian is not symmetric (Spontaneous Symmetry Breaking)

= Note:

One may argue that £(7) exhibits an explicit breaking of the symmetry. However
this is not the case since the coefficients of terms 72, 7° and #* are determined by
just two parameters, A and v (remnant of the original symmetry)
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Spontaneous Symmetry Breaking || continuous symmetry

e Consider a complex scalar field ¢(x) with Lagrangian:

[ — (ay(lﬁ)(aﬂ(l)) — ‘-,424)*4; — A((/)‘Lgb)z invariant under U(1): ¢ — e_iqefP

2 v —u?
A>0,u"<0: <O‘¢|O>:\ﬁ' | = —

Take v € R*. In terms of quantum fields:

0(x) = —slo+n(x) +ix(x), ©ln10) = (0 x[0) =0

1 1 A
L = Z(0um) (@) + 5(3ux) (3"x) = Av*n* — Ao (i + %) — (1 + X7

= The actual quantum Lagrangian £(7, x) is not invariant under U(1)

U(1) broken = one scalar field remains massless: m,; = v2A v, m, =0

Note: if vel* (complex) replace # by (17 cosa — xsina) and x by (7sina + x cos«)
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Spontaneous Symmetry Breaking || continuous symmetry

e Another example: consider a real scalar SU(2) triplet ®(x)

L= %(ayqﬁ)(aﬂcb) ; 1WoTo — %(@Tcp) inv. under SUQ2): & — e %@
that for A > 0, u? < 0 acquires a VEV (0| ®T® |0) = ? (1? = —Av?)
¢1(x)
Assume O (x) = @2 (x) and define ¢ = \[(gol +ig»)
v+ ¢3(x)

1 A
L= (@u9")(9"9) + 5 (393) (9" p3) — A0* 3 — A0(297 9+ 93) 93— 7 (2979 + ¢3)°

= Not symmetric under SU(2) but invariant under U(1):

—ig6

¢ — e e (q= arbitrary) 3 +— @3 (g =0)

SU(2) broken to U(1) = 3 — 1 = 2 broken generators
= 2 (real) scalar fields (= 1 complex) remain massless: m, = 0, my, = V2A 0
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Spontaneous Symmetry Breaking || continuous symmetry

= Goldstone’s theorem: [Nambu ‘60; Goldstone 61]

The number of massless particles (Nambu-Goldstone bosons) is equal to the number of
spontaneously broken generators of the symmetry

Hamiltonian symmetric under group G = T,,H =0, a=1,...,N
By definition: H|0) =0 = H(T,|0)) =T,H|0) =0

— If |0) is such that T, |0) = O for all generators

= non-degenerate minimum: the vacuum

—If |0) is such that T, |0) # 0 for some (broken) generators a’
= degenerate minimum: chose one (true vacuum) and e iTu0" 0) # |0)

. a
= excitations (particles) from |0) to e '7#?" |0) cost no energy: massless!
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